메뉴 건너뛰기




Volumn 23, Issue 1, 2007, Pages 108-134

Multi-kernel regularized classifiers

Author keywords

Classification algorithm; Convex loss function; Misclassification error; Multi kernel regularization scheme; Regularization error and sample error

Indexed keywords

CONVERGENCE OF NUMERICAL METHODS; ERROR ANALYSIS; LEAST SQUARES APPROXIMATIONS; OPTIMIZATION; PROBLEM SOLVING;

EID: 33846804061     PISSN: 0885064X     EISSN: 10902708     Source Type: Journal    
DOI: 10.1016/j.jco.2006.06.007     Document Type: Article
Times cited : (170)

References (47)
  • 1
    • 5844297152 scopus 로고
    • Theory of reproducing kernels
    • Aronszajn N. Theory of reproducing kernels. Trans. Amer. Math. Soc. 68 (1950) 337-404
    • (1950) Trans. Amer. Math. Soc. , vol.68 , pp. 337-404
    • Aronszajn, N.1
  • 4
    • 33846847155 scopus 로고    scopus 로고
    • B. Blanchard, O. Bousquet, P. Massart, Statistical performance of support vector machines, preprint, 2003.
  • 5
    • 3042675892 scopus 로고    scopus 로고
    • On the rate of convergence of regularized boosting classifiers
    • Blanchard B., Lugosi G., and Vayatis N. On the rate of convergence of regularized boosting classifiers. J. Mach. Learning Res. 4 (2003) 861-894
    • (2003) J. Mach. Learning Res. , vol.4 , pp. 861-894
    • Blanchard, B.1    Lugosi, G.2    Vayatis, N.3
  • 6
    • 84924053271 scopus 로고    scopus 로고
    • Theory of classification: a survey of some recent advances
    • Boucheron S., Bousquet O., and Lugosi G. Theory of classification: a survey of some recent advances. ESAIM: Probab. Statist. 9 (2005) 323-375
    • (2005) ESAIM: Probab. Statist. , vol.9 , pp. 323-375
    • Boucheron, S.1    Bousquet, O.2    Lugosi, G.3
  • 8
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • Chapelle O., Vapnik V., Bousquet O., and Mukherjee S. Choosing multiple parameters for support vector machines. Mach. Learning 46 (2002) 131-159
    • (2002) Mach. Learning , vol.46 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 9
    • 84879394399 scopus 로고    scopus 로고
    • Support vector machine soft margin classifiers: error analysis
    • Chen D.R., Wu Q., Ying Y., and Zhou D.X. Support vector machine soft margin classifiers: error analysis. J. Mach. Learning Res. 5 (2004) 1143-1175
    • (2004) J. Mach. Learning Res. , vol.5 , pp. 1143-1175
    • Chen, D.R.1    Wu, Q.2    Ying, Y.3    Zhou, D.X.4
  • 10
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C., and Vapnik V. Support-vector networks. Mach. Learning 20 (1995) 273-297
    • (1995) Mach. Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 12
    • 0036071370 scopus 로고    scopus 로고
    • On the mathematical foundations of learning
    • Cucker F., and Smale S. On the mathematical foundations of learning. Bull. Amer. Math. Soc. 39 (2001) 1-49
    • (2001) Bull. Amer. Math. Soc. , vol.39 , pp. 1-49
    • Cucker, F.1    Smale, S.2
  • 13
    • 0036436325 scopus 로고    scopus 로고
    • Best choices for regularization parameters in learning theory: on the bias-variance problem
    • Cucker F., and Smale S. Best choices for regularization parameters in learning theory: on the bias-variance problem. Found. Comput. Math. 2 (2002) 413-428
    • (2002) Found. Comput. Math. , vol.2 , pp. 413-428
    • Cucker, F.1    Smale, S.2
  • 14
    • 33846797425 scopus 로고    scopus 로고
    • F. Cucker, D.X. Zhou, Learning Theory: An Approximation Theory Viewpoint, Cambridge University Press, Cambridge, MA, in press.
  • 16
    • 12244250351 scopus 로고    scopus 로고
    • T. Evgeniou, M. Pontil, Regularized multi-task learning, Proceedings of the 17th SIGKDD Conference on Knowledge Discovery and Data Mining, 2004.
  • 17
    • 0034419669 scopus 로고    scopus 로고
    • Regularization networks and support vector machines
    • Evgeniou T., Pontil M., and Poggio T. Regularization networks and support vector machines. Adv. Comput. Math. 13 (2000) 1-50
