-
1
-
-
33749259027
-
Learning convex combinations of continuously parameterized basic kernels
-
Bertinoro, Italy, June
-
A. Argyriou, C. A. Micchelli and M. Pontil. Learning convex combinations of continuously parameterized basic kernels. Proc. 18-th Annual Conference on Learning Theory (COLT'05), Bertinoro, Italy, June, 2005.
-
(2005)
Proc. 18-th Annual Conference on Learning Theory (COLT'05)
-
-
Argyriou, A.1
Micchelli, C.A.2
Pontil, M.3
-
2
-
-
5844297152
-
Theory of reproducing kernels
-
N. Aronszajn. Theory of reproducing kernels. Trans. Amer. Math. Soc., 686: 337-404, 1950.
-
(1950)
Trans. Amer. Math. Soc.
, vol.686
, pp. 337-404
-
-
Aronszajn, N.1
-
3
-
-
0037611196
-
Mathematical methods of game and economic theory
-
North-Holland
-
J. P. Aubin. Mathematical methods of game and economic theory. Studies in Mathematics and its applications, Vol. 7, North-Holland, 1982.
-
(1982)
Studies in Mathematics and Its Applications
, vol.7
-
-
Aubin, J.P.1
-
6
-
-
0003357801
-
Interpolation of operators
-
Academic Press, Boston
-
C. Bennett and R. Sharpley. Interpolation of Operators. Vol. 129, Pure and Appl. Math, Academic Press, Boston, 1988.
-
(1988)
Pure and Appl. Math
, vol.129
-
-
Bennett, C.1
Sharpley, R.2
-
10
-
-
0036161011
-
Choosing multiple parameters for support vector machines
-
O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple parameters for support vector machines. Machine Learning, 46(1): 131-159, 2002.
-
(2002)
Machine Learning
, vol.46
, Issue.1
, pp. 131-159
-
-
Chapelle, O.1
Vapnik, V.2
Bousquet, O.3
Mukherjee, S.4
-
11
-
-
0036071370
-
On the mathematical foundations of learning
-
F. Cucker and S. Smale. On the mathematical foundations of learning. Bull. Amer. Math. Soc., 39 (1): 1-49, 2002.
-
(2002)
Bull. Amer. Math. Soc.
, vol.39
, Issue.1
, pp. 1-49
-
-
Cucker, F.1
Smale, S.2
-
12
-
-
84898936871
-
On kernel-target alignment
-
T. G. Dietterich, S. Becker, Z. Ghahramani (eds.)
-
N. Cristianini, J. Shawe-Taylor, A. Elisseeff, J. Kandola. On kernel-target alignment Advances in Neural Information Processing Systems, 14, T. G. Dietterich, S. Becker, Z. Ghahramani (eds.), 2002.
-
(2002)
Advances in Neural Information Processing Systems
, pp. 14
-
-
Cristianini, N.1
Shawe-Taylor, J.2
Elisseeff, A.3
Kandola, J.4
-
13
-
-
23244462944
-
Some properties of regularized kernel methods
-
E. De Vito, L. Rosasco, A. Caponnetto, M. Piana, A. Verri. Some properties of regularized kernel methods. J. of Machine Learning Research, 5(Oct): 1363-1390, 2004.
-
(2004)
J. of Machine Learning Research
, vol.5
, Issue.OCT
, pp. 1363-1390
-
-
De Vito, E.1
Rosasco, L.2
Caponnetto, A.3
Piana, M.4
Verri, A.5
-
15
-
-
0000249788
-
An equivalence between sparse approximation and support vector machines
-
F. Girosi. An Equivalence Between Sparse Approximation and Support Vector Machines. Neural Computation, 10 (6): 1455-1480, 1998.
-
(1998)
Neural Computation
, vol.10
, Issue.6
, pp. 1455-1480
-
-
Girosi, F.1
-
16
-
-
84886994574
-
Kernel matrix completion by semi-definite programming
-
T. Graepel. Kernel matrix completion by semi-definite programming. Proc. of ICANN, pages 694-699, 2002.
-
(2002)
Proc. of ICANN
, pp. 694-699
-
-
Graepel, T.1
-
17
-
-
0003684449
-
-
Springer Series in Statistics
-
T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Series in Statistics, 2002.
-
(2002)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
18
-
-
84925605946
-
The entire regularization path for support vector machines
-
T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu. The entire regularization path for support vector machines, J. of Machine Learning Research, 5, 1391-1415, 2004.
