-
1
-
-
33748582367
-
Silicon CMOS devices beyond scaling
-
W. Haensch, E. J. Nowak, R. H. Dennard, et al, "Silicon CMOS devices beyond scaling," IBM J. Res. Dev. 50, 339 (2006).
-
(2006)
IBM J. Res. Dev.
, vol.50
, pp. 339
-
-
Haensch, W.1
Nowak, E.J.2
Dennard, R.H.3
-
2
-
-
0003759478
-
Future Trends in Microelectronics: The Nano
-
the Giga, and the Ultra, New York: Wiley
-
S. Luryi, J. M. Xu, and A. Zaslavsky, eds., Future Trends in Microelectronics: The Nano, the Giga, and the Ultra, New York: Wiley, 2004.
-
(2004)
-
-
Luryi, S.1
Xu, J.M.2
Zaslavsky, A.3
-
3
-
-
33846330666
-
Emerging Research Devices
-
ITRS
-
ITRS "Emerging Research Devices" (2005), www.itrs.net/Links/2005ITRS
-
(2005)
-
-
-
4
-
-
85032069152
-
Electronic properties of two-dimensional systems
-
T. Ando, A.B. Fowler and F. Stern, "Electronic properties of two-dimensional systems," Rev. Mod. Phys. 54, 437 (1982).
-
(1982)
Rev. Mod. Phys.
, vol.54
, pp. 437
-
-
Ando, T.1
Fowler, A.B.2
Stern, F.3
-
5
-
-
0036927506
-
Experimental study on carrier transport mechanism in ultrathin-body SOI n-and p-MOSFETs with SOI thickness less than 5 nm
-
K. Uchida, H. Watanabe, A. Kinoshita, J. Koga, T. Numata, and S. Takagi, "Experimental study on carrier transport mechanism in ultrathin-body SOI n-and p-MOSFETs with SOI thickness less than 5 nm," Tech. Digest IEDM (2002), pp. 47-50.
-
(2002)
Tech. Digest IEDM
, pp. 47-50
-
-
Uchida, K.1
Watanabe, H.2
Kinoshita, A.3
Koga, J.4
Numata, T.5
Takagi, S.6
-
6
-
-
33748628518
-
Nanotube electronics and optoelectronics
-
An excellent review carbon nanotube theory, devices and technology can be found in:
-
An excellent review carbon nanotube theory, devices and technology can be found in: P. Avouris and J. Chen, "Nanotube electronics and optoelectronics," Mater. Today 9, 46 (2006).
-
(2006)
Mater. Today
, vol.9
, pp. 46
-
-
Avouris, P.1
Chen, J.2
-
7
-
-
0001026090
-
Properties of fullerene nanotubules
-
J. W. Mintmire, D. H. Robertson, and C. T. White, "Properties of fullerene nanotubules," J. Phys. Chem. Solids 54, 1835 (1993).
-
(1993)
J. Phys. Chem. Solids
, vol.54
, pp. 1835
-
-
Mintmire, J.W.1
Robertson, D.H.2
White, C.T.3
-
8
-
-
79956000382
-
Controlling doping and carrier injection in carbon nanotube transistors
-
V. Derycke, R. Mattel, J. Appenzeller, and P. Avouris, "Controlling doping and carrier injection in carbon nanotube transistors," Appl. Phys. Lett. 80, 2773 (2002).
-
(2002)
Appl. Phys. Lett.
, vol.80
, pp. 2773
-
-
Derycke, V.1
Mattel, R.2
Appenzeller, J.3
Avouris, P.4
-
9
-
-
0042338529
-
Semiclassical transport and phonon scattering of electrons in semiconducting carbon nanotubes
-
G. Pennington and N. Goldsman, "Semiclassical transport and phonon scattering of electrons in semiconducting carbon nanotubes," Phys. Rev. B 68, 045426 (2003);
-
(2003)
Phys. Rev. B
, vol.68
, pp. 045426
-
-
Pennington, G.1
Goldsman, N.2
-
10
-
-
28844479991
-
Electric-field-dependent charge-carrier velocity in semiconducting carbon nanotubes
-
Yung-Fu Chen and M. S. Fuhrer, "Electric-field-dependent charge-carrier velocity in semiconducting carbon nanotubes," Phys. Rev. Lett. 95, 236803 (2005).