    • (2000) Adv. Comput. Math. , vol.13 , pp. 1-50
    • Evgeniou, T.1    Pontil, M.2    Poggio, T.3
  • 19
    • 0001556720 scopus 로고    scopus 로고
    • Efficient agnostic learning of neural networks with bounded fan-in
    • Lee W.S., Bartlett P.L., and Williamson R.C. Efficient agnostic learning of neural networks with bounded fan-in. IEEE Trans. Inform. Theory 42 (1996) 2118-2132
    • (1996) IEEE Trans. Inform. Theory , vol.42 , pp. 2118-2132
    • Lee, W.S.1    Bartlett, P.L.2    Williamson, R.C.3
  • 20
    • 0001663033 scopus 로고    scopus 로고
    • Mixture density estimation
    • Solla S.A., Leen T.K., and Muller K.R. (Eds), Morgan Kaufmann Publishers, San Mateo
    • Li J., and Barron A. Mixture density estimation. In: Solla S.A., Leen T.K., and Muller K.R. (Eds). Advances in Neural Information Processing Systems vol. 12 (1999), Morgan Kaufmann Publishers, San Mateo
    • (1999) Advances in Neural Information Processing Systems , vol.12
    • Li, J.1    Barron, A.2
  • 21
    • 0036258405 scopus 로고    scopus 로고
    • Support vector machines and the Bayes rule in classification
    • Lin Y. Support vector machines and the Bayes rule in classification. Data Mining Knowledge Discovery 6 (2002) 259-275
    • (2002) Data Mining Knowledge Discovery , vol.6 , pp. 259-275
    • Lin, Y.1
  • 22
    • 9444269961 scopus 로고    scopus 로고
    • On the Bayes-risk consistency of regularized boosting methods
    • Lugosi G., and Vayatis N. On the Bayes-risk consistency of regularized boosting methods. Ann. Statist. 32 (2004) 30-55
    • (2004) Ann. Statist. , vol.32 , pp. 30-55
    • Lugosi, G.1    Vayatis, N.2
  • 23
    • 0000595627 scopus 로고    scopus 로고
    • Some applications of concentration inequalities to statistics
    • Massart P. Some applications of concentration inequalities to statistics. Ann. Fac. Sci. Toulouse Ser. 6 9 (2000) 245-303
    • (2000) Ann. Fac. Sci. Toulouse Ser. , vol.6 , Issue.9 , pp. 245-303
    • Massart, P.1
  • 24
    • 0036648803 scopus 로고    scopus 로고
    • Improving the sample complexity using global data
    • Mendelsen S. Improving the sample complexity using global data. IEEE Trans. Inform. Theory 48 (2002) 1977-1991
    • (2002) IEEE Trans. Inform. Theory , vol.48 , pp. 1977-1991
    • Mendelsen, S.1
  • 25
    • 23244434257 scopus 로고    scopus 로고
    • Learning the kernel function via regularization
    • Micchelli C.A., and Pontil M. Learning the kernel function via regularization. J. Mach. Learning Res. 6 (2005) 1099-1125
    • (2005) J. Mach. Learning Res. , vol.6 , pp. 1099-1125
    • Micchelli, C.A.1    Pontil, M.2
  • 26
    • 17444401898 scopus 로고    scopus 로고
    • Regression and classification with regularization
    • Denison D.D., Hansen M.H., Holmes C.C., Mallick B., and Yu B. (Eds), Springer, New York
    • Mukherjee S., Rifkin R., and Poggio T. Regression and classification with regularization. In: Denison D.D., Hansen M.H., Holmes C.C., Mallick B., and Yu B. (Eds). Lecture Notes in Statistics: Nonlinear Estimation and Classification (2002), Springer, New York 107-124
    • (2002) Lecture Notes in Statistics: Nonlinear Estimation and Classification , pp. 107-124
    • Mukherjee, S.1    Rifkin, R.2    Poggio, T.3
  • 29
    • 0037749769 scopus 로고    scopus 로고
    • Estimating the approximation error in learning theory
    • Smale S., and Zhou D.X. Estimating the approximation error in learning theory. Anal. Appl. 1 (2003) 17-41
    • (2003) Anal. Appl. , vol.1 , pp. 17-41
    • Smale, S.1    Zhou, D.X.2
  • 30
    • 3042850649 scopus 로고    scopus 로고
    • Shannon sampling and function reconstruction from point values
    • Smale S., and Zhou D.X. Shannon sampling and function reconstruction from point values. Bull. Amer. Math. Soc. 41 (2004) 279-305
    • (2004) Bull. Amer. Math. Soc. , vol.41 , pp. 279-305
