메뉴 건너뛰기




Volumn 42, Issue 6 PART 2, 1996, Pages 2118-2132

Efficient agnostic learning of neural networks with bounded fan-in

Author keywords

Agnostic learning; Artificial neural networks; Bounded fan in neural networks; Computational learning theory; Iterative approximation; Polynomial time learning algorithm; Rate of convergence

Indexed keywords


EID: 0001556720     PISSN: 00189448     EISSN: None     Source Type: Journal    
DOI: 10.1109/18.556601     Document Type: Article
Times cited : (133)

References (30)
  • 2
    • 0003487046 scopus 로고
    • Cambridge Tracts in Theoretical Computer Science vol. 30. Cambridge, UK: Cambridge Univ. Press
    • M. Anthony and N. Biggs, Computational Learning Theory (Cambridge Tracts in Theoretical Computer Science vol. 30). Cambridge, UK: Cambridge Univ. Press, 1992.
    • (1992) Computational Learning Theory
    • Anthony, M.1    Biggs, N.2
  • 3
    • 0001347323 scopus 로고
    • Complexity regularization with applications to artificial neural networks
    • G. Roussa, Ed., Boston, MA, and Dordrecht, The Netherlands: Kluwer
    • A. R. Barron, "Complexity regularization with applications to artificial neural networks," in G. Roussa, Ed., Nonparametric Functional Estimation. Boston, MA, and Dordrecht, The Netherlands: Kluwer, 1990, pp. 561-576.
    • (1990) Nonparametric Functional Estimation , pp. 561-576
    • Barron, A.R.1
  • 5
    • 0027599793 scopus 로고
    • Universal approximation bounds for superposition of a sigmoidal function
    • _, "Universal approximation bounds for superposition of a sigmoidal function," IEEE Trans. Inform. Theory, vol. 39, pp. 930-945, 1993.
    • (1993) IEEE Trans. Inform. Theory , vol.39 , pp. 930-945
  • 6
    • 0001325515 scopus 로고
    • Approximation and estimation bounds for artificial neural networks
    • _, "Approximation and estimation bounds for artificial neural networks," Mach. Learning, vol. 14, pp. 115-133, 1994.
    • (1994) Mach. Learning , vol.14 , pp. 115-133
  • 7
    • 0026453958 scopus 로고
    • Training a 3-node neural network is NP-complete
    • A. Blum and R. Rivest, "Training a 3-node neural network is NP-complete," Neural Net., vol. 5, pp. 117-127, 1992.
    • (1992) Neural Net. , vol.5 , pp. 117-127
    • Blum, A.1    Rivest, R.2
  • 9
    • 0004834602 scopus 로고
    • On the Tchebychef inequality of Bernstein
    • C. C. Craig, "On the Tchebychef inequality of Bernstein," Ann. Math. Statist., vol. 4, pp. 94-102, 1933.
    • (1933) Ann. Math. Statist. , vol.4 , pp. 94-102
    • Craig, C.C.1
  • 10
    • 0027632576 scopus 로고
    • Strong universal consistency of neural network classifiers
    • A. Farago and G. Lugosi, "Strong universal consistency of neural network classifiers," IEEE Trans. Inform. Theory, vol. 39, pp. 1146-1151, 1993.
    • (1993) IEEE Trans. Inform. Theory , vol.39 , pp. 1146-1151
    • Farago, A.1    Lugosi, G.2
  • 11
    • 0002192516 scopus 로고
    • Decision theoretic generalizations of the (PAC) model for neural net and other learning applications
    • Sept.
    • D. Haussler, "Decision theoretic generalizations of the (PAC) model for neural net and other learning applications," Inform. Comput., vol. 100, no. 1, pp. 78-150, Sept. 1992.
    • (1992) Inform. Comput. , vol.100 , Issue.1 , pp. 78-150
    • Haussler, D.1
  • 12
    • 0025627940 scopus 로고
    • Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks
    • K. Hornik, M. Stinchcombe, and H. White, "Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks," Neural Net., vol. 3, pp. 551-560, 1990.
    • (1990) Neural Net. , vol.3 , pp. 551-560
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 13
    • 33747337666 scopus 로고
    • Simple translation-invariant concepts are hard to learn
    • Sept.
    • M. Jerrum, "Simple translation-invariant concepts are hard to learn," Inform. Comput., vol. 113, no. 2,. pp. 300-311, Sept. 1994.
