메뉴 건너뛰기




Volumn 5, Issue , 2004, Pages 1143-1175

Support vector machine soft margin classifiers: Error analysis

Author keywords

Approximation error; Misclassification error; q norm soft margin classifier; Regularization error; Support vector machine classification

Indexed keywords

ERROR ANALYSIS;

EID: 84879394399     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (258)

References (36)
  • 1
    • 5844297152 scopus 로고
    • Theory of reproducing kernels
    • 1950
    • N. Aronszajn. Theory of reproducing kernels. Trans. Amer. Math. Soc. 68 (1950), 337-404, 1950.
    • (1950) Trans. Amer. Math. Soc. , vol.68 , pp. 337-404
    • Aronszajn, N.1
  • 2
    • 0001347323 scopus 로고
    • Complexity regularization with applications to artificial neural networks
    • G. Roussa, editor Kluwer, Dortrecht
    • A. R. Barron. Complexity regularization with applications to artificial neural networks. G. Roussa, editor, in Nonparametric Functional Estimation, Kluwer, Dortrecht, pages 561-576, 1990.
    • (1990) Nonparametric Functional Estimation , pp. 561-576
    • Barron, A.R.1
  • 3
    • 0032028728 scopus 로고    scopus 로고
    • The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network
    • P. L. Bartlett. The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network. IEEE Transactions on Information Theory, 44: 525-536, 1998.
    • (1998) IEEE Transactions on Information Theory , vol.44 , pp. 525-536
    • Bartlett, P.L.1
  • 4
    • 84923817264 scopus 로고    scopus 로고
    • Local Rademacher complexities
    • to appear. P. L. Bartlett, M. I. Jordan, and J. D.McAuliffe. Convexity, classification, and risk bounds. Preprint, 2003
    • P. L. Bartlett, O. Bousquet, and S. Mendelson. Local Rademacher complexities. Annals Statis., 2004, to appear. P. L. Bartlett, M. I. Jordan, and J. D.McAuliffe. Convexity, classification, and risk bounds. Preprint, 2003.
    • (2004) Annals Statis.
    • Bartlett, P.L.1    Bousquet, O.2    Mendelson, S.3
  • 7
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20: 273-297, 1995.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 9
    • 0036071370 scopus 로고    scopus 로고
    • On the mathematical foundations of learning
    • F. Cucker and S. Smale. On the mathematical foundations of learning. Bull. Amer. Math. Soc., 39: 1-49, 2001.
    • (2001) Bull. Amer. Math. Soc. , vol.39 , pp. 1-49
    • Cucker, F.1    Smale, S.2
  • 12
    • 0034419669 scopus 로고    scopus 로고
    • Regularization networks and support vector machines
    • T. Evgeniou, M. Pontil, and T. Poggio. Regularization networks and support vector machines. Adv. Comput. Math., 13: 1-50, 2000.
    • (2000) Adv. Comput. Math. , vol.13 , pp. 1-50
    • Evgeniou, T.1    Pontil, M.2    Poggio, T.3
  • 14
    • 0036258405 scopus 로고    scopus 로고
    • Support vector machines and the Bayes rule in classification
    • Y. Lin. Support vector machines and the Bayes rule in classification. Data Mining and Knowledge Discovery 6: 259-275, 2002.
    • (2002) Data Mining and Knowledge Discovery , vol.6 , pp. 259-275
    • Lin, Y.1
  • 15
    • 0036648803 scopus 로고    scopus 로고
    • Improving the sample complexity using global data
    • S. Mendelson. Improving the sample complexity using global data. IEEE Transactions on Information Theory 48: 1977-1991, 2002.
    • (2002) IEEE Transactions on Information Theory , vol.48 , pp. 1977-1991
    • Mendelson, S.1
  • 16
    • 17444401898 scopus 로고    scopus 로고
    • Regression and classification with regularization
    • D. D. Denison, M. H. Hansen, C. C. Holmes, B. Mallick, and B. Yu, eds Springer-Verlag, New York
    • S. Mukherjee, R. Rifkin, and T. Poggio. Regression and classification with regularization. In D. D. Denison, M. H. Hansen, C. C. Holmes, B. Mallick, and B. Yu, eds., Lecture Notes in Statistics: Nonlinear Estimation and Classification, Springer-Verlag, New York, pages 107-124, 2002.
    • (2002) Lecture Notes in Statistics: Nonlinear Estimation and Classification , pp. 107-124
    • Mukherjee, S.1    Rifkin, R.2    Poggio, T.3
  • 17