    • Smale, S.1    Zhou, D.X.2
  • 31
    • 33846840102 scopus 로고    scopus 로고
    • S. Smale, D.X. Zhou, Learning theory estimates via integral operators and their applications, Constr. Approx., in press.
  • 32
    • 0010786475 scopus 로고    scopus 로고
    • On the influence of the kernel on the consistency of support vector machines
    • Steinwart I. On the influence of the kernel on the consistency of support vector machines. J. Mach. Learning Res. 2 (2001) 67-93
    • (2001) J. Mach. Learning Res. , vol.2 , pp. 67-93
    • Steinwart, I.1
  • 33
    • 0036749277 scopus 로고    scopus 로고
    • Support vector machines are universally consistent
    • Steinwart I. Support vector machines are universally consistent. J. Complexity 18 (2002) 768-791
    • (2002) J. Complexity , vol.18 , pp. 768-791
    • Steinwart, I.1
  • 34
    • 26944444284 scopus 로고    scopus 로고
    • I. Steinwart, C. Scovel, Fast rates for support vector machines, in: Proceedings of the Conference on Learning Theory (COLT-2005), 2005, pp. 279-294.
  • 35
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens J.A.K., and Vandewalle J. Least squares support vector machine classifiers. Neural Process. Lett. 9 (1999) 293-300
    • (1999) Neural Process. Lett. , vol.9 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 36
    • 3142725508 scopus 로고    scopus 로고
    • Optimal aggregation of classifiers in statistical learning
    • Tsybakov A.B. Optimal aggregation of classifiers in statistical learning. Ann. Statist. 32 (2004) 135-166
    • (2004) Ann. Statist. , vol.32 , pp. 135-166
    • Tsybakov, A.B.1
  • 40
    • 17444402055 scopus 로고    scopus 로고
    • SVM soft margin classifiers: linear programming versus quadratic programming
    • Wu Q., and Zhou D.X. SVM soft margin classifiers: linear programming versus quadratic programming. Neural Comput. 17 (2005) 1160-1187
    • (2005) Neural Comput. , vol.17 , pp. 1160-1187
    • Wu, Q.1    Zhou, D.X.2
  • 41
    • 33748649672 scopus 로고    scopus 로고
    • Analysis of support vector machine classification
    • Wu Q., and Zhou D.X. Analysis of support vector machine classification. J. Comput. Anal. Appl. 8 (2006) 99-119
    • (2006) J. Comput. Anal. Appl. , vol.8 , pp. 99-119
    • Wu, Q.1    Zhou, D.X.2
  • 42
    • 33846816024 scopus 로고    scopus 로고
    • Y. Ying, D.X. Zhou, Learnability of Gaussians with flexible variances, preprint, 2004.
  • 43
    • 0036158505 scopus 로고    scopus 로고
    • On the dual formulation of regularized linear systems with convex risks
    • Zhang T. On the dual formulation of regularized linear systems with convex risks. Mach. Learning 46 (2002) 91-129
    • (2002) Mach. Learning , vol.46 , pp. 91-129
    • Zhang, T.1
  • 44
    • 4644257995 scopus 로고    scopus 로고
    • Statistical behavior and consistency of classification methods based on convex risk minimization
    • Zhang T. Statistical behavior and consistency of classification methods based on convex risk minimization. Ann. Statist. 32 (2004) 56-85
    • (2004) Ann. Statist. , vol.32 , pp. 56-85
    • Zhang, T.1
  • 45
    • 0036748375 scopus 로고    scopus 로고
    • The covering number in learning theory
    • Zhou D.X. The covering number in learning theory. J. Complexity 18 (2002) 739-767
    • (2002) J. Complexity , vol.18 , pp. 739-767
    • Zhou, D.X.1
  • 46
    • 0038105204 scopus 로고    scopus 로고
    • Capacity of reproducing kernel spaces in learning theory
    • Zhou D.X. Capacity of reproducing kernel spaces in learning theory. IEEE Trans. Inform. Theory 49 (2003) 1743-1752
    • (2003) IEEE Trans. Inform. Theory , vol.49 , pp. 1743-1752
    • Zhou, D.X.1
  • 47
    • 33846822546 scopus 로고    scopus 로고
    • D.X. Zhou, Density problem and approximation error in learning theory, preprint, 2003.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.