메뉴 건너뛰기




Volumn 10, Issue 4, 2009, Pages 424-434

Computational systems biology of the cell cycle

Author keywords

Cell cycle; Computational modeling; Historical review; Perspectives; Systems biology

Indexed keywords

ALGORITHM; BIOINFORMATICS; CELL CYCLE REGULATION; INFORMATION PROCESSING; MATHEMATICAL COMPUTING; MATHEMATICAL MODEL; REVIEW; SYSTEMS BIOLOGY;

EID: 67449152160     PISSN: 14675463     EISSN: 14774054     Source Type: Journal    
DOI: 10.1093/bib/bbp005     Document Type: Review
Times cited : (62)

References (204)
  • 1
    • 0018891216 scopus 로고
    • Mammalian cell cycles need two random transitions
    • Brooks RF, Bennett DC, Smith JA. Mammalian cell cycles need two random transitions. Cell 1980;19:493-504.
    • (1980) Cell , vol.19 , pp. 493-504
    • Brooks, R.F.1    Bennett, D.C.2    Smith, J.A.3
  • 2
    • 0019226550 scopus 로고
    • A G1 rate model accounts for cell-cycle kinetics attributed to 'transition probability'
    • Castor LN. A G1 rate model accounts for cell-cycle kinetics attributed to 'transition probability'. Nature 1980; 287:857-59.
    • (1980) Nature , vol.287 , pp. 857-859
    • Castor, L.N.1
  • 3
    • 0000014094 scopus 로고
    • A model for statistics of the cell division process
    • Koch AL, Schaechter M. A model for statistics of the cell division process. J Gen Microbiol 1962;29:435-54.
    • (1962) J Gen Microbiol , vol.29 , pp. 435-454
    • Koch, A.L.1    Schaechter, M.2
  • 4
    • 0018818720 scopus 로고
    • Does the variability of the cell cycle result from one or many chance events?
    • Koch AL. Does the variability of the cell cycle result from one or many chance events? Nature 1980;286:80-2.
    • (1980) Nature , vol.286 , pp. 80-82
    • Koch, A.L.1
  • 5
    • 0017725186 scopus 로고
    • Transition probability and the origin of variation in the cell cycle
    • Shields R. Transition probability and the origin of variation in the cell cycle. Nature 1977;267:704-7.
    • (1977) Nature , vol.267 , pp. 704-707
    • Shields, R.1
  • 7
    • 0021109577 scopus 로고
    • Unstable activator models for size control of the cell cycle
    • Tyson JJ. Unstable activator models for size control of the cell cycle. J Theor Biol 1983;104:617-31.
    • (1983) J Theor Biol , vol.104 , pp. 617-631
    • Tyson, J.J.1
  • 8
    • 0022318930 scopus 로고
    • Cell growth and division: A deterministic/ probabilistic model of the cell cycle
    • Tyson JJ, Hannsgen KB. Cell growth and division: A deterministic/ probabilistic model of the cell cycle. J Math Biol 1986;23 231-46.
    • (1986) J Math Biol , vol.23 , pp. 231-246
    • Tyson, J.J.1    Hannsgen, K.B.2
  • 9
    • 1842687878 scopus 로고    scopus 로고
    • The yeast cell-cycle network is robustly designed
    • Li F, Long T, Lu Y, et al. The yeast cell-cycle network is robustly designed. Proc Natl Acad Sci USA 2004;101: 4781-86.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 4781-4786
    • Li, F.1    Long, T.2    Lu, Y.3
  • 10
    • 33947361606 scopus 로고    scopus 로고
    • Superstability of the yeast cell-cycle dynamics: Ensuring causality in the presence of biochemical stochasticity
    • Braunewell S, Bornholdt S. Superstability of the yeast cell-cycle dynamics: Ensuring causality in the presence of biochemical stochasticity. J Theor Biol 2007;245:638-43.
    • (2007) J Theor Biol , vol.245 , pp. 638-643
    • Braunewell, S.1    Bornholdt, S.2
  • 11
    • 33749839633 scopus 로고    scopus 로고
    • Few crucial links assure checkpoint efficiency in the yeast cell-cycle network
    • Stoll G, Rougemont J, Naef F. Few crucial links assure checkpoint efficiency in the yeast cell-cycle network. Bioinformatics 2006; 22:2539-46.
    • (2006) Bioinformatics , vol.22 , pp. 2539-2546
    • Stoll, G.1    Rougemont, J.2    Naef, F.3
  • 12
    • 36549027537 scopus 로고    scopus 로고
    • Stable stochastic dynamics in yeast cell cycle
    • Okabe Y, Sasai M. Stable stochastic dynamics in yeast cell cycle. Biophys J 2007;93:3451-59.
    • (2007) Biophys J , vol.93 , pp. 3451-3459
    • Okabe, Y.1    Sasai, M.2
  • 13
    • 34250320968 scopus 로고    scopus 로고
    • Quantifying robustness and dissipation cost of yeast cell cycle network: The funneled energy landscape perspectives
    • Han B, Wang J. Quantifying robustness and dissipation cost of yeast cell cycle network: The funneled energy landscape perspectives. Biophys J 2007;92:3755-63.
    • (2007) Biophys J , vol.92 , pp. 3755-3763
    • Han, B.1    Wang, J.2
  • 14
    • 45849093636 scopus 로고    scopus 로고
    • Boolean network model predicts cell cycle sequence of fission yeast
    • Davidich MI, Bornholdt S. Boolean network model predicts cell cycle sequence of fission yeast. PLoS ONE 2008;3:e1672.
    • (2008) PLoS ONE , vol.3
    • Davidich, M.I.1    Bornholdt, S.2
  • 15
    • 33747874092 scopus 로고    scopus 로고
    • Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle
    • Faure A, Naldi A, Chaouiya C, et al. Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle. Bioinformatics 2006;22:e124-31.
    • (2006) Bioinformatics , vol.22
    • Faure, A.1    Naldi, A.2    Chaouiya, C.3
  • 16
    • 33644777667 scopus 로고    scopus 로고
    • Cell cycle control in bacteria and yeast: A case of convergent evolution?
    • Brazhnik P, Tyson JJ. Cell cycle control in bacteria and yeast: A case of convergent evolution? Cell Cycle 2006;5:522-9.
    • (2006) Cell Cycle , vol.5 , pp. 522-529
    • Brazhnik, P.1    Tyson, J.J.2
  • 17
    • 38949110777 scopus 로고    scopus 로고
    • A quantitative study of the division cycle of Caulobacter crescentus stalked cells
    • Li S, Brazhnik P, Sobral B, et al. A quantitative study of the division cycle of Caulobacter crescentus stalked cells. PLoS Comput Biol 2008;4:e9.
    • (2008) PLoS Comput Biol , vol.4
    • Li, S.1    Brazhnik, P.2    Sobral, B.3
  • 18
    • 49649109935 scopus 로고    scopus 로고
    • Architecture and inherent robustness of a bacterial cell-cycle control system
    • Shen X, Collier J, Dill D, et al. Architecture and inherent robustness of a bacterial cell-cycle control system. Proc Natl Acad Sci USA 2008;105:11340-5.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 11340-11345
    • Shen, X.1    Collier, J.2    Dill, D.3
  • 19
    • 34247627985 scopus 로고    scopus 로고
    • Cell size at S phase initiation: An emergent property of the G1/S network
    • Barberis M, Klipp E, Vanoni M, et al. Cell size at S phase initiation: An emergent property of the G1/S network. PLoS Comput Biol 2007;3:e64.
    • (2007) PLoS Comput Biol , vol.3
    • Barberis, M.1    Klipp, E.2    Vanoni, M.3
  • 20
    • 7244248616 scopus 로고    scopus 로고
    • Bifurcation analysis of a model of the budding yeast cell cycle
    • Battogtokh D, Tyson JJ. Bifurcation analysis of a model of the budding yeast cell cycle. Chaos 2004;14:653-61.
    • (2004) Chaos , vol.14 , pp. 653-661
    • Battogtokh, D.1    Tyson, J.J.2
  • 21
    • 0033985570 scopus 로고    scopus 로고
    • Kinetic analysis of a molecular model of the budding yeast cell cycle
    • Chen KC, Csikasz-Nagy A, Gyorffy B, et al. Kinetic analysis of a molecular model of the budding yeast cell cycle. Mol Biol Cell 2000;11:369-91.
    • (2000) Mol Biol Cell , vol.11 , pp. 369-391
    • Chen, K.C.1    Csikasz-Nagy, A.2    Gyorffy, B.3
  • 22
    • 3343020085 scopus 로고    scopus 로고
    • Integrative analysis of cell cycle control in budding yeast
    • Chen KC, Calzone L, Csikasz-Nagy A, et al. Integrative analysis of cell cycle control in budding yeast. Mol Biol Cell 2004;15 3841-62.
    • (2004) Mol Biol Cell , vol.15 , pp. 3841-3862
    • Chen, K.C.1    Calzone, L.2    Csikasz-Nagy, A.3
  • 23
    • 0346732922 scopus 로고    scopus 로고
    • Mathematical model of the morphogenesis checkpoint in budding yeast
    • Ciliberto A, Novak B, Tyson JJ. Mathematical model of the morphogenesis checkpoint in budding yeast. J Cell Biol 2003;163:1243-54.
    • (2003) J Cell Biol , vol.163 , pp. 1243-1254
    • Ciliberto, A.1    Novak, B.2    Tyson, J.J.3
  • 24
    • 0037991526 scopus 로고    scopus 로고
    • Two redundant oscillatory mechanisms in the yeast cell cycle
    • Cross FR. Two redundant oscillatory mechanisms in the yeast cell cycle. Dev Cell 2003;4:741-52.
    • (2003) Dev Cell , vol.4 , pp. 741-752
    • Cross, F.R.1
  • 25
    • 33751394517 scopus 로고    scopus 로고
    • Time scale and dimension analysis of a budding yeast cell cycle model
    • Lovrics A, Csikasz-Nagy A, Zsely IG, et al. Time scale and dimension analysis of a budding yeast cell cycle model. BMC Bioinformatics 2006;7:494.
    • (2006) BMC Bioinformatics , vol.7 , pp. 494
    • Lovrics, A.1    Csikasz-Nagy, A.2    Zsely, I.G.3
  • 26
    • 38949095461 scopus 로고    scopus 로고
    • A minimal mathematical model combining several regulatory cycles from the budding yeast cell cycle
    • Sriram K, Bernot G, Kepes F. A minimal mathematical model combining several regulatory cycles from the budding yeast cell cycle. IET Syst Biol 2007;1:326-41.