    • 0000482137 scopus 로고    scopus 로고
    • On the relationship between generalization error, hypothesis complexity, and sample complexity for radial basis functions
    • P. Niyogi and F. Girosi. On the relationship between generalization error, hypothesis complexity, and sample complexity for radial basis functions. Neural Comp., 8: 819-842, 1996.
    • (1996) Neural Comp. , vol.8 , pp. 819-842
    • Niyogi, P.1    Girosi, F.2
  • 18
    • 0141726806 scopus 로고    scopus 로고
    • A note on different covering numbers in learning theory
    • M. Pontil. A note on different covering numbers in learning theory. J. Complexity 19: 665-671, 2003.
    • (2003) J. Complexity , vol.19 , pp. 665-671
    • Pontil, M.1
  • 21
    • 0037749769 scopus 로고    scopus 로고
    • Estimating the approximation error in learning theory
    • S. Smale and D. X. Zhou. Estimating the approximation error in learning theory. Anal. Appl., 1: 17-41, 2003.
    • (2003) Anal. Appl. , vol.1 , pp. 17-41
    • Smale, S.1    Zhou, D.X.2
  • 22
    • 3042850649 scopus 로고    scopus 로고
    • Shannon sampling and function reconstruction from point values
    • S. Smale and D. X. Zhou. Shannon sampling and function reconstruction from point values. Bull. Amer. Math. Soc. , 41: 279-305, 2004.
    • (2004) Bull. Amer. Math. Soc. , vol.41 , pp. 279-305
    • Smale, S.1    Zhou, D.X.2
  • 23
    • 0010786475 scopus 로고    scopus 로고
    • On the influence of the kernel on the consistency of support vector machines
    • I. Steinwart. On the influence of the kernel on the consistency of support vector machines. Journal of Machine Learning Research, 2: 67-93, 2001.
    • (2001) Journal of Machine Learning Research , vol.2 , pp. 67-93
    • Steinwart, I.1
  • 24
    • 0036749277 scopus 로고    scopus 로고
    • Support vector machines are universally consistent
    • I. Steinwart. Support vector machines are universally consistent. J. Complexity, 18: 768-791, 2002.
    • (2002) J. Complexity , vol.18 , pp. 768-791
    • Steinwart, I.1
  • 30
    • 0001873883 scopus 로고    scopus 로고
    • Support vector machines, reproducing kernel Hilbert spaces and the Randomized GACV
    • Schölkopf, Burges and Smola, eds MIT Press
    • G.Wahba. Support vector machines, reproducing kernel Hilbert spaces and the Randomized GACV. In Schölkopf, Burges and Smola, eds., Advances in Kernel Methods-Support Vector Learning, MIT Press, pages 69-88, 1999.
    • (1999) Advances in Kernel Methods-Support Vector Learning , pp. 69-88
    • Wahba, G.1
  • 31
    • 0035441827 scopus 로고    scopus 로고
    • Generalization performance of regularization networks and support vector machines via entropy numbers of compact operators
    • R. C. Williamson, A. J. Smola, and B. Schölkopf. Generalization performance of regularization networks and support vector machines via entropy numbers of compact operators. IEEE Transactions on Information Theory 47: 2516-2532, 2001.
    • (2001) IEEE Transactions on Information Theory , vol.47 , pp. 2516-2532
    • Williamson, R.C.1    Smola, A.J.2    Schölkopf, B.3
  • 33
    • 4644257995 scopus 로고    scopus 로고
    • Statistical behavior and consistency of classification methods based on convex risk minimization
    • T. Zhang. Statistical behavior and consistency of classification methods based on convex risk minimization. Annals Statis., 32: 56-85, 2004.
    • (2004) Annals Statis. , vol.32 , pp. 56-85
    • Zhang, T.1
  • 34
    • 0036748375 scopus 로고    scopus 로고
    • The covering number in learning theory
    • D. X. Zhou. The covering number in learning theory. J. Complexity, 18: 739-767, 2002.
    • (2002) J. Complexity , vol.18 , pp. 739-767
    • Zhou, D.X.1
  • 35
    • 0038105204 scopus 로고    scopus 로고
    • Capacity of reproducing kernel spaces in learning theory
    • D. X. Zhou. Capacity of reproducing kernel spaces in learning theory. IEEE Transactions on Information Theory, 49: 1743-1752, 2003a.
    • (2003) IEEE Transactions on Information Theory , vol.49 , pp. 1743-1752
    • Zhou, D.X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.