-
(2004)
J. of Machine Learning Research
, vol.5
, pp. 1391-1415
-
-
Hastie, T.1
Rosset, S.2
Tibshirani, R.3
Zhu, J.4
-
22
-
-
0015000439
-
Some results on Tchebycheffian spline functions
-
G. Kimeldorf and G. Wahba. Some results on Tchebycheffian spline functions. J. Math. Anal. Appl., 33: 82-95, 1971.
-
(1971)
J. Math. Anal. Appl.
, vol.33
, pp. 82-95
-
-
Kimeldorf, G.1
Wahba, G.2
-
23
-
-
1942515510
-
Learning the kernel matrix with semi-definite programming
-
C. Sammut and A.Hoffmann (Eds.) Sydney, Australia, Morgann Kaufmann
-
G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui, M. I. Jordan. Learning the kernel matrix with semi-definite programming. In C. Sammut and A.Hoffmann (Eds.), Proc. of the 19-th Int. Conf. on Machine Learning, Sydney, Australia, Morgann Kaufmann, 2002.
-
(2002)
Proc. of the 19-th Int. Conf. on Machine Learning
-
-
Lanckriet, G.R.G.1
Cristianini, N.2
Bartlett, P.3
El Ghaoui, L.4
Jordan, M.I.5
-
24
-
-
8844278523
-
Learning the kernel matrix with semi-definite programming
-
G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui, M. I. Jordan. Learning the kernel matrix with semi-definite programming. J. of Machine Learning Research, 5: 27-72, 2004.
-
(2004)
J. of Machine Learning Research
, vol.5
, pp. 27-72
-
-
Lanckriet, G.R.G.1
Cristianini, N.2
Bartlett, P.3
El Ghaoui, L.4
Jordan, M.I.5
-
25
-
-
23244440127
-
Structured multicategory support vector machine with ANOVA decomposition
-
Department of Statistics, The Ohio State University, October
-
Y. Lee, Y. Kim, S. Lee and J.-Y. Koo. Structured Multicategory Support Vector Machine with ANOVA decomposition. Technical Report No. 743, Department of Statistics, The Ohio State University, October 2004.
-
(2004)
Technical Report No. 743
, vol.743
-
-
Lee, Y.1
Kim, Y.2
Lee, S.3
Koo, J.-Y.4
-
26
-
-
33644519153
-
Component selection and smoothing in smoothing spline analysis of variance models - COSSO
-
NCSU, January
-
Y. Lin and H. H. Zhang. Component Selection and Smoothing in Smoothing Spline Analysis of Variance Models - COSSO. Institute of Statistics Mimeo Series 2556, NCSU, January 2003.
-
(2003)
Institute of Statistics Mimeo Series
, vol.2556
-
-
Lin, Y.1
Zhang, H.H.2
-
31
-
-
14544299611
-
On learning vector-valued functions
-
C. A. Micchelli and M. Pontil. On learning vector-valued functions. Neural Computation, 17: 177-204, 2005.
-
(2005)
Neural Computation
, vol.17
, pp. 177-204
-
-
Micchelli, C.A.1
Pontil, M.2
-
32
-
-
23244467005
-
Error bounds for learning the kernel
-
Dept of Computer Science, University College London, June
-
C. A. Micchelli, M. Pontil, Q. Wu, and D. X. Zhou. Error bounds for learning the kernel. Research Note 05/09, Dept of Computer Science, University College London, June, 2005.
-
(2005)
Research Note
, vol.5
, Issue.9
-
-
Micchelli, C.A.1
Pontil, M.2
Wu, Q.3
Zhou, D.X.4
-
33
-
-
23244437922
-
Learning theory: Stability is sufficient for generalization and necessary and sufficient for empirical risk minimization
-
to appear
-
S. Mukherjee, P. Niyogi, T. Poggio, R. Rifkin. Learning theory: stability is sufficient for generalization and necessary and sufficient for empirical risk minimization. Advances in Computational Mathematics, to appear, 2004.
-
(2004)
Advances in Computational Mathematics
-
-
Mukherjee, S.1
Niyogi, P.2
Poggio, T.3
Rifkin, R.4
-
34
-
-
84899013191
-
Hyperkernels
-
S. Becker, S. Thrun, K. Obermayer (Eds.), MIT Press, Cambridge, MA
-
C. S. Ong, A. J. Smola, and R. C. Williamson. Hyperkernels. Advances in Neural Information Processing Systems, 15, S. Becker, S. Thrun, K. Obermayer (Eds.), MIT Press, Cambridge, MA, 2003.