    • (2007) IET Syst Biol , vol.1 , pp. 326-341
    • Sriram, K.1    Bernot, G.2    Kepes, F.3
  • 27
    • 4544260212 scopus 로고    scopus 로고
    • Mathematical modeling of complex regulatory networks
    • Stelling J, Gilles ED. Mathematical modeling of complex regulatory networks. IEEE Trans Nanobioscience 2004;3: 172-9.
    • (2004) IEEE Trans Nanobioscience , vol.3 , pp. 172-179
    • Stelling, J.1    Gilles, E.D.2
  • 28
    • 3342942821 scopus 로고    scopus 로고
    • Cycling without the cyclosome: Modeling a yeast strain lacking the APC
    • Thornton BR, Chen KC, Cross FR, et al. Cycling without the cyclosome: Modeling a yeast strain lacking the APC. Cell Cycle 2004;3:629-33.
    • (2004) Cell Cycle , vol.3 , pp. 629-633
    • Thornton, B.R.1    Chen, K.C.2    Cross, F.R.3
  • 29
    • 55349098244 scopus 로고    scopus 로고
    • Analysis of a budding yeast cell cycle model using the shapes of local sensitivity functions
    • Lovrics A, Zsély IG, Csikász-Nagy A, et al. Analysis of a budding yeast cell cycle model using the shapes of local sensitivity functions. International Journal of Chemical Kinetics 2008;40 710-20.
    • (2008) International Journal of Chemical Kinetics , vol.40 , pp. 710-720
    • Lovrics, A.1    Zsély, I.G.2    Csikász-Nagy, A.3
  • 30
    • 33947614062 scopus 로고    scopus 로고
    • Modeling the septation initiation network (SIN) in fission yeast cells
    • Csikasz-Nagy A, Kapuy O, Gyorffy B, et al. Modeling the septation initiation network (SIN) in fission yeast cells. Curr Genet 2007;51:245-55.
    • (2007) Curr Genet , vol.51 , pp. 245-255
    • Csikasz-Nagy, A.1    Kapuy, O.2    Gyorffy, B.3
  • 31
    • 50449107544 scopus 로고    scopus 로고
    • Stochastic hybrid modeling of DNA replication across a complete genome
    • Lygeros J, Koutroumpas K, Dimopoulos S, et al. Stochastic hybrid modeling of DNA replication across a complete genome. Proc Natl Acad Sci USA 2008;105:12295-300.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 12295-12300
    • Lygeros, J.1    Koutroumpas, K.2    Dimopoulos, S.3
  • 32
    • 0028928501 scopus 로고
    • Quantitative analysis of a molecular model of mitotic control in fission yeast
    • Novak B, Tyson JJ. Quantitative analysis of a molecular model of mitotic control in fission yeast. J Theor Biol 1995; 173:283-305.
    • (1995) J Theor Biol , vol.173 , pp. 283-305
    • Novak, B.1    Tyson, J.J.2
  • 33
    • 0030787863 scopus 로고    scopus 로고
    • Modeling the control of DNA replication in fission yeast
    • Novak B, Tyson JJ. Modeling the control of DNA replication in fission yeast. Proc Natl Acad Sci USA 1997;94: 9147-52.
    • (1997) Proc Natl Acad Sci USA , vol.94 , pp. 9147-9152
    • Novak, B.1    Tyson, J.J.2
  • 34
    • 0032485826 scopus 로고    scopus 로고
    • Mathematical model of the fission yeast cell cycle with checkpoint controls at the G1/S, G2/M and metaphase/anaphase transitions
    • Novak B, Csikasz-Nagy A, Gyorffy B, et al. Mathematical model of the fission yeast cell cycle with checkpoint controls at the G1/S, G2/M and metaphase/anaphase transitions. Biophys Chem 1998;72 185-200.
    • (1998) Biophys Chem , vol.72 , pp. 185-200
    • Novak, B.1    Csikasz-Nagy, A.2    Gyorffy, B.3
  • 35
    • 0035579883 scopus 로고    scopus 로고
    • Mathematical model of the cell division cycle of fission yeast
    • Novak B, Pataki Z, Ciliberto A, et al. Mathematical model of the cell division cycle of fission yeast. Chaos 2001;11:277-86.
    • (2001) Chaos , vol.11 , pp. 277-286
    • Novak, B.1    Pataki, Z.2    Ciliberto, A.3
  • 36
    • 0034608810 scopus 로고    scopus 로고
    • Modeling the fission yeast cell cycle: Quantized cycle times in wee1-cdc25Delta mutant cells
    • Sveiczer A, Csikasz-Nagy A, Gyorffy B, et al. Modeling the fission yeast cell cycle: Quantized cycle times in wee1-cdc25Delta mutant cells. Proc Natl Acad Sci USA 2000;97: 7865-70.
    • (2000) Proc Natl Acad Sci USA , vol.97 , pp. 7865-7870
    • Sveiczer, A.1    Csikasz-Nagy, A.2    Gyorffy, B.3
  • 37
    • 35048877689 scopus 로고    scopus 로고
    • Modeling Gene Regulatory Network in Fission Yeast Cell Cycle Using Hybrid Petri Nets
    • Vasireddy R, Biswas S. Modeling Gene Regulatory Network in Fission Yeast Cell Cycle Using Hybrid Petri Nets. Neural Information Processing 2004;1310-15.
    • (2004) Neural Information Processing , pp. 1310-1315
    • Vasireddy, R.1    Biswas, S.2
  • 38
    • 0032494690 scopus 로고    scopus 로고
    • Bifurcation analysis of a model of mitotic control in frog eggs
    • Borisuk MT, Tyson JJ. Bifurcation analysis of a model of mitotic control in frog eggs. J Theor Biol 1998;195:69-85.
    • (1998) J Theor Biol , vol.195 , pp. 69-85
    • Borisuk, M.T.1    Tyson, J.J.2
  • 39
    • 0042665800 scopus 로고    scopus 로고
    • A kinetic model of the cyclin E/Cdk2 developmental timer in Xenopus laevis embryos
    • Ciliberto A, Petrus MJ, Tyson JJ, et al. A kinetic model of the cyclin E/Cdk2 developmental timer in Xenopus laevis embryos. Biophys Chem 2003;104:573-89.
    • (2003) Biophys Chem , vol.104 , pp. 573-589
    • Ciliberto, A.1    Petrus, M.J.2    Tyson, J.J.3
  • 40
    • 25444442803 scopus 로고    scopus 로고
    • Rewiring the exit from mitosis
    • Ciliberto A, Lukacs A, Toth A, et al. Rewiring the exit from mitosis. Cell Cycle 2005;4:1107-12.
    • (2005) Cell Cycle , vol.4 , pp. 1107-1112
    • Ciliberto, A.1    Lukacs, A.2    Toth, A.3
  • 41
    • 0032485809 scopus 로고    scopus 로고
    • Modeling M-phase control in Xenopus oocyte extracts: The surveillance mechanism for unreplicated DNA
    • Marlovits G, Tyson CJ, Novak B, et al. Modeling M-phase control in Xenopus oocyte extracts: The surveillance mechanism for unreplicated DNA. Biophys Chem 1998;72: 169-84.
    • (1998) Biophys Chem , vol.72 , pp. 169-184
    • Marlovits, G.1    Tyson, C.J.2    Novak, B.3
  • 42
    • 0026126660 scopus 로고
    • A model for the adjustment of the mitotic clock by cyclin and MPF levels
    • Norel R, Agur Z. A model for the adjustment of the mitotic clock by cyclin and MPF levels. Science 1991;251: 1076-8.
    • (1991) Science , vol.251 , pp. 1076-1078
    • Norel, R.1    Agur, Z.2
  • 43
    • 0027716813 scopus 로고
    • Numerical analysis of a comprehensive model of M-phase control in Xenopus oocyte extracts and intact embryos
    • Novak B, Tyson JJ. Numerical analysis of a comprehensive model of M-phase control in Xenopus oocyte extracts and intact embryos. J Cell Sci 1993;106(Pt 4):1153-68.
    • (1993) J Cell Sci , vol.106 , Issue.PART 4 , pp. 1153-1168
    • Novak, B.1    Tyson, J.J.2
  • 44
    • 13444270529 scopus 로고    scopus 로고
    • Parameter estimation for a mathematical model of the cell cycle in frog eggs
    • Zwolak JW, Tyson JJ, Watson LT. Parameter estimation for a mathematical model of the cell cycle in frog eggs. J Comput Biol 2005;12 48-63.
    • (2005) J Comput Biol , vol.12 , pp. 48-63
    • Zwolak, J.W.1    Tyson, J.J.2    Watson, L.T.3
  • 45
    • 34547646131 scopus 로고    scopus 로고
    • Dynamical modeling of syncytial mitotic cycles in Drosophila embryos
    • Calzone L, Thieffry D, Tyson JJ, et al. Dynamical modeling of syncytial mitotic cycles in Drosophila embryos. Mol Syst Biol 2007;3:131.
    • (2007) Mol Syst Biol , vol.3 , pp. 131
    • Calzone, L.1    Thieffry, D.2    Tyson, J.J.3
  • 46
    • 0033968499 scopus 로고    scopus 로고
    • Mathematical model for early development of the sea urchin embryo
    • Ciliberto A, Tyson JJ. Mathematical model for early development of the sea urchin embryo. Bull Math Biol 2000;62:37-59.
    • (2000) Bull Math Biol , vol.62 , pp. 37-59
    • Ciliberto, A.1    Tyson, J.J.2
  • 47
    • 0033529124 scopus 로고    scopus 로고
    • Instabilities in phosphorylation-dephosphorylation cascades and cell cycle checkpoints
    • Aguda BD. Instabilities in phosphorylation-dephosphorylation cascades and cell cycle checkpoints. Oncogene 1999;18: 2846-51.
    • (1999) Oncogene , vol.18 , pp. 2846-2851
    • Aguda, B.D.1
  • 48
    • 3042594418 scopus 로고    scopus 로고
    • A mathematical model of the effects of hypoxia on the cell-cycle of normal and cancer cells
    • Alarcon T, Byrne HM, Maini PK. A mathematical model of the effects of hypoxia on the cell-cycle of normal and cancer cells. J Theor Biol 2004;229:395-411.