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 236803
-
-
Chen, Y.-F.1
Fuhrer, M.S.2
-
11
-
-
18244399604
-
Electron-phonon interaction and transport in semiconducting carbon nanotubes
-
V. Perebeinos, J. Tersoff, and P. Avouris, "Electron-phonon interaction and transport in semiconducting carbon nanotubes," Phys. Rev. Lett. 94, 086802 (2005).
-
(2005)
Phys. Rev. Lett.
, vol.94
, pp. 086802
-
-
Perebeinos, V.1
Tersoff, J.2
Avouris, P.3
-
12
-
-
2342629497
-
Extraordinary mobility in semiconducting carbon nanotubes
-
T. DUrkop, S. A. Getty, Enrique Cobas, and M. S. Fuhrer, "Extraordinary mobility in semiconducting carbon nanotubes," Nano Lett. 4, 35 (2004).
-
(2004)
Nano Lett.
, vol.4
, pp. 35
-
-
Durkop, T.1
Getty, S.A.2
Cobas, E.3
Fuhrer, M.S.4
-
13
-
-
23144462910
-
The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors
-
Z. Chen, J. Appenzeller, J. Knoch, Y. Lin, and P. Avouris, "The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors," Nano Lett. 5, 1497 (2005).
-
(2005)
Nano Lett.
, vol.5
, pp. 1497
-
-
Chen, Z.1
Appenzeller, J.2
Knoch, J.3
Lin, Y.4
Avouris, P.5
-
14
-
-
19744366972
-
Band-to-band tunneling in carbon nanotube field-effect transistors
-
J. Appenzeller, Y.-M. Lin, J. Knoch, and P. Avouris, "Band-to-band tunneling in carbon nanotube field-effect transistors," Phys. Rev. Lett. 93. 196805 (2004).
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 196805
-
-
Appenzeller, J.1
Lin, Y.-M.2
Knoch, J.3
Avouris, P.4
-
15
-
-
0005836651
-
Single-and multi-wall carbon nanotube field-effect transistors
-
R. Mattel, T. Schmidt, H. R. Shea, T. Hertel, and P. Avouris, "Single-and multi-wall carbon nanotube field-effect transistors," Appl. Phys. Lett. 73, 2448 (1998).
-
(1998)
Appl. Phys. Lett.
, vol.73
, pp. 2448
-
-
Mattel, R.1
Schmidt, T.2
Shea, H.R.3
Hertel, T.4
Avouris, P.5
-
16
-
-
0141769693
-
Carbon nanotube inter-and intramolecular logic gates
-
V. Derycke, R. Mattel, J. Appenzeller, and P. Avouris, "Carbon nanotube inter-and intramolecular logic gates," Nano Lett. 1, 453 (2001).
-
(2001)
Nano Lett.
, vol.1
, pp. 453
-
-
Derycke, V.1
Mattel, R.2
Appenzeller, J.3
Avouris, P.4
-
17
-
-
0842266535
-
Advancements in complementary carbon nanotube field-effect transistors
-
A. Javey, Q. Wang, W. Kim, and H. Dai, "Advancements in complementary carbon nanotube field-effect transistors," Tech. Digest /EDM (2003), pp. 31.2.1-4.
-
(2003)
Tech. Digest /EDM
-
-
Javey, A.1
Wang, Q.2
Kim, W.3
Dai, H.4
-
18
-
-
84889305176
-
-
This value comes from 4e2/h, with a factor of 2 arising from the two-fold degeneracy of the lowest bands and the other factor of 2 from the spin degeneracy
-
This value comes from 4e2/h, with a factor of 2 arising from the two-fold degeneracy of the lowest bands and the other factor of 2 from the spin degeneracy.
-
-
-
-
19
-
-
41149171855
-
Tri-gate transistor architecture with high-K gate dielectrics, metal gates and strain engineering
-
J. Kavalieros, B. Doyle. S. Datta, et al., "Tri-gate transistor architecture with high-K gate dielectrics, metal gates and strain engineering," Tech. Digest VLSI Symp. (2006), pp. 50-51.
-
(2006)
Tech. Digest VLSI Symp.
, pp. 50-51
-
-
Kavalieros, J.1
Datta, B.2
Doyle, S.3
-
20
-
-
21844436256
-
Self-aligned 40 nm channel carbon nanotube field-effect transistors with subthreshold swings down to 70 mV/decade
-
A. Javey, D. Farmer, R. Gordon and H. Dai, "Self-aligned 40 nm channel carbon nanotube field-effect transistors with subthreshold swings down to 70 mV/decade," Proc. SPIE 5732, 14 (2006).
