-
2
-
-
5844297152
-
Theory of reproducing kernels
-
Aronszajn, N. (1950). Theory of reproducing kernels. Trans. Amer. Math. Soc., 68, 337-404.
-
(1950)
Trans. Amer. Math. Soc.
, vol.68
, pp. 337-404
-
-
Aronszajn, N.1
-
3
-
-
0001347323
-
Complexity regularization with applications to artificial neural networks
-
G. Roussa (Ed.). Dordrecht: Kluwer
-
Barron, A. R. (1990). Complexity regularization with applications to artificial neural networks. In G. Roussa (Ed.), Nonparametric functional estimation (pp. 561-576). Dordrecht: Kluwer.
-
(1990)
Nonparametric Functional Estimation
, pp. 561-576
-
-
Barron, A.R.1
-
4
-
-
0032028728
-
The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network
-
Bartlett, P. L. (1998). The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network. IEEE Trans. Inform. Theory, 44, 525-536.
-
(1998)
IEEE Trans. Inform. Theory
, vol.44
, pp. 525-536
-
-
Bartlett, P.L.1
-
5
-
-
1542367492
-
-
Unpublished manuscript
-
Bartlett, P. L., Jordan, M. I., & McAuliffe, J. D. (2003). Convexity, classification, and risk bounds. Unpublished manuscript.
-
(2003)
Convexity, Classification, and Risk Bounds
-
-
Bartlett, P.L.1
Jordan, M.I.2
McAuliffe, J.D.3
-
7
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
Pittsburgh, PA: ACM
-
Boser, B. E., Guyon, I., & Vapnik, V. (1992). A training algorithm for optimal margin classifiers. In Proceedings of the Fifth Annual Workshop of Computational Learning Theory (Vol. 5, pp. 144-152). Pittsburgh, PA: ACM.
-
(1992)
Proceedings of the Fifth Annual Workshop of Computational Learning Theory
, vol.5
, pp. 144-152
-
-
Boser, B.E.1
Guyon, I.2
Vapnik, V.3
-
10
-
-
84879394399
-
Support vector machine soft margin classifiers: Error analysis
-
Chen, D. R., Wu, Q., Ying, Y., & Zhou, D. X. (2004). Support vector machine soft margin classifiers: Error analysis. J. Machine Learning Research, 5, 1143-1175.
-
(2004)
J. Machine Learning Research
, vol.5
, pp. 1143-1175
-
-
Chen, D.R.1
Wu, Q.2
Ying, Y.3
Zhou, D.X.4
-
11
-
-
34249753618
-
Support-vector networks
-
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Mach. Learning, 20, 273-297.
-
(1995)
Mach. Learning
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
13
-
-
0036071370
-
On the mathematical foundations of learning
-
Cucker, F., & Smale, S. (2001). On the mathematical foundations of learning. Bull. Amer. Math. Soc., 39, 1-49.
-
(2001)
Bull. Amer. Math. Soc.
, vol.39
, pp. 1-49
-
-
Cucker, F.1
Smale, S.2
-
15
-
-
0034419669
-
Regularization networks and support vector machines
-
Evgeniou, T., Pontil, M., & Poggio, T. (2000). Regularization networks and support vector machines. Adv. Comput. Math., 13, 1-50.
-
(2000)
Adv. Comput. Math.
, vol.13
, pp. 1-50
-
-
Evgeniou, T.1
Pontil, M.2
Poggio, T.3
-
16
-
-
0033681936
-
Support vector selection by linear programming
-
Kecman, V., & Hadzic, I. (2000). Support vector selection by linear programming. Proc. IJCNN, 5, 193-198.
-
(2000)
Proc. IJCNN
, vol.5
, pp. 193-198
-
-
Kecman, V.1
Hadzic, I.2
-
17
-
-
9444269961
-
On the Bayes-risk consistency of regularized boosting methods
-
Lugosi, G., & Vayatis, N. (2004). On the Bayes-risk consistency of regularized boosting methods. Ann. Statis., 32, 30-55.
-
(2004)
Ann. Statis.
, vol.32
, pp. 30-55
-
-
Lugosi, G.1
Vayatis, N.2
-
18
-
-
0036648803
-
Improving the sample complexity using global data
-
Mendelson, S. (2002). Improving the sample complexity using global data. IEEE Trans. Inform. Theory, 48, 1977-1991.
-
(2002)
IEEE Trans. Inform. Theory
, vol.48
, pp. 1977-1991
-
-
Mendelson, S.1
-
19
-
-
17444401898
-
Regression and classification with regularization
-
D. D. Denison, M. H. Hansen, C. C. Holmes, B. Mallick, & B. Yu (Eds.). New York: Springer-Verlag
-
Mukherjee, S., Rifkin, R., & Poggio, T. (2002). Regression and classification with regularization. In D. D. Denison, M. H. Hansen, C. C. Holmes, B. Mallick, & B. Yu (Eds.), Nonlinear estimation and classification (pp. 107-124). New York: Springer-Verlag.