    • (2004) J Theor Biol , vol.229 , pp. 395-411
    • Alarcon, T.1    Byrne, H.M.2    Maini, P.K.3
  • 49
    • 0041695899 scopus 로고    scopus 로고
    • Theoretical and experimental evidence for hysteresis in cell proliferation
    • Bai S, Goodrich D, Thron CD, et al. Theoretical and experimental evidence for hysteresis in cell proliferation. Cell Cycle 2003; 2:46-52.
    • (2003) Cell Cycle , vol.2 , pp. 46-52
    • Bai, S.1    Goodrich, D.2    Thron, C.D.3
  • 50
    • 0033590255 scopus 로고    scopus 로고
    • A mathematical description of regulation of the G1-S transition of the mammalian cell cycle
    • Hatzimanikatis V, Lee KH, Bailey JE. A mathematical description of regulation of the G1-S transition of the mammalian cell cycle. Biotechnol Bioeng 1999;65:631-7.
    • (1999) Biotechnol Bioeng , vol.65 , pp. 631-637
    • Hatzimanikatis, V.1    Lee, K.H.2    Bailey, J.E.3
  • 51
    • 53749088166 scopus 로고    scopus 로고
    • Mathematical modeling and sensitivity analysis of G1/S phase in the cell cycle including the DNA-damage signal transduction pathway
    • Iwamoto K, Tashima Y, Hamada H, et al. Mathematical modeling and sensitivity analysis of G1/S phase in the cell cycle including the DNA-damage signal transduction pathway. Biosystems 2008;94 109-17.
    • (2008) Biosystems , vol.94 , pp. 109-117
    • Iwamoto, K.1    Tashima, Y.2    Hamada, H.3
  • 52
    • 0032568043 scopus 로고    scopus 로고
    • Functional capabilities of molecular network components controlling the mammalian G1/S cell cycle phase transition
    • Kohn KW. Functional capabilities of molecular network components controlling the mammalian G1/S cell cycle phase transition. Oncogene 1998;16:1065-75.
    • (1998) Oncogene , vol.16 , pp. 1065-1075
    • Kohn, K.W.1
  • 53
    • 4444349425 scopus 로고    scopus 로고
    • A model for restriction point control of the mammalian cell cycle
    • Novak B, Tyson JJ. A model for restriction point control of the mammalian cell cycle. J Theor Biol 2004;230: 563-79.
    • (2004) J Theor Biol , vol.230 , pp. 563-579
    • Novak, B.1    Tyson, J.J.2
  • 54
    • 0028839894 scopus 로고
    • A model of the G1 phase of the cell cycle incorporating cyclinE/cdk2 complex and retinoblastoma protein
    • Obeyesekere MN, Herbert JR, Zimmerman SO. A model of the G1 phase of the cell cycle incorporating cyclinE/cdk2 complex and retinoblastoma protein. Oncogene 1995;11: 1199-205.
    • (1995) Oncogene , vol.11 , pp. 1199-1205
    • Obeyesekere, M.N.1    Herbert, J.R.2    Zimmerman, S.O.3
  • 55
    • 0030731071 scopus 로고    scopus 로고
    • A mathematical model of the regulation of the G1 phase of Rb+/+ amd Rb-/- mouse embryonic fibroblasts and an osteosarcoma cell line
    • Obeyesekere MN, Knudsen ES, Wang JY, et al. A mathematical model of the regulation of the G1 phase of Rb+/+ amd Rb-/- mouse embryonic fibroblasts and an osteosarcoma cell line. Cell Prolif 1997;30 171-94.
    • (1997) Cell Prolif , vol.30 , pp. 171-194
    • Obeyesekere, M.N.1    Knudsen, E.S.2    Wang, J.Y.3
  • 56
    • 54049108094 scopus 로고    scopus 로고
    • Underlying principles of cell fate determination during G1 phase of the mammalian cell cycle
    • Pfeuty B, David-Pfeuty T, Kaneko K. Underlying principles of cell fate determination during G1 phase of the mammalian cell cycle. Cell Cycle 2008;7:3246-57.
    • (2008) Cell Cycle , vol.7 , pp. 3246-3257
    • Pfeuty, B.1    David-Pfeuty, T.2    Kaneko, K.3
  • 57
    • 0037302108 scopus 로고    scopus 로고
    • Regulation of the mammalian cell cycle: A model of the G1-to-S transition
    • Qu Z, Weiss JN, MacLellan WR. Regulation of the mammalian cell cycle: A model of the G1-to-S transition. Am J Physiol Cell Physiol 2003; 284:C349-64.
    • (2003) Am J Physiol Cell Physiol , vol.284
    • Qu, Z.1    Weiss, J.N.2    MacLellan, W.R.3
  • 58
    • 3543138827 scopus 로고    scopus 로고
    • Bifurcation analysis of the regulatory modules of the mammalian G1/S transition
    • Swat M, Kel A, Herzel H. Bifurcation analysis of the regulatory modules of the mammalian G1/S transition. Bioinformatics 2004;20 1506-11.
    • (2004) Bioinformatics , vol.20 , pp. 1506-1511
    • Swat, M.1    Kel, A.2    Herzel, H.3
  • 59
    • 33744798493 scopus 로고    scopus 로고
    • Linking cell division to cell growth in a spatiotemporal model of the cell cycle
    • Yang L, Han Z, Robb MacLellan W, et al. Linking cell division to cell growth in a spatiotemporal model of the cell cycle. J Theor Biol 2006;241:120-33.
    • (2006) J Theor Biol , vol.241 , pp. 120-133
    • Yang, L.1    Han, Z.2    Robb MacLellan, W.3
  • 60
    • 32044442976 scopus 로고    scopus 로고
    • Using a mammalian cell cycle simulation to interpret differential kinase inhibition in anti-tumour pharmaceutical development
    • Chassagnole C, Jackson RC, Hussain N, et al. Using a mammalian cell cycle simulation to interpret differential kinase inhibition in anti-tumour pharmaceutical development. Biosystems 2006;83 91-7.
    • (2006) Biosystems , vol.83 , pp. 91-97
    • Chassagnole, C.1    Jackson, R.C.2    Hussain, N.3
  • 61
    • 1342332020 scopus 로고    scopus 로고
    • A mathematical model for analysis of the cell cycle in cell lines derived from human tumors
    • Basse B, Baguley BC, Marshall ES, et al. A mathematical model for analysis of the cell cycle in cell lines derived from human tumors. J Math Biol 2003;47:295-312.
    • (2003) J Math Biol , vol.47 , pp. 295-312
    • Basse, B.1    Baguley, B.C.2    Marshall, E.S.3
  • 62
    • 0034619676 scopus 로고    scopus 로고
    • A cell cycle model for somitogenesis: Mathematical formulation and numerical simulation
    • Collier JR, McInerney D, Schnell S, etal. A cell cycle model for somitogenesis: Mathematical formulation and numerical simulation. J Theor Biol 2000;207:305-16.
    • (2000) J Theor Biol , vol.207 , pp. 305-316
    • Collier, J.R.1    McInerney, D.2    Schnell, S.3
  • 63
    • 0033613221 scopus 로고    scopus 로고
    • A quantitative analysis of the kinetics of the G2 DNA damage checkpoint system
    • Aguda BD. A quantitative analysis of the kinetics of the G2 DNA damage checkpoint system. Proc Natl Acad Sci USA 1999;96:11352-7.
    • (1999) Proc Natl Acad Sci USA , vol.96 , pp. 11352-11357
    • Aguda, B.D.1
  • 64
    • 33744792286 scopus 로고    scopus 로고
    • Analysis of a generic model of eukaryotic cell-cycle regulation
    • Csikasz-Nagy A, Battogtokh D, Chen KC, et al. Analysis of a generic model of eukaryotic cell-cycle regulation. Biophys J 2006;90:4361-79.
    • (2006) Biophys J , vol.90 , pp. 4361-4379
    • Csikasz-Nagy, A.1    Battogtokh, D.2    Chen, K.C.3
  • 65
    • 0026006671 scopus 로고
    • A minimal cascade model for the mitotic oscillator involving cyclin and cdc2 kinase
    • Goldbeter A. A minimal cascade model for the mitotic oscillator involving cyclin and cdc2 kinase. Proc Natl Acad Sci USA 1991; 88:9107-11.
    • (1991) Proc Natl Acad Sci USA , vol.88 , pp. 9107-9111
    • Goldbeter, A.1
  • 66
    • 0035926434 scopus 로고    scopus 로고
    • A model for a network of phosphorylation-dephosphorylation cycles displaying the dynamics of dominoes and clocks
    • Gonze D, Goldbeter A. A model for a network of phosphorylation-dephosphorylation cycles displaying the dynamics of dominoes and clocks. J Theor Biol 2001;210: 167-86.
    • (2001) J Theor Biol , vol.210 , pp. 167-186
    • Gonze, D.1    Goldbeter, A.2
  • 68
    • 35248886545 scopus 로고    scopus 로고
    • Minimal requirements for robust cell size control in eukaryotic cells
    • Pfeuty B, Kaneko K. Minimal requirements for robust cell size control in eukaryotic cells. Phys Biol 2007;4:194-204.
    • (2007) Phys Biol , vol.4 , pp. 194-204
    • Pfeuty, B.1    Kaneko, K.2
  • 69
    • 0344982141 scopus 로고    scopus 로고
    • Dynamics of the cell cycle: Checkpoints, sizers, and timers
    • Qu Z, MacLellan WR, Weiss JN. Dynamics of the cell cycle: Checkpoints, sizers, and timers. Biophys J 2003;85: 3600-11.
    • (2003) Biophys J , vol.85 , pp. 3600-3611
    • Qu, Z.1    MacLellan, W.R.2    Weiss, J.N.3
  • 70
    • 4944259644 scopus 로고    scopus 로고
    • Coordination of cell growth and cell division: A mathematical modeling study
    • Qu ZL, Weiss JN, MacLellan WR. Coordination of cell growth and cell division: A mathematical modeling study. J Cell Sci 2004;117 4199-207.
    • (2004) J Cell Sci , vol.117 , pp. 4199-4207
    • Qu, Z.L.1    Weiss, J.N.2    MacLellan, W.R.3
  • 71
    • 0025950990 scopus 로고
    • Mathematical analysis of a model of the mitotic clock
    • Thron CD. Mathematical analysis of a model of the mitotic clock. Science 1991;254:122-3.
    • (1991) Science , vol.254 , pp. 122-123
    • Thron, C.D.1
  • 72
    • 0030767422 scopus 로고    scopus 로고
    • Bistable biochemical switching and the control of the events of the cell cycle
    • Thron CD. Bistable biochemical switching and the control of the events of the cell cycle. Oncogene 1997;15: 317-25.