-
(2006)
Proc. SPIE
, vol.5732
, pp. 14
-
-
Javey, A.1
Farmer, D.2
Gordon, R.3
Dai, H.4
-
21
-
-
2142649257
-
High-field quasiballistic transport in short carbon nanotubes
-
A. Javey, J. Guo, M. Paulsson, Q. Wang, D. Mann, M. Lundstrom, and H. Dai, "High-field quasiballistic transport in short carbon nanotubes," Phys. Rev. Lett. 92, 106804(2004).
-
(2004)
Phys. Rev. Lett.
, vol.92
, pp. 106804
-
-
Javey, A.1
Guo, J.2
Paulsson, M.3
Wang, Q.4
Mann, D.5
Lundstrom, M.6
Dai, H.7
-
22
-
-
33645223262
-
An integrated logic circuit assembled on a single carbon nanotube
-
Z. Chen, J. Appenzeller, Y-M. Lin, et al., "An integrated logic circuit assembled on a single carbon nanotube," Science 311, 1735 (2006).
-
(2006)
Science
, vol.311
, pp. 1735
-
-
Chen, Z.1
Appenzeller, J.2
Lin, Y.-M.3
-
23
-
-
4544296982
-
Frequency response of top-gated carbon nanotube field-effect transistors
-
D. V. Singh, K. A. Jenkins, J. Appenzeller, D. Neumayer, A. Grill, and H. S. P. Wong, "Frequency response of top-gated carbon nanotube field-effect transistors," IEEE Trans. Nanotechnol. 3, 383 (2004);
-
(2004)
IEEE Trans. Nanotechnol.
, vol.3
, pp. 383
-
-
Singh, D.V.1
Jenkins, K.A.2
Appenzeller, J.3
Neumayer, D.4
Grill, A.5
Wong, H.S.P.6
-
24
-
-
1842528906
-
Frequency dependent characterization of transport properties in carbon nanotube transistors
-
J. Appenzeller and D. J. Frank, "Frequency dependent characterization of transport properties in carbon nanotube transistors," Appl. Phys. Lett. 84, 1771 (2004);
-
(2004)
Appl. Phys. Lett.
, vol.84
, pp. 1771
-
-
Appenzeller, J.1
Frank, D.J.2
-
25
-
-
33645136351
-
Carbon nanotube field-effect transistor operation at microwave frequencies
-
A. A. Pesetski, J. E. Baumgardner, E. Folk. J. X. Przybysz, J. D. Adam, and H. Zhang, "Carbon nanotube field-effect transistor operation at microwave frequencies," Appl. Phys. Lett. 88, 113103 (2006).
-
(2006)
Appl. Phys. Lett.
, vol.88
, pp. 113103
-
-
Pesetski, A.A.1
Baumgardner, J.E.2
Przybysz, E.3
Folk, J.X.4
Adam, J.D.5
Zhang, H.6
-
26
-
-
33846116009
-
Sorting carbon nanotubes by electronic structure using density differentiation
-
M. S. Arnold. A. A. Green, J. F. Hulvat, S. I. Stupp, and M. C. Hersam, "Sorting carbon nanotubes by electronic structure using density differentiation," Nature Nanotechnol. 1, 60(2006).
-
(2006)
Nature Nanotechnol.
, vol.1
, pp. 60
-
-
Green, M.S.1
Arnold, A.A.2
Hulvat, J.F.3
Stupp, S.I.4
Hersam, M.C.5
-
27
-
-
18144431777
-
ALD of high-K dielectrics on suspended functionalized SWNTs
-
D. B. Farmer and R. G. Gordon, "ALD of high-K dielectrics on suspended functionalized SWNTs." Electrochem. Solid State Lett. 8, G89-G91 (2005).
-
(2005)
Electrochem. Solid State Lett.
, vol.8
-
-
Farmer, D.B.1
Gordon, R.G.2
-
28
-
-
0042991275
-
Ballistic carbon nanotube field-effect transistors
-
A. Javey, J. Guo, Q. Wang, M. Lundstrom and H. Dai, "Ballistic carbon nanotube field-effect transistors," Nature 424, 654, (2003);
-
(2003)
Nature
, vol.424
, pp. 654
-
-
Javey, A.1
Guo, J.2
Wang, Q.3
Lundstrom, M.4
Dai, H.5
-
29
-
-
4143096759
-
Self-aligned ballistic molecular transistors and electrically parallel nanotube arrays
-
A. Javey, J. Guo, D. B. Farmer, et al, "Self-aligned ballistic molecular transistors and electrically parallel nanotube arrays," Nano Lett. 4, 1319 (2004).
