-
1
-
-
5844297152
-
Theory of reproducing kernels
-
Aronszajn N. Theory of reproducing kernels. Trans. Amer. Math. Soc. 68 (1950) 337-404
-
(1950)
Trans. Amer. Math. Soc.
, vol.68
, pp. 337-404
-
-
Aronszajn, N.1
-
3
-
-
33645505792
-
Convexity, classification, and risk bounds
-
Bartlett P.L., Jordan M.I., and McAuliffe J.D. Convexity, classification, and risk bounds. J. Amer. Statist. Assoc. 101 (2006) 138-156
-
(2006)
J. Amer. Statist. Assoc.
, vol.101
, pp. 138-156
-
-
Bartlett, P.L.1
Jordan, M.I.2
McAuliffe, J.D.3
-
4
-
-
33846847155
-
-
B. Blanchard, O. Bousquet, P. Massart, Statistical performance of support vector machines, preprint, 2003.
-
-
-
-
5
-
-
3042675892
-
On the rate of convergence of regularized boosting classifiers
-
Blanchard B., Lugosi G., and Vayatis N. On the rate of convergence of regularized boosting classifiers. J. Mach. Learning Res. 4 (2003) 861-894
-
(2003)
J. Mach. Learning Res.
, vol.4
, pp. 861-894
-
-
Blanchard, B.1
Lugosi, G.2
Vayatis, N.3
-
6
-
-
84924053271
-
Theory of classification: a survey of some recent advances
-
Boucheron S., Bousquet O., and Lugosi G. Theory of classification: a survey of some recent advances. ESAIM: Probab. Statist. 9 (2005) 323-375
-
(2005)
ESAIM: Probab. Statist.
, vol.9
, pp. 323-375
-
-
Boucheron, S.1
Bousquet, O.2
Lugosi, G.3
-
9
-
-
84879394399
-
Support vector machine soft margin classifiers: error analysis
-
Chen D.R., Wu Q., Ying Y., and Zhou D.X. Support vector machine soft margin classifiers: error analysis. J. Mach. Learning Res. 5 (2004) 1143-1175
-
(2004)
J. Mach. Learning Res.
, vol.5
, pp. 1143-1175
-
-
Chen, D.R.1
Wu, Q.2
Ying, Y.3
Zhou, D.X.4
-
10
-
-
34249753618
-
Support-vector networks
-
Cortes C., and Vapnik V. Support-vector networks. Mach. Learning 20 (1995) 273-297
-
(1995)
Mach. Learning
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
12
-
-
0036071370
-
On the mathematical foundations of learning
-
Cucker F., and Smale S. On the mathematical foundations of learning. Bull. Amer. Math. Soc. 39 (2001) 1-49
-
(2001)
Bull. Amer. Math. Soc.
, vol.39
, pp. 1-49
-
-
Cucker, F.1
Smale, S.2
-
13
-
-
0036436325
-
Best choices for regularization parameters in learning theory: on the bias-variance problem
-
Cucker F., and Smale S. Best choices for regularization parameters in learning theory: on the bias-variance problem. Found. Comput. Math. 2 (2002) 413-428
-
(2002)
Found. Comput. Math.
, vol.2
, pp. 413-428
-
-
Cucker, F.1
Smale, S.2
-
14
-
-
33846797425
-
-
F. Cucker, D.X. Zhou, Learning Theory: An Approximation Theory Viewpoint, Cambridge University Press, Cambridge, MA, in press.
-
-
-
-
16
-
-
12244250351
-
-
T. Evgeniou, M. Pontil, Regularized multi-task learning, Proceedings of the 17th SIGKDD Conference on Knowledge Discovery and Data Mining, 2004.
-
-
-
-
17
-
-
0034419669
-
Regularization networks and support vector machines
-
Evgeniou T., Pontil M., and Poggio T. Regularization networks and support vector machines. Adv. Comput. Math. 13 (2000) 1-50
-
(2000)
Adv. Comput. Math.
