메뉴 건너뛰기




Volumn 6, Issue , 2005, Pages

Learning the kernel function via regularization

Author keywords

[No Author keywords available]

Indexed keywords

DATA REDUCTION; OPTIMIZATION; PROBLEM SOLVING;

EID: 23244434257     PISSN: 15337928     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (344)

References (52)
  • 2
    • 5844297152 scopus 로고
    • Theory of reproducing kernels
    • N. Aronszajn. Theory of reproducing kernels. Trans. Amer. Math. Soc., 686: 337-404, 1950.
    • (1950) Trans. Amer. Math. Soc. , vol.686 , pp. 337-404
    • Aronszajn, N.1
  • 3
    • 0037611196 scopus 로고
    • Mathematical methods of game and economic theory
    • North-Holland
    • J. P. Aubin. Mathematical methods of game and economic theory. Studies in Mathematics and its applications, Vol. 7, North-Holland, 1982.
    • (1982) Studies in Mathematics and Its Applications , vol.7
    • Aubin, J.P.1
  • 6
    • 0003357801 scopus 로고
    • Interpolation of operators
    • Academic Press, Boston
    • C. Bennett and R. Sharpley. Interpolation of Operators. Vol. 129, Pure and Appl. Math, Academic Press, Boston, 1988.
    • (1988) Pure and Appl. Math , vol.129
    • Bennett, C.1    Sharpley, R.2
  • 10
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple parameters for support vector machines. Machine Learning, 46(1): 131-159, 2002.
    • (2002) Machine Learning , vol.46 , Issue.1 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 11
    • 0036071370 scopus 로고    scopus 로고
    • On the mathematical foundations of learning
    • F. Cucker and S. Smale. On the mathematical foundations of learning. Bull. Amer. Math. Soc., 39 (1): 1-49, 2002.
    • (2002) Bull. Amer. Math. Soc. , vol.39 , Issue.1 , pp. 1-49
    • Cucker, F.1    Smale, S.2
  • 15
    • 0000249788 scopus 로고    scopus 로고
    • An equivalence between sparse approximation and support vector machines
    • F. Girosi. An Equivalence Between Sparse Approximation and Support Vector Machines. Neural Computation, 10 (6): 1455-1480, 1998.
    • (1998) Neural Computation , vol.10 , Issue.6 , pp. 1455-1480
    • Girosi, F.1
  • 16
    • 84886994574 scopus 로고    scopus 로고
    • Kernel matrix completion by semi-definite programming
    • T. Graepel. Kernel matrix completion by semi-definite programming. Proc. of ICANN, pages 694-699, 2002.
    • (2002) Proc. of ICANN , pp. 694-699
    • Graepel, T.1
  • 22
    • 0015000439 scopus 로고
    • Some results on Tchebycheffian spline functions
    • G. Kimeldorf and G. Wahba. Some results on Tchebycheffian spline functions. J. Math. Anal. Appl., 33: 82-95, 1971.
    • (1971) J. Math. Anal. Appl. , vol.33 , pp. 82-95
    • Kimeldorf, G.1    Wahba, G.2
  • 25
    • 23244440127 scopus 로고    scopus 로고
    • Structured multicategory support vector machine with ANOVA decomposition
    • Department of Statistics, The Ohio State University, October
    • Y. Lee, Y. Kim, S. Lee and J.-Y. Koo. Structured Multicategory Support Vector Machine with ANOVA decomposition. Technical Report No. 743, Department of Statistics, The Ohio State University, October 2004.
    • (2004) Technical Report No. 743 , vol.743
    • Lee, Y.1    Kim, Y.2    Lee, S.3    Koo, J.-Y.4
  • 26
    • 33644519153 scopus 로고    scopus 로고
    • Component selection and smoothing in smoothing spline analysis of variance models - COSSO
    • NCSU, January
    • Y. Lin and H. H. Zhang. Component Selection and Smoothing in Smoothing Spline Analysis of Variance Models - COSSO. Institute of Statistics Mimeo Series 2556, NCSU, January 2003.
    • (2003) Institute of Statistics Mimeo Series , vol.2556
    • Lin, Y.1    Zhang, H.H.2
  • 31
    • 14544299611 scopus 로고    scopus 로고
    • On learning vector-valued functions
    • C. A. Micchelli and M. Pontil. On learning vector-valued functions. Neural Computation, 17: 177-204, 2005.
    • (2005) Neural Computation , vol.17 , pp. 177-204
    • Micchelli, C.A.1    Pontil, M.2
  • 32
    • 23244467005 scopus 로고    scopus 로고
    • Error bounds for learning the kernel
    • Dept of Computer Science, University College London, June
    • C. A. Micchelli, M. Pontil, Q. Wu, and D. X. Zhou. Error bounds for learning the kernel. Research Note 05/09, Dept of Computer Science, University College London, June, 2005.
    • (2005) Research Note , vol.5 , Issue.9