-
(2004)
Nano Lett.
, vol.4
, pp. 1319
-
-
Javey, A.1
Guo, J.2
Farmer, D.B.3
-
30
-
-
39249085918
-
Quantum interference and ballistic transmission in nanotube electron waveguides
-
J. Kong, E. Yenilmez, T. W. Tombler, W. Kim, and H. Dai, "Quantum interference and ballistic transmission in nanotube electron waveguides," Phys. Rev. Lett. 87, 106801 (2001).
-
(2001)
Phys. Rev. Lett.
, vol.87
, pp. 106801
-
-
Kong, J.1
Yenilmez, E.2
Tombler, T.W.3
Kim, W.4
Dai, H.5
-
31
-
-
84889371303
-
-
The "on" state refers to a CMOS logic inverter where, in steady state, the voltage drop across the "on" transistor is zero and the full voltage appears across the "off transistor. The switching delay and switching energy for the "on/off transition is determined by the amount of charge that has to be removed from the "on" transistor in order to turn it off
-
The "on" state refers to a CMOS logic inverter where, in steady state, the voltage drop across the "on" transistor is zero and the full voltage appears across the "off transistor. The switching delay and switching energy for the "on/off transition is determined by the amount of charge that has to be removed from the "on" transistor in order to turn it off.
-
-
-
-
32
-
-
84889405113
-
-
These broader issues involve the use of reversible computation rather than conventional logic circuits
-
These broader issues involve the use of reversible computation rather than conventional logic circuits.
-
-
-
-
33
-
-
84889452189
-
-
For the lowest subband occupancy, linear dispersion and a degenerate electron distribution, the quantum (degeneracy) capacitance per unit length is given by CQ = «s"v«bg(/viim, where ns, «v and «b are the spin, valley and ballistic degeneracy factors («v = 1 or 2), g0 is the quantum of conductance and viim the limiting velocity of the linear dispersion branch
-
lim the limiting velocity of the linear dispersion branch.
-
-
-
-
34
-
-
84889295990
-
-
For the opposite limit, where the gate is farther away, the velocity will be increased concomitantly with the reduction in capacitance
-
For the opposite limit, where the gate is farther away, the velocity will be increased concomitantly with the reduction in capacitance.
-
-
-
-
35
-
-
2342459264
-
An rf circuit model for carbon nanotubes
-
P. J. Burke, "An rf circuit model for carbon nanotubes," IEEE Trans. Nanotechnol. 2, 55 (2003).
-
(2003)
IEEE Trans. Nanotechnol.
, vol.2
, pp. 55
-
-
Burke, P.J.1
-
36
-
-
21644462974
-
Performance comparison between carbon nanotube and copper interconnects for GSI
-
A. Naeemi, R. Sarvari, and J. D. Meindl, "Performance comparison between carbon nanotube and copper interconnects for GSI," Tech. Digest IEDM (2004), p. 699.
-
(2004)
Tech. Digest IEDM
, pp. 699
-
-
Naeemi, A.1
Sarvari, R.2
Meindl, J.D.3
-
37
-
-
84889424141
-
Future Trends
-
in: S. Luryi, J. M. Xu, and A. Zaslavsky, eds, New York: Wiley/IEEE Press
-
P. M. Solomon and C. R. Kagan, "Understanding molecular transistors," in: S. Luryi, J. M. Xu, and A. Zaslavsky, eds., Future Trends In Microelectronics: The Nano Millennium, New York: Wiley/IEEE Press, 2002.
-
(2002)
Microelectronics: The Nano Millennium
-
-
Solomon, P.M.1
Kagan, C.R.2
-
38
-
-
33748532147
-
Designing CMOS for maximum chip performance
-
D. J. Frank, W. Haensch, G. Shahidi, and O. Dokumaci, "Designing CMOS for maximum chip performance," IBM J. Res. Dev. 50, 419 (2006).
-
(2006)
IBM J. Res. Dev.
, vol.50
, pp. 419
-
-
Frank, D.J.1
Haensch, W.2
Shahidi, G.3
Dokumaci, O.4
|