    • (1997) Oncogene , vol.15 , pp. 317-325
    • Thron, C.D.1
  • 73
    • 0025826876 scopus 로고
    • Modeling the cell division cycle: Cdc2 and cyclin interactions
    • Tyson JJ. Modeling the cell division cycle: Cdc2 and cyclin interactions. Proc Natl Acad Sci USA 1991;88:7328-32.
    • (1991) Proc Natl Acad Sci USA , vol.88 , pp. 7328-7332
    • Tyson, J.J.1
  • 74
    • 2942683567 scopus 로고    scopus 로고
    • Multisite phosphorylation and network dynamics of cyclin-dependent kinase signaling in the eukaryotic cell cycle
    • Yang L, MacLellan WR, Han Z, et al. Multisite phosphorylation and network dynamics of cyclin-dependent kinase signaling in the eukaryotic cell cycle. Biophys J 2004;86: 3432-43.
    • (2004) Biophys J , vol.86 , pp. 3432-3443
    • Yang, L.1    MacLellan, W.R.2    Han, Z.3
  • 75
    • 0032564448 scopus 로고    scopus 로고
    • A theory for controlling cell cycle dynamics using a reversibly binding inhibitor
    • Gardner TS, Dolnik M, Collins JJ. A theory for controlling cell cycle dynamics using a reversibly binding inhibitor. Proc Natl Acad Sci USA 1998;95:14190-5.
    • (1998) Proc Natl Acad Sci USA , vol.95 , pp. 14190-14195
    • Gardner, T.S.1    Dolnik, M.2    Collins, J.J.3
  • 76
    • 52149106883 scopus 로고    scopus 로고
    • Stochastic Petri Net extension of a yeast cell cycle model
    • Mura I, Csikasz-Nagy A. Stochastic Petri Net extension of a yeast cell cycle model. J Theor Biol 2008;254:850-60.
    • (2008) J Theor Biol , vol.254 , pp. 850-860
    • Mura, I.1    Csikasz-Nagy, A.2
  • 77
    • 36348978774 scopus 로고    scopus 로고
    • Antagonism and bistability in protein interaction networks
    • Sabouri-Ghomi M, Ciliberto A, Kar S, et al. Antagonism and bistability in protein interaction networks. J Theor Biol 2008; 250:209-18.
    • (2008) J Theor Biol , vol.250 , pp. 209-218
    • Sabouri-Ghomi, M.1    Ciliberto, A.2    Kar, S.3
  • 78
    • 0035975697 scopus 로고    scopus 로고
    • A stochastic, molecular model of the fission yeast cell cycle: Role of the nucleocytoplasmic ratio in cycle time reguation
    • Sveiczer A, Tyson JJ, Novak B. A stochastic, molecular model of the fission yeast cell cycle: Role of the nucleocytoplasmic ratio in cycle time reguation. Biophys Chem 2001;92:1-15.
    • (2001) Biophys Chem , vol.92 , pp. 1-15
    • Sveiczer, A.1    Tyson, J.J.2    Novak, B.3
  • 79
    • 2342508415 scopus 로고    scopus 로고
    • Effects of stochasticity in models of the cell cycle: From quantized cycle times to noise-induced oscillations
    • Steuer R. Effects of stochasticity in models of the cell cycle: From quantized cycle times to noise-induced oscillations. J Theor Biol 2004;228:293-301.
    • (2004) J Theor Biol , vol.228 , pp. 293-301
    • Steuer, R.1
  • 80
    • 36148997654 scopus 로고    scopus 로고
    • Computational analysis of mammalian cell division gated by a circadian clock: Quantized cell cycles and cell size control
    • Zamborszky J, Hong CI, Csikasz Nagy A. Computational analysis of mammalian cell division gated by a circadian clock: Quantized cell cycles and cell size control. J Biol Rhythms 2007;22:542-53.
    • (2007) J Biol Rhythms , vol.22 , pp. 542-553
    • Zamborszky, J.1    Hong, C.I.2    Csikasz Nagy, A.3
  • 81
  • 82
    • 0037079054 scopus 로고    scopus 로고
    • Computational systems biology
    • Kitano H. Computational systems biology. Nature 2002;420: 206-10.
    • (2002) Nature , vol.420 , pp. 206-210
    • Kitano, H.1
  • 83
    • 0025246110 scopus 로고
    • Universal control mechanism regulating onset of M-phase
    • Nurse P. Universal control mechanism regulating onset of M-phase. Nature 1990;344:503-8.
    • (1990) Nature , vol.344 , pp. 503-508
    • Nurse, P.1
  • 84
    • 33845466196 scopus 로고    scopus 로고
    • Computational methodologies for modelling, analysis and simulation of signalling networks
    • Gilbert D, Fuss H, Gu X, et al. Computational methodologies for modelling, analysis and simulation of signalling networks. Brief Bioinform 2006;7:339-53.
    • (2006) Brief Bioinform , vol.7 , pp. 339-353
    • Gilbert, D.1    Fuss, H.2    Gu, X.3
  • 85
    • 52649087274 scopus 로고    scopus 로고
    • Modelling and analysis of gene regulatory networks
    • Karlebach G, Shamir R. Modelling and analysis of gene regulatory networks. Nat Rev Mol Cell Biol 2008;9: 770-80.
    • (2008) Nat Rev Mol Cell Biol , vol.9 , pp. 770-780
    • Karlebach, G.1    Shamir, R.2
  • 87
    • 0034614334 scopus 로고    scopus 로고
    • A long twentieth century of the cell cycle and beyond
    • Nurse P. A long twentieth century of the cell cycle and beyond. Cell 2000;100:71-8.
    • (2000) Cell , vol.100 , pp. 71-78
    • Nurse, P.1
  • 88
    • 7744220830 scopus 로고    scopus 로고
    • Cell cycle goes global
    • Tyers M. Cell cycle goes global. Curr Opin Cell Biol 2004;16 602-13.
    • (2004) Curr Opin Cell Biol , vol.16 , pp. 602-613
    • Tyers, M.1
  • 89
    • 55949100492 scopus 로고    scopus 로고
    • Reverse engineering models of cell cycle regulation
    • Csikasz-Nagy A, Novak B, Tyson JJ. Reverse engineering models of cell cycle regulation. Adv Exp Med Biol 2008;641: 88-97.
    • (2008) Adv Exp Med Biol , vol.641 , pp. 88-97
    • Csikasz-Nagy, A.1    Novak, B.2    Tyson, J.J.3
  • 90
    • 21044457307 scopus 로고    scopus 로고
    • Mathematical models of cell cycle regulation
    • Fuss H, Dubitzky W, Downes CS, et al. Mathematical models of cell cycle regulation. Brief Bioinform 2005;6: 163-77.
    • (2005) Brief Bioinform , vol.6 , pp. 163-177
    • Fuss, H.1    Dubitzky, W.2    Downes, C.S.3
  • 91
    • 4544313613 scopus 로고    scopus 로고
    • The ups and downs of modeling the cell cycle
    • Ingolia NT, Murray AW. The ups and downs of modeling the cell cycle. Curr Biol 2004;14:R771-7.
    • (2004) Curr Biol , vol.14
    • Ingolia, N.T.1    Murray, A.W.2
  • 92
    • 33845605130 scopus 로고    scopus 로고
    • Mathematical modeling as a tool for investigating cell cycle control networks
    • Sible JC, Tyson JJ. Mathematical modeling as a tool for investigating cell cycle control networks. Methods 2007;41: 238-47.
    • (2007) Methods , vol.41 , pp. 238-247
    • Sible, J.C.1    Tyson, J.J.2
  • 93
    • 50849121703 scopus 로고    scopus 로고
    • Temporal organization of the cell cycle
    • Tyson JJ, Novak B. Temporal organization of the cell cycle. Curr Biol 2008;18:R759-R768.
    • (2008) Curr Biol , vol.18
    • Tyson, J.J.1    Novak, B.2
  • 94
    • 0024425887 scopus 로고
    • Checkpoints: Controls that ensure the order of cell cycle events
    • Hartwell LH, Weinert TA. Checkpoints: Controls that ensure the order of cell cycle events. Science 1989;246: 629-34.
    • (1989) Science , vol.246 , pp. 629-634
    • Hartwell, L.H.1    Weinert, T.A.2
  • 95
    • 77049265998 scopus 로고
    • Relation between growth rate and cell division. III. Changes in nuclear volume and growth rate and prevention of cell division in Amoeba proteus resulting from cytoplasmic amputations
    • Prescott DM. Relation between growth rate and cell division. III. Changes in nuclear volume and growth rate and prevention of cell division in Amoeba proteus resulting from cytoplasmic amputations. Exp Cell Res 1956;11:94-8.
    • (1956) Exp Cell Res , vol.11 , pp. 94-98
    • Prescott, D.M.1
  • 96
    • 0345700833 scopus 로고    scopus 로고
    • Building a cell cycle oscillator: Hysteresis and bistability in the activation of Cdc2
    • Pomerening JR, Sontag ED, Ferrell JE Jr. Building a cell cycle oscillator: Hysteresis and bistability in the activation of Cdc2. Nat Cell Biol 2003;5:346-51.
    • (2003) Nat Cell Biol , vol.5 , pp. 346-351
    • Pomerening, J.R.1    Sontag, E.D.2    Ferrell Jr, J.E.3
  • 97
    • 0037417803 scopus 로고    scopus 로고
    • Hysteresis drives cell-cycle transitions in Xenopus laevis egg extracts
    • Sha W, Moore J, Chen K, et al. Hysteresis drives cell-cycle transitions in Xenopus laevis egg extracts. Proc Natl Acad Sci USA 2003;100:975-80.
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 975-980
    • Sha, W.1    Moore, J.2    Chen, K.3
  • 98
    • 0036156035 scopus 로고    scopus 로고
    • Testing a mathematical model for the yeast cell cycle
    • Cross FR, Archambault V, Miller M, et al. Testing a mathematical model for the yeast cell cycle. Mol Biol Cell 2002;13:52-70.
    • (2002) Mol Biol Cell , vol.13 , pp. 52-70
    • Cross, F.R.1    Archambault, V.2    Miller, M.3
  • 99
    • 33646507278 scopus 로고    scopus 로고
    • Downregulation of PP2A(Cdc55) phosphatase by separase initiates mitotic exit in budding yeast
    • Queralt E, Lehane C, Novak B, et al. Downregulation of PP2A(Cdc55) phosphatase by separase initiates mitotic exit in budding yeast. Cell 2006;125:719-32.