, vol.13
, pp. 1-50
-
-
Evgeniou, T.1
Pontil, M.2
Poggio, T.3
-
18
-
-
8844278523
-
Learning the kernel matrix with semidefinite programming
-
Lanckriet G.R.G., Cristianini N., Bartlett P., El Ghaoui L., and Jordan M.I. Learning the kernel matrix with semidefinite programming. J. Mach. Learning Res. 5 (2004) 27-72
-
(2004)
J. Mach. Learning Res.
, vol.5
, pp. 27-72
-
-
Lanckriet, G.R.G.1
Cristianini, N.2
Bartlett, P.3
El Ghaoui, L.4
Jordan, M.I.5
-
19
-
-
0001556720
-
Efficient agnostic learning of neural networks with bounded fan-in
-
Lee W.S., Bartlett P.L., and Williamson R.C. Efficient agnostic learning of neural networks with bounded fan-in. IEEE Trans. Inform. Theory 42 (1996) 2118-2132
-
(1996)
IEEE Trans. Inform. Theory
, vol.42
, pp. 2118-2132
-
-
Lee, W.S.1
Bartlett, P.L.2
Williamson, R.C.3
-
20
-
-
0001663033
-
Mixture density estimation
-
Solla S.A., Leen T.K., and Muller K.R. (Eds), Morgan Kaufmann Publishers, San Mateo
-
Li J., and Barron A. Mixture density estimation. In: Solla S.A., Leen T.K., and Muller K.R. (Eds). Advances in Neural Information Processing Systems vol. 12 (1999), Morgan Kaufmann Publishers, San Mateo
-
(1999)
Advances in Neural Information Processing Systems
, vol.12
-
-
Li, J.1
Barron, A.2
-
21
-
-
0036258405
-
Support vector machines and the Bayes rule in classification
-
Lin Y. Support vector machines and the Bayes rule in classification. Data Mining Knowledge Discovery 6 (2002) 259-275
-
(2002)
Data Mining Knowledge Discovery
, vol.6
, pp. 259-275
-
-
Lin, Y.1
-
22
-
-
9444269961
-
On the Bayes-risk consistency of regularized boosting methods
-
Lugosi G., and Vayatis N. On the Bayes-risk consistency of regularized boosting methods. Ann. Statist. 32 (2004) 30-55
-
(2004)
Ann. Statist.
, vol.32
, pp. 30-55
-
-
Lugosi, G.1
Vayatis, N.2
-
23
-
-
0000595627
-
Some applications of concentration inequalities to statistics
-
Massart P. Some applications of concentration inequalities to statistics. Ann. Fac. Sci. Toulouse Ser. 6 9 (2000) 245-303
-
(2000)
Ann. Fac. Sci. Toulouse Ser.
, vol.6
, Issue.9
, pp. 245-303
-
-
Massart, P.1
-
24
-
-
0036648803
-
Improving the sample complexity using global data
-
Mendelsen S. Improving the sample complexity using global data. IEEE Trans. Inform. Theory 48 (2002) 1977-1991
-
(2002)
IEEE Trans. Inform. Theory
, vol.48
, pp. 1977-1991
-
-
Mendelsen, S.1
-
25
-
-
23244434257
-
Learning the kernel function via regularization
-
Micchelli C.A., and Pontil M. Learning the kernel function via regularization. J. Mach. Learning Res. 6 (2005) 1099-1125
-
(2005)
J. Mach. Learning Res.
, vol.6
, pp. 1099-1125
-
-
Micchelli, C.A.1
Pontil, M.2
-
26
-
-
17444401898
-
Regression and classification with regularization
-
Denison D.D., Hansen M.H., Holmes C.C., Mallick B., and Yu B. (Eds), Springer, New York
-
Mukherjee S., Rifkin R., and Poggio T. Regression and classification with regularization. In: Denison D.D., Hansen M.H., Holmes C.C., Mallick B., and Yu B. (Eds). Lecture Notes in Statistics: Nonlinear Estimation and Classification (2002), Springer, New York 107-124
-
(2002)
Lecture Notes in Statistics: Nonlinear Estimation and Classification
, pp. 107-124
-
-
Mukherjee, S.1
Rifkin, R.2
Poggio, T.3
-
29
-
-
0037749769
-
Estimating the approximation error in learning theory
-
Smale S., and Zhou D.X. Estimating the approximation error in learning theory. Anal. Appl. 1 (2003) 17-41
-
(2003)
Anal. Appl.
, vol.1
, pp. 17-41
-
-
Smale, S.1
Zhou, D.X.2
-
30
-
-
3042850649
-
Shannon sampling and function reconstruction from point values
-
Smale S., and Zhou D.X. Shannon sampling and function reconstruction from point values. Bull. Amer. Math. Soc. 41 (2004) 279-305
-
(2004)
Bull. Amer. Math. Soc.
