-
1
-
-
5844297152
-
Theory of reproducing kernels
-
1950
-
N. Aronszajn. Theory of reproducing kernels. Trans. Amer. Math. Soc. 68 (1950), 337-404, 1950.
-
(1950)
Trans. Amer. Math. Soc.
, vol.68
, pp. 337-404
-
-
Aronszajn, N.1
-
2
-
-
0001347323
-
Complexity regularization with applications to artificial neural networks
-
G. Roussa, editor Kluwer, Dortrecht
-
A. R. Barron. Complexity regularization with applications to artificial neural networks. G. Roussa, editor, in Nonparametric Functional Estimation, Kluwer, Dortrecht, pages 561-576, 1990.
-
(1990)
Nonparametric Functional Estimation
, pp. 561-576
-
-
Barron, A.R.1
-
3
-
-
0032028728
-
The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network
-
P. L. Bartlett. The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network. IEEE Transactions on Information Theory, 44: 525-536, 1998.
-
(1998)
IEEE Transactions on Information Theory
, vol.44
, pp. 525-536
-
-
Bartlett, P.L.1
-
4
-
-
84923817264
-
Local Rademacher complexities
-
to appear. P. L. Bartlett, M. I. Jordan, and J. D.McAuliffe. Convexity, classification, and risk bounds. Preprint, 2003
-
P. L. Bartlett, O. Bousquet, and S. Mendelson. Local Rademacher complexities. Annals Statis., 2004, to appear. P. L. Bartlett, M. I. Jordan, and J. D.McAuliffe. Convexity, classification, and risk bounds. Preprint, 2003.
-
(2004)
Annals Statis.
-
-
Bartlett, P.L.1
Bousquet, O.2
Mendelson, S.3
-
5
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
Pittsburgh, ACM
-
B. E. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal margin classifiers. In Proceedings of the Fifth Annual Workshop of Computational Learning Theory, 5, Pittsburgh, ACM, pages 144-152, 1992.
-
(1992)
Proceedings of the Fifth Annual Workshop of Computational Learning Theory
, vol.5
, pp. 144-152
-
-
Boser, B.E.1
Guyon, I.2
Vapnik, V.3
-
7
-
-
34249753618
-
Support-vector networks
-
C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20: 273-297, 1995.
-
(1995)
Machine Learning
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
9
-
-
0036071370
-
On the mathematical foundations of learning
-
F. Cucker and S. Smale. On the mathematical foundations of learning. Bull. Amer. Math. Soc., 39: 1-49, 2001.
-
(2001)
Bull. Amer. Math. Soc.
, vol.39
, pp. 1-49
-
-
Cucker, F.1
Smale, S.2
-
12
-
-
0034419669
-
Regularization networks and support vector machines
-
T. Evgeniou, M. Pontil, and T. Poggio. Regularization networks and support vector machines. Adv. Comput. Math., 13: 1-50, 2000.
-
(2000)
Adv. Comput. Math.
, vol.13
, pp. 1-50
-
-
Evgeniou, T.1
Pontil, M.2
Poggio, T.3
-
14
-
-
0036258405
-
Support vector machines and the Bayes rule in classification
-
Y. Lin. Support vector machines and the Bayes rule in classification. Data Mining and Knowledge Discovery 6: 259-275, 2002.
-
(2002)
Data Mining and Knowledge Discovery
, vol.6
, pp. 259-275
-
-
Lin, Y.1
-
15
-
-
0036648803
-
Improving the sample complexity using global data
-
S. Mendelson. Improving the sample complexity using global data. IEEE Transactions on Information Theory 48: 1977-1991, 2002.
-
(2002)
IEEE Transactions on Information Theory
, vol.48
, pp. 1977-1991
-
-
Mendelson, S.1
-
16
-
-
17444401898
-
Regression and classification with regularization
-
D. D. Denison, M. H. Hansen, C. C. Holmes, B. Mallick, and B. Yu, eds Springer-Verlag, New York
-
S. Mukherjee, R. Rifkin, and T. Poggio. Regression and classification with regularization. In D. D. Denison, M. H. Hansen, C. C. Holmes, B. Mallick, and B. Yu, eds., Lecture Notes in Statistics: Nonlinear Estimation and Classification, Springer-Verlag, New York, pages 107-124, 2002.
-
(2002)
Lecture Notes in Statistics: Nonlinear Estimation and Classification
, pp. 107-124
-
-
Mukherjee, S.1
Rifkin, R.2
Poggio, T.3
-
17
-
-
0000482137
-
On the relationship between generalization error, hypothesis complexity, and sample complexity for radial basis functions
-
P. Niyogi and F. Girosi. On the relationship between generalization error, hypothesis complexity, and sample complexity for radial basis functions. Neural Comp., 8: 819-842, 1996.