    • (2006) Cell , vol.125 , pp. 719-732
    • Queralt, E.1    Lehane, C.2    Novak, B.3
  • 100
    • 0034614637 scopus 로고    scopus 로고
    • The hallmarks of cancer
    • Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100 57-70.
    • (2000) Cell , vol.100 , pp. 57-70
    • Hanahan, D.1    Weinberg, R.A.2
  • 101
    • 34347381069 scopus 로고    scopus 로고
    • Irreversible cell-cycle transitions are due to systems-level feedback
    • Novak B, Tyson JJ, Gyorffy B, et al. Irreversible cell-cycle transitions are due to systems-level feedback. Nat Cell Biol 2007;9:724-8.
    • (2007) Nat Cell Biol , vol.9 , pp. 724-728
    • Novak, B.1    Tyson, J.J.2    Gyorffy, B.3
  • 102
    • 47549083849 scopus 로고    scopus 로고
    • Positive feedback sharpens the anaphase switch
    • Holt LJ, Krutchinsky AN, Morgan DO. Positive feedback sharpens the anaphase switch. Nature 2008;454: 353-7.
    • (2008) Nature , vol.454 , pp. 353-357
    • Holt, L.J.1    Krutchinsky, A.N.2    Morgan, D.O.3
  • 103
    • 23944469094 scopus 로고    scopus 로고
    • Systems-level dissection of the cell-cycle oscillator: Bypassing positive feedback produces damped oscillations
    • Pomerening JR, Kim SY, Ferrell JE Jr. Systems-level dissection of the cell-cycle oscillator: Bypassing positive feedback produces damped oscillations. Cell 2005;122: 565-78.
    • (2005) Cell , vol.122 , pp. 565-578
    • Pomerening, J.R.1    Kim, S.Y.2    Ferrell Jr, J.E.3
  • 104
    • 47549106474 scopus 로고    scopus 로고
    • Positive feedback of G1 cyclins ensures coherent cell cycle entry
    • Skotheim JM, Di Talia S, Siggia ED, et al. Positive feedback of G1 cyclins ensures coherent cell cycle entry. Nature 2008; 454 291-6.
    • (2008) Nature , vol.454 , pp. 291-296
    • Skotheim, J.M.1    Di Talia, S.2    Siggia, E.D.3
  • 105
    • 34548327206 scopus 로고    scopus 로고
    • Dynamical roles of biological regulatory circuits
    • Thieffry D. Dynamical roles of biological regulatory circuits. Brief Bioinform 2007;8:220-5.
    • (2007) Brief Bioinform , vol.8 , pp. 220-225
    • Thieffry, D.1
  • 106
    • 34249950625 scopus 로고    scopus 로고
    • Stochastic simulation of chemical kinetics
    • Gillespie DT. Stochastic simulation of chemical kinetics. Annu Rev Phys Chem 2007;58:35-55.
    • (2007) Annu Rev Phys Chem , vol.58 , pp. 35-55
    • Gillespie, D.T.1
  • 107
    • 29544443112 scopus 로고    scopus 로고
    • Coherence and timing of cell cycle start examined at single-cell resolution
    • Bean JM, Siggia ED, Cross FR. Coherence and timing of cell cycle start examined at single-cell resolution. Mol Cell 2006;21:3-14.
    • (2006) Mol Cell , vol.21 , pp. 3-14
    • Bean, J.M.1    Siggia, E.D.2    Cross, F.R.3
  • 108
    • 34548168571 scopus 로고    scopus 로고
    • The effects of molecular noise and size control on variability in the budding yeast cell cycle
    • Di Talia S, Skotheim JM, Bean JM, et al. The effects of molecular noise and size control on variability in the budding yeast cell cycle. Nature 2007;448:947-51.
    • (2007) Nature , vol.448 , pp. 947-951
    • Di Talia, S.1    Skotheim, J.M.2    Bean, J.M.3
  • 109
    • 33845590717 scopus 로고    scopus 로고
    • Quantitative proteomic analysis of the budding yeast cell cycle using acid-cleavable isotope-coded affinity tag reagents
    • Flory MR, Lee H, Bonneau R, et al. Quantitative proteomic analysis of the budding yeast cell cycle using acid-cleavable isotope-coded affinity tag reagents. Proteomics 2006;6:6146-57.
    • (2006) Proteomics , vol.6 , pp. 6146-6157
    • Flory, M.R.1    Lee, H.2    Bonneau, R.3
  • 110
    • 0037050004 scopus 로고    scopus 로고
    • Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry
    • Ho Y, Gruhler A, Heilbut A, et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 2002;415:180-3.
    • (2002) Nature , vol.415 , pp. 180-183
    • Ho, Y.1    Gruhler, A.2    Heilbut, A.3
  • 111
    • 33847778786 scopus 로고    scopus 로고
    • Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry
    • Chi A, Huttenhower C, Geer LY, et al. Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry. Proc Natl Acad Sci USA 2007;104:2193-8.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 2193-2198
    • Chi, A.1    Huttenhower, C.2    Geer, L.Y.3
  • 112
    • 55049115827 scopus 로고    scopus 로고
    • Identification of CDK2 substrates in human cell lysates
    • Chi Y, Welcker M, Hizli AA, et al. Identification of CDK2 substrates in human cell lysates. Genome Biol 2008;9: R149.
    • (2008) Genome Biol , vol.9
    • Chi, Y.1    Welcker, M.2    Hizli, A.A.3
  • 113
    • 28444460297 scopus 로고    scopus 로고
    • Global analysis of protein phosphorylation in yeast
    • Ptacek J, Devgan G, Michaud G, et al. Global analysis of protein phosphorylation in yeast. Nature 2005;438:679-84.
    • (2005) Nature , vol.438 , pp. 679-684
    • Ptacek, J.1    Devgan, G.2    Michaud, G.3
  • 114
    • 38549171028 scopus 로고    scopus 로고
    • Cyclebase.org - a comprehensive multi-organism online database of cell-cycle experiments
    • Gauthier NP, Larsen ME, Wernersson R, et al. Cyclebase.org - a comprehensive multi-organism online database of cell-cycle experiments. Nucleic Acids Res 2008; 36:D854-9.
    • (2008) Nucleic Acids Res , vol.36
    • Gauthier, N.P.1    Larsen, M.E.2    Wernersson, R.3
  • 116
    • 13444249988 scopus 로고    scopus 로고
    • STRING: Known and predicted protein-protein associations, integrated and transferred across organisms
    • von Mering C, Jensen LJ, Snel B, et al. STRING: Known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res 2005;33: D433-7.
    • (2005) Nucleic Acids Res , vol.33
    • von Mering, C.1    Jensen, L.J.2    Snel, B.3
  • 117
    • 34250743173 scopus 로고    scopus 로고
    • Systematic discovery of in vivo phosphorylation networks
    • Linding R, Jensen LJ, Ostheimer GJ, et al. Systematic discovery of in vivo phosphorylation networks. Cell 2007; 129:1415-26.
    • (2007) Cell , vol.129 , pp. 1415-1426
    • Linding, R.1    Jensen, L.J.2    Ostheimer, G.J.3
  • 118
    • 40749120501 scopus 로고    scopus 로고
    • A comprehensive modular map of molecular interactions in RB/E2F pathway
    • Calzone L, Gelay A, Zinovyev A, et al. A comprehensive modular map of molecular interactions in RB/E2F pathway. Mol Syst Biol 2008; 4:173.
    • (2008) Mol Syst Biol , vol.4 , pp. 173
    • Calzone, L.1    Gelay, A.2    Zinovyev, A.3
  • 119
    • 0032776303 scopus 로고    scopus 로고
    • Molecular interaction map of the mammalian cell cycle control and DNA repair systems
    • Kohn KW. Molecular interaction map of the mammalian cell cycle control and DNA repair systems. Mol Biol Cell 1999;10:2703-34.
    • (1999) Mol Biol Cell , vol.10 , pp. 2703-2734
    • Kohn, K.W.1
  • 120
    • 0032112293 scopus 로고    scopus 로고
    • A genome-wide transcriptional analysis of the mitotic cell cycle
    • Cho RJ, Campbell MJ, Winzeler EA, et al. A genome-wide transcriptional analysis of the mitotic cell cycle. Mol Cell 1998;2:65-73.
    • (1998) Mol Cell , vol.2 , pp. 65-73
    • Cho, R.J.1    Campbell, M.J.2    Winzeler, E.A.3
  • 121
    • 0031742022 scopus 로고    scopus 로고
    • Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization
    • Spellman PT, Sherlock G, Zhang MQ, et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 1998;9 3273-97.
    • (1998) Mol Biol Cell , vol.9 , pp. 3273-3297
    • Spellman, P.T.1    Sherlock, G.2    Zhang, M.Q.3
  • 122
    • 25444464334 scopus 로고    scopus 로고
    • Quantitative inference of dynamic regulatory pathways via microarray data
    • Chang WC, Li CW, Chen BS. Quantitative inference of dynamic regulatory pathways via microarray data. BMC Bioinformatics 2005;6:44.
    • (2005) BMC Bioinformatics , vol.6 , pp. 44
    • Chang, W.C.1    Li, C.W.2    Chen, B.S.3
  • 123
    • 4444339832 scopus 로고    scopus 로고
    • Quantitative characterization of the transcriptional regulatory network in the yeast cell cycle
    • Chen HC, Lee HC, Lin TY, et al. Quantitative characterization of the transcriptional regulatory network in the yeast cell cycle. Bioinformatics 2004;20:1914-27.
    • (2004) Bioinformatics , vol.20 , pp. 1914-1927
    • Chen, H.C.1    Lee, H.C.2    Lin, T.Y.3
  • 124
    • 33748905107 scopus 로고    scopus 로고
    • Modelling the network of cell cycle transcription factors in the yeast Saccharomyces cerevisiae
    • Cokus S, Rose S, Haynor D, et al. Modelling the network of cell cycle transcription factors in the yeast Saccharomyces cerevisiae. BMC Bioinformatics 2006;7:381.
    • (2006) BMC Bioinformatics , vol.7 , pp. 381
    • Cokus, S.1    Rose, S.2    Haynor, D.3
  • 125
    • 26444501081 scopus 로고    scopus 로고
    • Statistical methods for identifying yeast cell cycle transcription factors
    • Tsai HK, Lu HH, Li WH. Statistical methods for identifying yeast cell cycle transcription factors. Proc Natl Acad Sci USA 2005;102 13532-7.