-
(2002)
Nonlinear Estimation and Classification
, pp. 107-124
-
-
Mukherjee, S.1
Rifkin, R.2
Poggio, T.3
-
21
-
-
0000482137
-
On the relationship between generalization error, hypothesis complexity, and sample complexity for radial basis functions
-
Niyogi, P., & Girosi, F. (1996). On the relationship between generalization error, hypothesis complexity, and sample complexity for radial basis functions. Neural Comp., 8, 819-842.
-
(1996)
Neural Comp.
, vol.8
, pp. 819-842
-
-
Niyogi, P.1
Girosi, F.2
-
22
-
-
0034859938
-
Support vector machines with different norms: Motivation, formulations and results
-
Pedroso, J. P., & Murata, N. (2001). Support vector machines with different norms: Motivation, formulations and results. Pattern Recognition Letters, 22, 1263-1272.
-
(2001)
Pattern Recognition Letters
, vol.22
, pp. 1263-1272
-
-
Pedroso, J.P.1
Murata, N.2
-
23
-
-
0141726806
-
A note on different covering numbers in learning theory
-
Pontil, M. (2003). A note on different covering numbers in learning theory. J. Complexity, 19, 665-671.
-
(2003)
J. Complexity
, vol.19
, pp. 665-671
-
-
Pontil, M.1
-
24
-
-
1842733197
-
Are loss functions all the same?
-
Rosasco, L., De Vito, E., Caponnetto, A., Piana, M., & Verri, A. (2004). Are loss functions all the same? Neural Comp., 16, 1063-1076.
-
(2004)
Neural Comp.
, vol.16
, pp. 1063-1076
-
-
Rosasco, L.1
De Vito, E.2
Caponnetto, A.3
Piana, M.4
Verri, A.5
-
26
-
-
0037749769
-
Estimating the approximation error in learning theory
-
Smale, S., & Zhou, D. X. (2003). Estimating the approximation error in learning theory. Anal. Appl., 1, 17-41.
-
(2003)
Anal. Appl.
, vol.1
, pp. 17-41
-
-
Smale, S.1
Zhou, D.X.2
-
27
-
-
3042850649
-
Shannon sampling and function reconstruction from point values
-
Smale, S., & Zhou, D. X. (2004). Shannon sampling and function reconstruction from point values. Bull. Amer. Math. Soc., 41, 279-305.
-
(2004)
Bull. Amer. Math. Soc.
, vol.41
, pp. 279-305
-
-
Smale, S.1
Zhou, D.X.2
-
28
-
-
0036749277
-
Support vector machines are universally consistent
-
Steinwart, I. (2002). Support vector machines are universally consistent. J. Complexity, 18, 768-791.
-
(2002)
J. Complexity
, vol.18
, pp. 768-791
-
-
Steinwart, I.1
-
29
-
-
3142725508
-
Optimal aggregation of classifiers in statistical learning
-
Tsybakov, A. B. (2004). Optimal aggregation of classifiers in statistical learning. Ann. Statis., 32, 135-166.
-
(2004)
Ann. Statis.
, vol.32
, pp. 135-166
-
-
Tsybakov, A.B.1
-
35
-
-
0347067948
-
Covering number bounds of certain regularized linear function classes
-
Zhang, T. (2002). Covering number bounds of certain regularized linear function classes. J. Machine Learning Research, 2, 527-550.
-
(2002)
J. Machine Learning Research
, vol.2
, pp. 527-550
-
-
Zhang, T.1
-
36
-
-
4644257995
-
Statistical behavior and consistency of classification methods based on convex risk minimization
-
Zhang, T. (2004). Statistical behavior and consistency of classification methods based on convex risk minimization. Ann. Statis., 32, 56-85.
-
(2004)
Ann. Statis.
, vol.32
, pp. 56-85
-
-
Zhang, T.1
-
37
-
-
0036748375
-
The covering number in learning theory
-
Zhou, D. X. (2002). The covering number in learning theory. J. Complexity, 18, 739-767.
-
(2002)
J. Complexity
, vol.18
, pp. 739-767
-
-
Zhou, D.X.1
-
38
-
-
0038105204
-
Capacity of reproducing kernel spaces in learning theory
-
Zhou, D. X. (2003). Capacity of reproducing kernel spaces in learning theory. IEEE Trans. Inform. Theory, 49, 1743-1752.
-
(2003)
IEEE Trans. Inform. Theory
, vol.49
, pp. 1743-1752
-
-
Zhou, D.X.1
|