    • Micchelli, C.A.1    Pontil, M.2    Wu, Q.3    Zhou, D.X.4
  • 33
    • 23244437922 scopus 로고    scopus 로고
    • Learning theory: Stability is sufficient for generalization and necessary and sufficient for empirical risk minimization
    • to appear
    • S. Mukherjee, P. Niyogi, T. Poggio, R. Rifkin. Learning theory: stability is sufficient for generalization and necessary and sufficient for empirical risk minimization. Advances in Computational Mathematics, to appear, 2004.
    • (2004) Advances in Computational Mathematics
    • Mukherjee, S.1    Niyogi, P.2    Poggio, T.3    Rifkin, R.4
  • 35
    • 0032523506 scopus 로고    scopus 로고
    • Properties of support vector machines
    • M. Pontil and A. Verri. Properties of support vector machines. Neural Computation, 10: 955-974, 1998.
    • (1998) Neural Computation , vol.10 , pp. 955-974
    • Pontil, M.1    Verri, A.2
  • 36
    • 0004267646 scopus 로고
    • Princeton University Press, Princeton, New Jersey
    • R. T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, New Jersey, 1970.
    • (1970) Convex Analysis
    • Rockafellar, R.T.1
  • 37
    • 0003655416 scopus 로고
    • Macmillan Publishing Company, New York, 3rd edition
    • H. L. Royden. Real Analysis. Macmillan Publishing Company, New York, 3rd edition, 1988.
    • (1988) Real Analysis
    • Royden, H.L.1
  • 38
    • 0001743201 scopus 로고
    • Metric spaces and completely monotone functions
    • I. J. Schoenberg. Metric spaces and completely monotone functions. Annals of Mathematics, 39(4): 811-841, 1938.
    • (1938) Annals of Mathematics , vol.39 , Issue.4 , pp. 811-841
    • Schoenberg, I.J.1
  • 42
    • 0141480502 scopus 로고    scopus 로고
    • Estimating the approximation error in learning theory
    • S. Smale, and D. X. Zhou. Estimating the approximation error in learning theory, Anal. Appl., 1: 1-25, 2003.
    • (2003) Anal. Appl. , vol.1 , pp. 1-25
    • Smale, S.1    Zhou, D.X.2
  • 45
    • 0003241883 scopus 로고
    • Splines models for observational data
    • SIAM, Philadelphia
    • G. Wahba. Splines Models for Observational Data. Series in Applied Mathematics, Vol. 59, SIAM, Philadelphia, 1990.
    • (1990) Series in Applied Mathematics , vol.59
    • Wahba, G.1
  • 46
    • 0002295913 scopus 로고    scopus 로고
    • Gaussian processes for regression
    • D. S. Touretzky, M. C. Mozer, M. E. Hasselmo (eds.), MIT Press, Cambridge, MA
    • C. K. I. Williams and C. E. Rasmussen. Gaussian processes for regression. Advances in Neural Processing Systems 8: 598-604, D. S. Touretzky, M. C. Mozer, M. E. Hasselmo (eds.), MIT Press, Cambridge, MA, 1996.
    • (1996) Advances in Neural Processing Systems , vol.8 , pp. 598-604
    • Williams, C.K.I.1    Rasmussen, C.E.2
  • 49
    • 4644257995 scopus 로고    scopus 로고
    • Statistical behavior and consistency of classification methods based on convex risk minimization
    • T. Zhang. Statistical behavior and consistency of classification methods based on convex risk minimization. Ann. Statis., 32: 56-85, 2004.
    • (2004) Ann. Statis. , vol.32 , pp. 56-85
    • Zhang, T.1
  • 50
    • 0036158505 scopus 로고    scopus 로고
    • On the dual formulation of regularized linear systems with convex risks
    • T. Zhang. On the dual formulation of regularized linear systems with convex risks. Machine Learning, 46: 91-129, 2002.
    • (2002) Machine Learning , vol.46 , pp. 91-129
    • Zhang, T.1
  • 51
    • 14344253305 scopus 로고    scopus 로고
    • Bayesian inference for transductive learning of kernel matrix using the Tanner-Wong data augmentation algorithm
    • Banff, Alberta, Canada, July
    • Z. Zhang, D.-Y. Yeung and J. T. Kwok. Bayesian inference for transductive learning of kernel matrix using the Tanner-Wong data augmentation algorithm. Proc. 21-st Int. Conf. Machine Learning (ICML-2004), pages 935-942, Banff, Alberta, Canada, July 2004.
    • (2004) Proc. 21-st Int. Conf. Machine Learning (ICML-2004) , pp. 935-942
    • Zhang, Z.1    Yeung, D.-Y.2    Kwok, J.T.3
  • 52
    • 0036748375 scopus 로고    scopus 로고
    • The covering number in learning theory
    • D. X. Zhou. The covering number in learning theory. J. of Complexity, 18: 739-767, 2002.
    • (2002) J. of Complexity , vol.18 , pp. 739-767
    • Zhou, D.X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.