    • (2005) Proc Natl Acad Sci USA , vol.102 , pp. 13532-13537
    • Tsai, H.K.1    Lu, H.H.2    Li, W.H.3
  • 126
    • 17944372930 scopus 로고    scopus 로고
    • Serial regulation of transcriptional regulators in the yeast cell cycle
    • Simon I, Barnett J, Hannett N, et al. Serial regulation of transcriptional regulators in the yeast cell cycle. Cell 2001; 106:697-708.
    • (2001) Cell , vol.106 , pp. 697-708
    • Simon, I.1    Barnett, J.2    Hannett, N.3
  • 127
    • 42249094386 scopus 로고    scopus 로고
    • Systematic identification of cell cycle regulated transcription factors from microarray time series data
    • Cheng C, Li LM. Systematic identification of cell cycle regulated transcription factors from microarray time series data. BMC Genomics 2008;9:116.
    • (2008) BMC Genomics , vol.9 , pp. 116
    • Cheng, C.1    Li, L.M.2
  • 128
    • 58149333393 scopus 로고    scopus 로고
    • Systematic identification of yeast cell cycle transcription factors using multiple data sources
    • Wu WS, Li WH. Systematic identification of yeast cell cycle transcription factors using multiple data sources. BMC Bioinformatics 2008;9:522.
    • (2008) BMC Bioinformatics , vol.9 , pp. 522
    • Wu, W.S.1    Li, W.H.2
  • 129
    • 31144432293 scopus 로고    scopus 로고
    • Literature mining for the biologist: From information retrieval to biological discovery
    • Jensen LJ, Saric J, Bork P. Literature mining for the biologist: From information retrieval to biological discovery. Nat Rev Genet 2006;7:119-29.
    • (2006) Nat Rev Genet , vol.7 , pp. 119-129
    • Jensen, L.J.1    Saric, J.2    Bork, P.3
  • 130
    • 33845450589 scopus 로고    scopus 로고
    • Mining literature for systems biology
    • Roberts PM. Mining literature for systems biology. Brief Bioinform 2006;7:399-406.
    • (2006) Brief Bioinform , vol.7 , pp. 399-406
    • Roberts, P.M.1
  • 131
    • 42349100173 scopus 로고    scopus 로고
    • The chemical genomic portrait of yeast: Uncovering a phenotype for all genes
    • Hillenmeyer ME, Fung E, Wildenhain J, et al. The chemical genomic portrait of yeast: Uncovering a phenotype for all genes. Science 2008;320:362-5.
    • (2008) Science , vol.320 , pp. 362-365
    • Hillenmeyer, M.E.1    Fung, E.2    Wildenhain, J.3
  • 132
    • 0035861532 scopus 로고    scopus 로고
    • Systematic genetic analysis with ordered arrays of yeast deletion mutants
    • Tong AH, Evangelista M, Parsons AB, et al. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 2001;294:2364-8.
    • (2001) Science , vol.294 , pp. 2364-2368
    • Tong, A.H.1    Evangelista, M.2    Parsons, A.B.3
  • 133
    • 10744230485 scopus 로고    scopus 로고
    • Global mapping of the yeast genetic interaction network
    • Tong AH, Lesage G, Bader GD, et al. Global mapping of the yeast genetic interaction network. Science 2004;303: 808-13.
    • (2004) Science , vol.303 , pp. 808-813
    • Tong, A.H.1    Lesage, G.2    Bader, G.D.3
  • 134
    • 33746649199 scopus 로고    scopus 로고
    • In vivo robustness analysis of cell division cycle genes in Saccharomyces cerevisiae
    • Moriya H, Shimizu-Yoshida Y, Kitano H. In vivo robustness analysis of cell division cycle genes in Saccharomyces cerevisiae. PLoS Genet 2006;2:e111.
    • (2006) PLoS Genet , vol.2
    • Moriya, H.1    Shimizu-Yoshida, Y.2    Kitano, H.3
  • 135
    • 31544482407 scopus 로고    scopus 로고
    • Mapping pathways and phenotypes by systematic gene overexpression
    • Sopko R, Huang D, Preston N, et al. Mapping pathways and phenotypes by systematic gene overexpression. Mol Cell 2006;21 319-30.
    • (2006) Mol Cell , vol.21 , pp. 319-330
    • Sopko, R.1    Huang, D.2    Preston, N.3
  • 136
    • 23444439817 scopus 로고    scopus 로고
    • Using process diagrams for the graphical representation of biological networks
    • Kitano H, Funahashi A, Matsuoka Y, et al. Using process diagrams for the graphical representation of biological networks. Nat Biotechnol 2005;23:961-6.
    • (2005) Nat Biotechnol , vol.23 , pp. 961-966
    • Kitano, H.1    Funahashi, A.2    Matsuoka, Y.3
  • 137
    • 0037342537 scopus 로고    scopus 로고
    • The systems biology markup language (SBML): A medium for representation and exchange of biochemical network models
    • Hucka M, Finney A, Sauro HM, et al. The systems biology markup language (SBML): A medium for representation and exchange of biochemical network models. Bioinformatics 2003;19:524-31.
    • (2003) Bioinformatics , vol.19 , pp. 524-531
    • Hucka, M.1    Finney, A.2    Sauro, H.M.3
  • 138
    • 33644877164 scopus 로고    scopus 로고
    • BioModels Database: A free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems
    • Le Novere N, Bornstein B, Broicher A, et al. BioModels Database: A free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Res 2006;34:D689-91.
    • (2006) Nucleic Acids Res , vol.34
    • Le Novere, N.1    Bornstein, B.2    Broicher, A.3
  • 139
    • 4544344218 scopus 로고    scopus 로고
    • Web-based kinetic modelling using JWS Online
    • Olivier BG, Snoep JL. Web-based kinetic modelling using JWS Online. Bioinformatics 2004;20:2143-4.
    • (2004) Bioinformatics , vol.20 , pp. 2143-2144
    • Olivier, B.G.1    Snoep, J.L.2
  • 140
    • 34848915402 scopus 로고    scopus 로고
    • A data integration approach for cell cycle analysis oriented to model simulation in systems biology
    • Alfieri R, Merelli I, Mosca E, et al. A data integration approach for cell cycle analysis oriented to model simulation in systems biology. BMC Syst Biol 2007;1:35.
    • (2007) BMC Syst Biol , vol.1 , pp. 35
    • Alfieri, R.1    Merelli, I.2    Mosca, E.3
  • 141
    • 49949112078 scopus 로고    scopus 로고
    • The Beta Workbench: A computational tool to study the dynamics of biological systems
    • Dematte L, Priami C, Romanel A. The Beta Workbench: A computational tool to study the dynamics of biological systems. Brief Bioinform 2008;9:437-49.
    • (2008) Brief Bioinform , vol.9 , pp. 437-449
    • Dematte, L.1    Priami, C.2    Romanel, A.3
  • 143
    • 32544443964 scopus 로고    scopus 로고
    • Systems biology toolbox for MATLAB: A computational platform for research in systems biology
    • Schmidt H, Jirstrand M. Systems biology toolbox for MATLAB: A computational platform for research in systems biology. Bioinformatics 2006;22:514-5.
    • (2006) Bioinformatics , vol.22 , pp. 514-515
    • Schmidt, H.1    Jirstrand, M.2
  • 144
    • 12344331451 scopus 로고    scopus 로고
    • the JigCell model builder and run manager
    • Vass M, Allen N, Shaffer CA, et al. the JigCell model builder and run manager. Bioinformatics 2004;20: 3680-1.
    • (2004) Bioinformatics , vol.20 , pp. 3680-3681
    • Vass, M.1    Allen, N.2    Shaffer, C.A.3
  • 145
    • 39749151575 scopus 로고    scopus 로고
    • Deterministic parallel global parameter estimation for a model of the budding yeast cell cycle
    • Panning T, Watson L, Allen N, et al. Deterministic parallel global parameter estimation for a model of the budding yeast cell cycle. Journal of Global Optimization 2008;40: 719-38.
    • (2008) Journal of Global Optimization , vol.40 , pp. 719-738
    • Panning, T.1    Watson, L.2    Allen, N.3
  • 146
    • 33845368513 scopus 로고    scopus 로고
    • COPASI-a COmplex PAthway SImulator
    • Hoops S, Sahle S, Gauges R, et al. COPASI-a COmplex PAthway SImulator. Bioinformatics 2006;22: 3067-74.
    • (2006) Bioinformatics , vol.22 , pp. 3067-3074
    • Hoops, S.1    Sahle, S.2    Gauges, R.3
  • 147
    • 67449150791 scopus 로고    scopus 로고
    • A new probabilistic generative model of parameter inference in biochemical networks
    • Association for Computing Machinery, New York
    • Lecca P, Palmisano A, Priami C. A new probabilistic generative model of parameter inference in biochemical networks Proceedings of the 2009 ACM Symposium on Applied Computing. Association for Computing Machinery, New York, 2009.
    • (2009) Proceedings of the 2009 ACM Symposium on Applied Computing
    • Lecca, P.1    Palmisano, A.2    Priami, C.3
  • 148
    • 40749128970 scopus 로고    scopus 로고
    • Flexible informatics for linking experimental data to mathematical models via DataRail
    • Saez-Rodriguez J, Goldsipe A, Muhlich J, et al. Flexible informatics for linking experimental data to mathematical models via DataRail. Bioinformatics 2008;24:840-7.
    • (2008) Bioinformatics , vol.24 , pp. 840-847
    • Saez-Rodriguez, J.1    Goldsipe, A.2    Muhlich, J.3
  • 149
    • 33750415038 scopus 로고    scopus 로고
    • SBML-PET: A systems biology markup language-based parameter estimation tool
    • Zi Z, Klipp E. SBML-PET: A systems biology markup language-based parameter estimation tool. Bioinformatics 2006;22:2704-5.
    • (2006) Bioinformatics , vol.22 , pp. 2704-2705
    • Zi, Z.1    Klipp, E.2
  • 150
    • 22144476845 scopus 로고    scopus 로고
    • Globally optimised parameters for a model of mitotic control in frog egg extracts
    • Zwolak JW, Tyson JJ, Watson LT. Globally optimised parameters for a model of mitotic control in frog egg extracts. Syst Biol 2005; 152:81-92.