-
(2003)
Advances in Neural Information Processing Systems
, pp. 15
-
-
Ong, C.S.1
Smola, A.J.2
Williamson, R.C.3
-
35
-
-
0032523506
-
Properties of support vector machines
-
M. Pontil and A. Verri. Properties of support vector machines. Neural Computation, 10: 955-974, 1998.
-
(1998)
Neural Computation
, vol.10
, pp. 955-974
-
-
Pontil, M.1
Verri, A.2
-
36
-
-
0004267646
-
-
Princeton University Press, Princeton, New Jersey
-
R. T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, New Jersey, 1970.
-
(1970)
Convex Analysis
-
-
Rockafellar, R.T.1
-
37
-
-
0003655416
-
-
Macmillan Publishing Company, New York, 3rd edition
-
H. L. Royden. Real Analysis. Macmillan Publishing Company, New York, 3rd edition, 1988.
-
(1988)
Real Analysis
-
-
Royden, H.L.1
-
38
-
-
0001743201
-
Metric spaces and completely monotone functions
-
I. J. Schoenberg. Metric spaces and completely monotone functions. Annals of Mathematics, 39(4): 811-841, 1938.
-
(1938)
Annals of Mathematics
, vol.39
, Issue.4
, pp. 811-841
-
-
Schoenberg, I.J.1
-
42
-
-
0141480502
-
Estimating the approximation error in learning theory
-
S. Smale, and D. X. Zhou. Estimating the approximation error in learning theory, Anal. Appl., 1: 1-25, 2003.
-
(2003)
Anal. Appl.
, vol.1
, pp. 1-25
-
-
Smale, S.1
Zhou, D.X.2
-
45
-
-
0003241883
-
Splines models for observational data
-
SIAM, Philadelphia
-
G. Wahba. Splines Models for Observational Data. Series in Applied Mathematics, Vol. 59, SIAM, Philadelphia, 1990.
-
(1990)
Series in Applied Mathematics
, vol.59
-
-
Wahba, G.1
-
46
-
-
0002295913
-
Gaussian processes for regression
-
D. S. Touretzky, M. C. Mozer, M. E. Hasselmo (eds.), MIT Press, Cambridge, MA
-
C. K. I. Williams and C. E. Rasmussen. Gaussian processes for regression. Advances in Neural Processing Systems 8: 598-604, D. S. Touretzky, M. C. Mozer, M. E. Hasselmo (eds.), MIT Press, Cambridge, MA, 1996.
-
(1996)
Advances in Neural Processing Systems
, vol.8
, pp. 598-604
-
-
Williams, C.K.I.1
Rasmussen, C.E.2
-
49
-
-
4644257995
-
Statistical behavior and consistency of classification methods based on convex risk minimization
-
T. Zhang. Statistical behavior and consistency of classification methods based on convex risk minimization. Ann. Statis., 32: 56-85, 2004.
-
(2004)
Ann. Statis.
, vol.32
, pp. 56-85
-
-
Zhang, T.1
-
50
-
-
0036158505
-
On the dual formulation of regularized linear systems with convex risks
-
T. Zhang. On the dual formulation of regularized linear systems with convex risks. Machine Learning, 46: 91-129, 2002.
-
(2002)
Machine Learning
, vol.46
, pp. 91-129
-
-
Zhang, T.1
-
51
-
-
14344253305
-
Bayesian inference for transductive learning of kernel matrix using the Tanner-Wong data augmentation algorithm
-
Banff, Alberta, Canada, July
-
Z. Zhang, D.-Y. Yeung and J. T. Kwok. Bayesian inference for transductive learning of kernel matrix using the Tanner-Wong data augmentation algorithm. Proc. 21-st Int. Conf. Machine Learning (ICML-2004), pages 935-942, Banff, Alberta, Canada, July 2004.
-
(2004)
Proc. 21-st Int. Conf. Machine Learning (ICML-2004)
, pp. 935-942
-
-
Zhang, Z.1
Yeung, D.-Y.2
Kwok, J.T.3
-
52
-
-
0036748375
-
The covering number in learning theory
-
D. X. Zhou. The covering number in learning theory. J. of Complexity, 18: 739-767, 2002.
-
(2002)
J. of Complexity
, vol.18
, pp. 739-767
-
-
Zhou, D.X.1
|