, vol.41
, pp. 279-305
-
-
Smale, S.1
Zhou, D.X.2
-
31
-
-
33846840102
-
-
S. Smale, D.X. Zhou, Learning theory estimates via integral operators and their applications, Constr. Approx., in press.
-
-
-
-
32
-
-
0010786475
-
On the influence of the kernel on the consistency of support vector machines
-
Steinwart I. On the influence of the kernel on the consistency of support vector machines. J. Mach. Learning Res. 2 (2001) 67-93
-
(2001)
J. Mach. Learning Res.
, vol.2
, pp. 67-93
-
-
Steinwart, I.1
-
33
-
-
0036749277
-
Support vector machines are universally consistent
-
Steinwart I. Support vector machines are universally consistent. J. Complexity 18 (2002) 768-791
-
(2002)
J. Complexity
, vol.18
, pp. 768-791
-
-
Steinwart, I.1
-
34
-
-
26944444284
-
-
I. Steinwart, C. Scovel, Fast rates for support vector machines, in: Proceedings of the Conference on Learning Theory (COLT-2005), 2005, pp. 279-294.
-
-
-
-
35
-
-
0032638628
-
Least squares support vector machine classifiers
-
Suykens J.A.K., and Vandewalle J. Least squares support vector machine classifiers. Neural Process. Lett. 9 (1999) 293-300
-
(1999)
Neural Process. Lett.
, vol.9
, pp. 293-300
-
-
Suykens, J.A.K.1
Vandewalle, J.2
-
36
-
-
3142725508
-
Optimal aggregation of classifiers in statistical learning
-
Tsybakov A.B. Optimal aggregation of classifiers in statistical learning. Ann. Statist. 32 (2004) 135-166
-
(2004)
Ann. Statist.
, vol.32
, pp. 135-166
-
-
Tsybakov, A.B.1
-
40
-
-
17444402055
-
SVM soft margin classifiers: linear programming versus quadratic programming
-
Wu Q., and Zhou D.X. SVM soft margin classifiers: linear programming versus quadratic programming. Neural Comput. 17 (2005) 1160-1187
-
(2005)
Neural Comput.
, vol.17
, pp. 1160-1187
-
-
Wu, Q.1
Zhou, D.X.2
-
41
-
-
33748649672
-
Analysis of support vector machine classification
-
Wu Q., and Zhou D.X. Analysis of support vector machine classification. J. Comput. Anal. Appl. 8 (2006) 99-119
-
(2006)
J. Comput. Anal. Appl.
, vol.8
, pp. 99-119
-
-
Wu, Q.1
Zhou, D.X.2
-
42
-
-
33846816024
-
-
Y. Ying, D.X. Zhou, Learnability of Gaussians with flexible variances, preprint, 2004.
-
-
-
-
43
-
-
0036158505
-
On the dual formulation of regularized linear systems with convex risks
-
Zhang T. On the dual formulation of regularized linear systems with convex risks. Mach. Learning 46 (2002) 91-129
-
(2002)
Mach. Learning
, vol.46
, pp. 91-129
-
-
Zhang, T.1
-
44
-
-
4644257995
-
Statistical behavior and consistency of classification methods based on convex risk minimization
-
Zhang T. Statistical behavior and consistency of classification methods based on convex risk minimization. Ann. Statist. 32 (2004) 56-85
-
(2004)
Ann. Statist.
, vol.32
, pp. 56-85
-
-
Zhang, T.1
-
45
-
-
0036748375
-
The covering number in learning theory
-
Zhou D.X. The covering number in learning theory. J. Complexity 18 (2002) 739-767
-
(2002)
J. Complexity
, vol.18
, pp. 739-767
-
-
Zhou, D.X.1
-
46
-
-
0038105204
-
Capacity of reproducing kernel spaces in learning theory
-
Zhou D.X. Capacity of reproducing kernel spaces in learning theory. IEEE Trans. Inform. Theory 49 (2003) 1743-1752
-
(2003)
IEEE Trans. Inform. Theory
, vol.49
, pp. 1743-1752
-
-
Zhou, D.X.1
-
47
-
-
33846822546
-
-
D.X. Zhou, Density problem and approximation error in learning theory, preprint, 2003.
-
-
-
|