    • (2005) Syst Biol , vol.152 , pp. 81-92
    • Zwolak, J.W.1    Tyson, J.J.2    Watson, L.T.3
  • 151
    • 38449101120 scopus 로고    scopus 로고
    • Integration of biological networks and gene expression data using Cytoscape
    • Cline MS, Smoot M, Cerami E, et al. Integration of biological networks and gene expression data using Cytoscape. Nat Protoc 2007;2:2366-82.
    • (2007) Nat Protoc , vol.2 , pp. 2366-2382
    • Cline, M.S.1    Smoot, M.2    Cerami, E.3
  • 152
    • 33750533388 scopus 로고    scopus 로고
    • Physicochemical modelling of cell signalling pathways
    • Aldridge BB, Burke JM, Lauffenburger DA, et al. Physicochemical modelling of cell signalling pathways. Nat Cell Biol 2006;8 1195-203.
    • (2006) Nat Cell Biol , vol.8 , pp. 1195-1203
    • Aldridge, B.B.1    Burke, J.M.2    Lauffenburger, D.A.3
  • 153
    • 55249119797 scopus 로고    scopus 로고
    • Heuristic approach to sparse approximation of gene regulatory networks
    • Andrecut M, Huang S, Kauffman SA. Heuristic approach to sparse approximation of gene regulatory networks. J Comput Biol 2008; 15:1173-86.
    • (2008) J Comput Biol , vol.15 , pp. 1173-1186
    • Andrecut, M.1    Huang, S.2    Kauffman, S.A.3
  • 154
    • 35748964479 scopus 로고    scopus 로고
    • Modeling gene expression regulatory networks with the sparse vector autoregressive model
    • Fujita A, Sato JR, Garay-Malpartida HM, et al. Modeling gene expression regulatory networks with the sparse vector autoregressive model. BMC Syst Biol 2007;1:39.
    • (2007) BMC Syst Biol , vol.1 , pp. 39
    • Fujita, A.1    Sato, J.R.2    Garay-Malpartida, H.M.3
  • 155
    • 51049117937 scopus 로고    scopus 로고
    • Models from experiments: Combinatorial drug perturbations of cancer cells
    • Nelander S, Wang W, Nilsson B, et al. Models from experiments: combinatorial drug perturbations of cancer cells. Mol Syst Biol 2008;4:216.
    • (2008) Mol Syst Biol , vol.4 , pp. 216
    • Nelander, S.1    Wang, W.2    Nilsson, B.3
  • 156
    • 33644524741 scopus 로고    scopus 로고
    • Cell-signalling dynamics in time and space
    • Kholodenko BN. Cell-signalling dynamics in time and space. Nat Rev Mol Cell Biol 2006;7:165-76.
    • (2006) Nat Rev Mol Cell Biol , vol.7 , pp. 165-176
    • Kholodenko, B.N.1
  • 157
  • 158
    • 0029681614 scopus 로고    scopus 로고
    • Extending the quasisteady state approximation by changing variables
    • Borghans JA, de Boer RJ, Segel LA. Extending the quasisteady state approximation by changing variables. Bull Math Biol 1996;58 43-63.
    • (1996) Bull Math Biol , vol.58 , pp. 43-63
    • Borghans, J.A.1    de Boer, R.J.2    Segel, L.A.3
  • 159
    • 56049089849 scopus 로고    scopus 로고
    • Stochastic simulation of enzyme-catalyzed reactions with disparate timescales
    • Barik D, Paul MR, Baumann WT, et al. Stochastic simulation of enzyme-catalyzed reactions with disparate timescales. Biophys J 2008;95:3563-74.
    • (2008) Biophys J , vol.95 , pp. 3563-3574
    • Barik, D.1    Paul, M.R.2    Baumann, W.T.3
  • 160
    • 34047240610 scopus 로고    scopus 로고
    • Modeling networks of coupled enzymatic reactions using the total quasi-steady state approximation
    • Ciliberto A, Capuani F, Tyson JJ. Modeling networks of coupled enzymatic reactions using the total quasi-steady state approximation. PLoS Comput Biol 2007;3:e45.
    • (2007) PLoS Comput Biol , vol.3
    • Ciliberto, A.1    Capuani, F.2    Tyson, J.J.3
  • 161
    • 0000481011 scopus 로고
    • Sensitivity analysis of complex kinetic systems. Tools and applications
    • Turányi T. Sensitivity analysis of complex kinetic systems. Tools and applications. Journal of Mathematical Chemistry 1990;5 203-48.
    • (1990) Journal of Mathematical Chemistry , vol.5 , pp. 203-248
    • Turányi, T.1
  • 162
    • 37649013307 scopus 로고    scopus 로고
    • Subnetwork analysis reveals dynamic features of complex (bio)chemical networks
    • Conradi C, Flockerzi D, Raisch J, et al. Subnetwork analysis reveals dynamic features of complex (bio)chemical networks. Proc Natl Acad Sci USA 2007;104:19175-80.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 19175-19180
    • Conradi, C.1    Flockerzi, D.2    Raisch, J.3
  • 164
    • 33747877324 scopus 로고    scopus 로고
    • BIOCHAM: An environment for modeling biological systems and formalizing experimental knowledge
    • Calzone L, Fages F, Soliman S. BIOCHAM: An environment for modeling biological systems and formalizing experimental knowledge. Bioinformatics 2006;22:1805-7.
    • (2006) Bioinformatics , vol.22 , pp. 1805-1807
    • Calzone, L.1    Fages, F.2    Soliman, S.3
  • 165
    • 38649122071 scopus 로고    scopus 로고
    • Probabilistic model checking of complex biological pathways
    • Heath J, Kwiatkowska M, Norman G, et al. Probabilistic model checking of complex biological pathways. Theoretical Computer Science 2008;391:239-57.
    • (2008) Theoretical Computer Science , vol.391 , pp. 239-257
    • Heath, J.1    Kwiatkowska, M.2    Norman, G.3
  • 166
    • 26444617213 scopus 로고    scopus 로고
    • Model checking biological systems described using ambient calculus
    • Mardare R, Priami C, Quaglia P, et al. Model checking biological systems described using ambient calculus. Comput Methods Syst Biol 2005;3082:85-103.
    • (2005) Comput Methods Syst Biol , vol.3082 , pp. 85-103
    • Mardare, R.1    Priami, C.2    Quaglia, P.3
  • 167
    • 49549083532 scopus 로고    scopus 로고
    • Temporal logic patterns for querying dynamic models of cellular interaction networks
    • Monteiro PT, Ropers D, Mateescu R, et al. Temporal logic patterns for querying dynamic models of cellular interaction networks. Bioinformatics 2008;24:i227-i233.
    • (2008) Bioinformatics , vol.24
    • Monteiro, P.T.1    Ropers, D.2    Mateescu, R.3
  • 168
    • 33747366698 scopus 로고    scopus 로고
    • Rules for modeling signal-transduction systems
    • Hlavacek WS, Faeder JR, Blinov ML, et al. Rules for modeling signal-transduction systems. Sci STKE 2006; 2006:rE6.
    • (2006) Sci STKE , vol.2006
    • Hlavacek, W.S.1    Faeder, J.R.2    Blinov, M.L.3
  • 169
    • 0037179670 scopus 로고    scopus 로고
    • Cells as computation
    • Regev A, Shapiro E. Cells as computation. Nature 2002; 419 343.
    • (2002) Nature , vol.419 , pp. 343
    • Regev, A.1    Shapiro, E.2
  • 171
    • 38049167675 scopus 로고    scopus 로고
    • A correct abstract machine for the stochastic pi-calculus
    • London: Concurrent Models in Molecular Biology
    • Phillips A, Cardelli L. A correct abstract machine for the stochastic pi-calculus. Proceedings of Bioconcur 2004. London: Concurrent Models in Molecular Biology, 2005.
    • (2005) Proceedings of Bioconcur 2004
    • Phillips, A.1    Cardelli, L.2
  • 172
    • 16644400767 scopus 로고    scopus 로고
    • Modelling the dynamics of biosystems
    • Priami C, Quaglia P. Modelling the dynamics of biosystems. Brief Bioinform 2004;5:259-69.
    • (2004) Brief Bioinform , vol.5 , pp. 259-269
    • Priami, C.1    Quaglia, P.2
  • 173
    • 26444448026 scopus 로고    scopus 로고
    • Beta binders for biological interactions
    • Priami C, Quaglia P. Beta binders for biological interactions. Comput Methods Syst Biol 2005;3082:20-33.
    • (2005) Comput Methods Syst Biol , vol.3082 , pp. 20-33
    • Priami, C.1    Quaglia, P.2
  • 174
    • 27944500696 scopus 로고    scopus 로고
    • Multisite M-phase phosphorylation of Xenopus Wee1A
    • Kim SY, Song EJ, Lee KJ, et al. Multisite M-phase phosphorylation of Xenopus Wee1A. Mol Cell Biol 2005; 25:10580-90.
    • (2005) Mol Cell Biol , vol.25 , pp. 10580-10590
    • Kim, S.Y.1    Song, E.J.2    Lee, K.J.3
  • 175
    • 13244284551 scopus 로고    scopus 로고
    • Dynamic complex formation during the yeast cell cycle
    • de Lichtenberg U, Jensen LJ, Brunak S, et al. Dynamic complex formation during the yeast cell cycle. Science 2005; 307 724-7.
    • (2005) Science , vol.307 , pp. 724-727
    • de Lichtenberg, U.1    Jensen, L.J.2    Brunak, S.3
  • 176
    • 57049132896 scopus 로고    scopus 로고
    • Modelling and simulation of biological processes in BlenX, SIGMETRICS Perform
    • Dematte L, Priami C, Romanel A. Modelling and simulation of biological processes in BlenX, SIGMETRICS Perform. Eval Rev 2008;35 32-9.
    • (2008) Eval Rev , vol.35 , pp. 32-39
    • Dematte, L.1    Priami, C.2    Romanel, A.3
  • 177
    • 35148895523 scopus 로고    scopus 로고
    • A cell cycle automaton model for probing circadian patterns of anticancer drug delivery
    • Altinok A, Levi F, Goldbeter A. A cell cycle automaton model for probing circadian patterns of anticancer drug delivery. Adv Drug Deliv Rev 2007;59: 1036-53.
    • (2007) Adv Drug Deliv Rev , vol.59 , pp. 1036-1053
    • Altinok, A.1    Levi, F.2    Goldbeter, A.3
  • 178
    • 34447508363 scopus 로고    scopus 로고
    • Why do cells cycle with a 24 hour period?