-
(1996)
Neural Comp.
, vol.8
, pp. 819-842
-
-
Niyogi, P.1
Girosi, F.2
-
18
-
-
0141726806
-
A note on different covering numbers in learning theory
-
M. Pontil. A note on different covering numbers in learning theory. J. Complexity 19: 665-671, 2003.
-
(2003)
J. Complexity
, vol.19
, pp. 665-671
-
-
Pontil, M.1
-
20
-
-
0032166068
-
Structural risk minimization over data-dependent hierarchies
-
J. Shawe-Taylor, P. L. Bartlett, R. C. Williamson, and M. Anthony. Structural risk minimization over data-dependent hierarchies. IEEE Transations on Information Theory 44: 1926-1940, 1998.
-
(1998)
IEEE Transations on Information Theory
, vol.44
, pp. 1926-1940
-
-
Shawe-Taylor, J.1
Bartlett, P.L.2
Williamson, R.C.3
Anthony, M.4
-
21
-
-
0037749769
-
Estimating the approximation error in learning theory
-
S. Smale and D. X. Zhou. Estimating the approximation error in learning theory. Anal. Appl., 1: 17-41, 2003.
-
(2003)
Anal. Appl.
, vol.1
, pp. 17-41
-
-
Smale, S.1
Zhou, D.X.2
-
22
-
-
3042850649
-
Shannon sampling and function reconstruction from point values
-
S. Smale and D. X. Zhou. Shannon sampling and function reconstruction from point values. Bull. Amer. Math. Soc. , 41: 279-305, 2004.
-
(2004)
Bull. Amer. Math. Soc.
, vol.41
, pp. 279-305
-
-
Smale, S.1
Zhou, D.X.2
-
23
-
-
0010786475
-
On the influence of the kernel on the consistency of support vector machines
-
I. Steinwart. On the influence of the kernel on the consistency of support vector machines. Journal of Machine Learning Research, 2: 67-93, 2001.
-
(2001)
Journal of Machine Learning Research
, vol.2
, pp. 67-93
-
-
Steinwart, I.1
-
24
-
-
0036749277
-
Support vector machines are universally consistent
-
I. Steinwart. Support vector machines are universally consistent. J. Complexity, 18: 768-791, 2002.
-
(2002)
J. Complexity
, vol.18
, pp. 768-791
-
-
Steinwart, I.1
-
30
-
-
0001873883
-
Support vector machines, reproducing kernel Hilbert spaces and the Randomized GACV
-
Schölkopf, Burges and Smola, eds MIT Press
-
G.Wahba. Support vector machines, reproducing kernel Hilbert spaces and the Randomized GACV. In Schölkopf, Burges and Smola, eds., Advances in Kernel Methods-Support Vector Learning, MIT Press, pages 69-88, 1999.
-
(1999)
Advances in Kernel Methods-Support Vector Learning
, pp. 69-88
-
-
Wahba, G.1
-
31
-
-
0035441827
-
Generalization performance of regularization networks and support vector machines via entropy numbers of compact operators
-
R. C. Williamson, A. J. Smola, and B. Schölkopf. Generalization performance of regularization networks and support vector machines via entropy numbers of compact operators. IEEE Transactions on Information Theory 47: 2516-2532, 2001.
-
(2001)
IEEE Transactions on Information Theory
, vol.47
, pp. 2516-2532
-
-
Williamson, R.C.1
Smola, A.J.2
Schölkopf, B.3
-
33
-
-
4644257995
-
Statistical behavior and consistency of classification methods based on convex risk minimization
-
T. Zhang. Statistical behavior and consistency of classification methods based on convex risk minimization. Annals Statis., 32: 56-85, 2004.
-
(2004)
Annals Statis.
, vol.32
, pp. 56-85
-
-
Zhang, T.1
-
34
-
-
0036748375
-
The covering number in learning theory
-
D. X. Zhou. The covering number in learning theory. J. Complexity, 18: 739-767, 2002.
-
(2002)
J. Complexity
, vol.18
, pp. 739-767
-
-
Zhou, D.X.1
-
35
-
-
0038105204
-
Capacity of reproducing kernel spaces in learning theory
-
D. X. Zhou. Capacity of reproducing kernel spaces in learning theory. IEEE Transactions on Information Theory, 49: 1743-1752, 2003a.
-
(2003)
IEEE Transactions on Information Theory
, vol.49
, pp. 1743-1752
-
-
Zhou, D.X.1
|