    • (1994) Inform. Comput. , vol.113 , Issue.2 , pp. 300-311
    • Jerrum, M.1
  • 14
    • 0000796112 scopus 로고
    • A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training
    • L. K. Jones, "A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training," Ann. Statist., vol. 20, pp. 608-613, 1992.
    • (1992) Ann. Statist. , vol.20 , pp. 608-613
    • Jones, L.K.1
  • 16
    • 0028460231 scopus 로고
    • Efficient distribution-free learning of probabilistic concepts
    • M. J. Kearns and R. E. Schapire, "Efficient distribution-free learning of probabilistic concepts," J. Comput. Syst. Sci., vol/. 48, no. 3, p. 464, 1994.
    • (1994) J. Comput. Syst. Sci. , vol.48 , Issue.3 , pp. 464
    • Kearns, M.J.1    Schapire, R.E.2
  • 17
    • 0001553979 scopus 로고
    • Toward efficient agnostic learning
    • M. J. Kearns, R. E. Schapire, and L. M. Sellie, "Toward efficient agnostic learning," Mach. Learning, vol. 17, no. 2, p. 115, 1994.
    • (1994) Mach. Learning , vol.17 , Issue.2 , pp. 115
    • Kearns, M.J.1    Schapire, R.E.2    Sellie, L.M.3
  • 18
    • 0005865256 scopus 로고
    • Efficient learning of continuous neural networks
    • New York: ACM Press
    • P. Koiran, "Efficient learning of continuous neural networks," in Proc. 7th Annu. ACM Workshop on Comput Learning Theory. New York: ACM Press, 1994, pp. 348-355.
    • (1994) Proc. 7th Annu. ACM Workshop on Comput Learning Theory , pp. 348-355
    • Koiran, P.1
  • 21
    • 0001023186 scopus 로고
    • Agnostic PAC-learning of functions on analog neural networks
    • W. Maass, "Agnostic PAC-learning of functions on analog neural networks" Neural Comput., vol. 7, no. 5, pp. 1054-1078, 1995.
    • (1995) Neural Comput. , vol.7 , Issue.5 , pp. 1054-1078
    • Maass, W.1
  • 22
    • 0028320833 scopus 로고
    • Convergence rates for single hidden layer feedforward networks
    • D. F. McCaffrey and A. R. Gallant, "Convergence rates for single hidden layer feedforward networks," Neural Net., vol. 7, no. 1, pp. 147-158, 1994.
    • (1994) Neural Net. , vol.7 , Issue.1 , pp. 147-158
    • McCaffrey, D.F.1    Gallant, A.R.2
  • 25
    • 0001191685 scopus 로고
    • Uniform ratio limit theorems for empirical processes
    • _, "Uniform ratio limit theorems for empirical processes," Scandinavian J. Statist., Theory and Appl., vol. 22, no. 3, p. 271, 1995.
    • (1995) Scandinavian J. Statist., Theory and Appl. , vol.22 , Issue.3 , pp. 271
  • 27
    • 0001703864 scopus 로고
    • On the density of families of sets
    • N. Sauer, "On the density of families of sets," J. Comb. Theory (Ser. A), vol. 13, pp. 145-147, 1972.
    • (1972) J. Comb. Theory (Ser. A) , vol.13 , pp. 145-147
    • Sauer, N.1
  • 28
    • 38249005514 scopus 로고
    • Bounding the sample size with the Vapnik-Chervonenkis dimension
    • J. Shawe-Taylor, M. Anthony, and N. L. Biggs, "Bounding the sample size with the Vapnik-Chervonenkis dimension," Discr. Appl. Math., vol. 42, pp. 65-73, 1993.
    • (1993) Discr. Appl. Math. , vol.42 , pp. 65-73
    • Shawe-Taylor, J.1    Anthony, M.2    Biggs, N.L.3
  • 29
    • 0021518106 scopus 로고
    • A theory of the learnable
    • Nov.
    • L. G. Valiant, "A theory of the learnable," Commun. ACM, vol. 27, no. 11, pp. 1134-1142, Nov. 1984.
    • (1984) Commun. ACM , vol.27 , Issue.11 , pp. 1134-1142
    • Valiant, L.G.1
  • 30
    • 0001024505 scopus 로고
    • On the uniform convergence of relative frequencies of events to their probabilities
    • V. N. Vapnik and A. Y. Chervonenkis, "On the uniform convergence of relative frequencies of events to their probabilities," Theory of Probab. and its Appl., vol. 16, no. 2, pp. 264-280, 1971.
    • (1971) Theory of Probab. and Its Appl. , vol.16 , Issue.2 , pp. 264-280
    • Vapnik, V.N.1    Chervonenkis, A.Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.