    • Bernard S, Herzel H. Why do cells cycle with a 24 hour period? Genome Inform 2006;17:72-9.
    • (2006) Genome Inform , vol.17 , pp. 72-79
    • Bernard, S.1    Herzel, H.2
  • 179
    • 4644242527 scopus 로고    scopus 로고
    • Model predictions of MDM2 mediated cell regulation
    • Obeyesekere MN, Tecarro E, Lozano G. Model predictions of MDM2 mediated cell regulation. Cell Cycle 2004;3: 655-61.
    • (2004) Cell Cycle , vol.3 , pp. 655-661
    • Obeyesekere, M.N.1    Tecarro, E.2    Lozano, G.3
  • 180
    • 33747872720 scopus 로고    scopus 로고
    • Bistable switching and excitable behaviour in the activation of Src at mitosis
    • Fuss H, Dubitzky W, Downes S, et al. Bistable switching and excitable behaviour in the activation of Src at mitosis. Bioinformatics 2006;22:e158-e165.
    • (2006) Bioinformatics , vol.22
    • Fuss, H.1    Dubitzky, W.2    Downes, S.3
  • 181
    • 23444449142 scopus 로고    scopus 로고
    • Integrative model of the response of yeast to osmotic shock
    • Klipp E, Nordlander B, Kruger R, et al. Integrative model of the response of yeast to osmotic shock. Nat Biotechnol 2005;23 975-82.
    • (2005) Nat Biotechnol , vol.23 , pp. 975-982
    • Klipp, E.1    Nordlander, B.2    Kruger, R.3
  • 182
    • 4444272353 scopus 로고    scopus 로고
    • Modelling the dynamics of the yeast pheromone pathway
    • Kofahl B, Klipp E. Modelling the dynamics of the yeast pheromone pathway. Yeast 2004;21:831-50.
    • (2004) Yeast , vol.21 , pp. 831-850
    • Kofahl, B.1    Klipp, E.2
  • 183
    • 34948840834 scopus 로고    scopus 로고
    • Ensemble modeling for analysis of cell signaling dynamics
    • Kuepfer L, Peter M, Sauer U, et al. Ensemble modeling for analysis of cell signaling dynamics. Nat Biotechnol 2007; 25:1001-6.
    • (2007) Nat Biotechnol , vol.25 , pp. 1001-1006
    • Kuepfer, L.1    Peter, M.2    Sauer, U.3
  • 184
    • 33746113018 scopus 로고    scopus 로고
    • A modelling approach to quantify dynamic crosstalk between the pheromone and the starvation pathway in baker's yeast
    • Schaber J, Kofahl B, Kowald A, et al. A modelling approach to quantify dynamic crosstalk between the pheromone and the starvation pathway in baker's yeast. FEBS J 2006;273: 3520-33.
    • (2006) FEBS J , vol.273 , pp. 3520-3533
    • Schaber, J.1    Kofahl, B.2    Kowald, A.3
  • 185
    • 0036212767 scopus 로고    scopus 로고
    • Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors
    • Schoeberl B, Eichler-Jonsson C, Gilles ED, et al. Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nat Biotechnol 2002;20:370-5.
    • (2002) Nat Biotechnol , vol.20 , pp. 370-375
    • Schoeberl, B.1    Eichler-Jonsson, C.2    Gilles, E.D.3
  • 186
    • 33645979394 scopus 로고    scopus 로고
    • Bistability, stochasticity, and oscillations in the mitogen-activated protein kinase cascade
    • Wang X, Hao N, Dohlman HG, et al. Bistability, stochasticity, and oscillations in the mitogen-activated protein kinase cascade. Biophys J 2006;90:1961-78.
    • (2006) Biophys J , vol.90 , pp. 1961-1978
    • Wang, X.1    Hao, N.2    Dohlman, H.G.3
  • 188
    • 36549036709 scopus 로고    scopus 로고
    • A cell cycle regulatory network controlling NF-kappaB subunit activity and function
    • Barre B, Perkins ND. A cell cycle regulatory network controlling NF-kappaB subunit activity and function. EMBO J 2007;26 4841-55.
    • (2007) EMBO J , vol.26 , pp. 4841-4855
    • Barre, B.1    Perkins, N.D.2
  • 189
    • 9244251125 scopus 로고    scopus 로고
    • Cell-cycle checkpoints and cancer
    • Kastan MB, Bartek J. Cell-cycle checkpoints and cancer. Nature 2004;432:316-23.
    • (2004) Nature , vol.432 , pp. 316-323
    • Kastan, M.B.1    Bartek, J.2
  • 190
    • 49649089500 scopus 로고    scopus 로고
    • On the spontaneous emergence of cell polarity
    • Altschuler SJ, Angenent SB, Wang Y, et al. On the spontaneous emergence of cell polarity. Nature 2008;454: 886-9.
    • (2008) Nature , vol.454 , pp. 886-889
    • Altschuler, S.J.1    Angenent, S.B.2    Wang, Y.3
  • 191
    • 38749131207 scopus 로고    scopus 로고
    • Spatial controls for growth zone formation during the fission yeast cell cycle
    • Csikasz-Nagy A, Gyorffy B, Alt W, et al. Spatial controls for growth zone formation during the fission yeast cell cycle. Yeast 2008;25:59-69.
    • (2008) Yeast , vol.25 , pp. 59-69
    • Csikasz-Nagy, A.1    Gyorffy, B.2    Alt, W.3
  • 192
    • 33947195310 scopus 로고    scopus 로고
    • Bridging the gap between in silico and cell-based analysis of the nuclear factor-kappaB signaling pathway by in vitro studies of IKK2
    • Ihekwaba AE, Wilkinson SJ, Waithe D, et al. Bridging the gap between in silico and cell-based analysis of the nuclear factor-kappaB signaling pathway by in vitro studies of IKK2. FEBS J 2007;274 1678-90.
    • (2007) FEBS J , vol.274 , pp. 1678-1690
    • Ihekwaba, A.E.1    Wilkinson, S.J.2    Waithe, D.3
  • 193
    • 4544246088 scopus 로고    scopus 로고
    • Mathematical modeling reveals threshold mechanism in CD95-induced apoptosis
    • Bentele M, Lavrik I, Ulrich M, et al. Mathematical modeling reveals threshold mechanism in CD95-induced apoptosis. J Cell Biol 2004;166:839-51.
    • (2004) J Cell Biol , vol.166 , pp. 839-851
    • Bentele, M.1    Lavrik, I.2    Ulrich, M.3
  • 194
    • 58349089151 scopus 로고    scopus 로고
    • Microenvironment driven invasion: A multiscale multi-model investigation
    • Anderson AR, Rejniak KA, Gerlee P, et al. Microenvironment driven invasion: A multiscale multi-model investigation. J Math Biol 2009;58:579-624.
    • (2009) J Math Biol , vol.58 , pp. 579-624
    • Anderson, A.R.1    Rejniak, K.A.2    Gerlee, P.3
  • 195
    • 43649093859 scopus 로고    scopus 로고
    • A mesoscale model of G1/S phase transition in liver regeneration
    • Chauhan A, Legewie S, Westermark PO, et al. A mesoscale model of G1/S phase transition in liver regeneration. J Theor Biol 2008; 252:465-73.
    • (2008) J Theor Biol , vol.252 , pp. 465-473
    • Chauhan, A.1    Legewie, S.2    Westermark, P.O.3
  • 196
    • 33646249607 scopus 로고    scopus 로고
    • A multiscale mathematical model of cancer, and its use in analyzing irradiation therapies
    • Ribba B, Colin T, Schnell S. A multiscale mathematical model of cancer, and its use in analyzing irradiation therapies. Theor Biol Med Model 2006;3:7.
    • (2006) Theor Biol Med Model , vol.3 , pp. 7
    • Ribba, B.1    Colin, T.2    Schnell, S.3
  • 197
    • 58349094920 scopus 로고    scopus 로고
    • Multiscale agent-based cancer modeling
    • Zhang L, Wang Z, Sagotsky JA, et al. Multiscale agent-based cancer modeling. J Math Biol 2009;58:545-559.
    • (2009) J Math Biol , vol.58 , pp. 545-559
    • Zhang, L.1    Wang, Z.2    Sagotsky, J.A.3
  • 198
    • 39749086288 scopus 로고    scopus 로고
    • Integrative mathematical oncology
    • Anderson AR, Quaranta V. Integrative mathematical oncology. Nat Rev Cancer 2008;8:227-34.
    • (2008) Nat Rev Cancer , vol.8 , pp. 227-234
    • Anderson, A.R.1    Quaranta, V.2
  • 199
    • 3843079723 scopus 로고    scopus 로고
    • A history of the study of solid tumour growth: The contribution of mathematical modelling
    • Araujo RP, McElwain DL. A history of the study of solid tumour growth: the contribution of mathematical modelling. Bull Math Biol 2004; 66:1039-91.
    • (2004) Bull Math Biol , vol.66 , pp. 1039-1091
    • Araujo, R.P.1    McElwain, D.L.2
  • 200
    • 33646517762 scopus 로고    scopus 로고
    • Byrne HM, Alarcon T, Owen MR, et al. Modelling aspects of cancer dynamics: A review. Philos Trans R Soc A: Math Phys Eng Sci 2006;364:1563-78.
    • Byrne HM, Alarcon T, Owen MR, et al. Modelling aspects of cancer dynamics: A review. Philos Trans R Soc A: Math Phys Eng Sci 2006;364:1563-78.
  • 202
    • 58349117422 scopus 로고    scopus 로고
    • Individual-based and continuum models of growing cell populations: A comparison
    • Byrne H, Drasdo D. Individual-based and continuum models of growing cell populations: A comparison. J Math Biol 2009;58:657-687.
    • (2009) J Math Biol , vol.58 , pp. 657-687
    • Byrne, H.1    Drasdo, D.2
  • 203
    • 0035480791 scopus 로고    scopus 로고
    • A new mathematical model for avascular tumour growth
    • Sherratt JA, Chaplain MA. A new mathematical model for avascular tumour growth. J Math Biol 2001;43: 291-312.
    • (2001) J Math Biol , vol.43 , pp. 291-312
    • Sherratt, J.A.1    Chaplain, M.A.2
  • 204
    • 0028346749 scopus 로고
    • On topological simulations in developmental biology
    • Duvdevani-Bar S, Segel L. On topological simulations in developmental biology. J Theoret Biol 1994;166:33-50.
    • (1994) J Theoret Biol , vol.166 , pp. 33-50
    • Duvdevani-Bar, S.1    Segel, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.