메뉴 건너뛰기




Volumn 17, Issue 5, 2005, Pages 1160-1187

SVM soft margin classifiers: Linear programming versus quadratic programming

Author keywords

[No Author keywords available]

Indexed keywords


EID: 17444402055     PISSN: 08997667     EISSN: None     Source Type: Journal    
DOI: 10.1162/0899766053491896     Document Type: Article
Times cited : (171)

References (38)
  • 2
    • 5844297152 scopus 로고
    • Theory of reproducing kernels
    • Aronszajn, N. (1950). Theory of reproducing kernels. Trans. Amer. Math. Soc., 68, 337-404.
    • (1950) Trans. Amer. Math. Soc. , vol.68 , pp. 337-404
    • Aronszajn, N.1
  • 3
    • 0001347323 scopus 로고
    • Complexity regularization with applications to artificial neural networks
    • G. Roussa (Ed.). Dordrecht: Kluwer
    • Barron, A. R. (1990). Complexity regularization with applications to artificial neural networks. In G. Roussa (Ed.), Nonparametric functional estimation (pp. 561-576). Dordrecht: Kluwer.
    • (1990) Nonparametric Functional Estimation , pp. 561-576
    • Barron, A.R.1
  • 4
    • 0032028728 scopus 로고    scopus 로고
    • The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network
    • Bartlett, P. L. (1998). The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network. IEEE Trans. Inform. Theory, 44, 525-536.
    • (1998) IEEE Trans. Inform. Theory , vol.44 , pp. 525-536
    • Bartlett, P.L.1
  • 9
    • 0033721433 scopus 로고    scopus 로고
    • Massive data discrimination via linear support vector machines
    • Bradley, P. S., & Mangasarian, O. L. (2000). Massive data discrimination via linear support vector machines. Optimization Methods and Software, 13, 1-10.
    • (2000) Optimization Methods and Software , vol.13 , pp. 1-10
    • Bradley, P.S.1    Mangasarian, O.L.2
  • 10
    • 84879394399 scopus 로고    scopus 로고
    • Support vector machine soft margin classifiers: Error analysis
    • Chen, D. R., Wu, Q., Ying, Y., & Zhou, D. X. (2004). Support vector machine soft margin classifiers: Error analysis. J. Machine Learning Research, 5, 1143-1175.
    • (2004) J. Machine Learning Research , vol.5 , pp. 1143-1175
    • Chen, D.R.1    Wu, Q.2    Ying, Y.3    Zhou, D.X.4
  • 11
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Mach. Learning, 20, 273-297.
    • (1995) Mach. Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 13
    • 0036071370 scopus 로고    scopus 로고
    • On the mathematical foundations of learning
    • Cucker, F., & Smale, S. (2001). On the mathematical foundations of learning. Bull. Amer. Math. Soc., 39, 1-49.
    • (2001) Bull. Amer. Math. Soc. , vol.39 , pp. 1-49
    • Cucker, F.1    Smale, S.2
  • 15
    • 0034419669 scopus 로고    scopus 로고
    • Regularization networks and support vector machines
    • Evgeniou, T., Pontil, M., & Poggio, T. (2000). Regularization networks and support vector machines. Adv. Comput. Math., 13, 1-50.
    • (2000) Adv. Comput. Math. , vol.13 , pp. 1-50
    • Evgeniou, T.1    Pontil, M.2    Poggio, T.3
  • 16
    • 0033681936 scopus 로고    scopus 로고
    • Support vector selection by linear programming
    • Kecman, V., & Hadzic, I. (2000). Support vector selection by linear programming. Proc. IJCNN, 5, 193-198.
    • (2000) Proc. IJCNN , vol.5 , pp. 193-198
    • Kecman, V.1    Hadzic, I.2
  • 17
    • 9444269961 scopus 로고    scopus 로고
    • On the Bayes-risk consistency of regularized boosting methods
    • Lugosi, G., & Vayatis, N. (2004). On the Bayes-risk consistency of regularized boosting methods. Ann. Statis., 32, 30-55.
    • (2004) Ann. Statis. , vol.32 , pp. 30-55
    • Lugosi, G.1    Vayatis, N.2
  • 18
    • 0036648803 scopus 로고    scopus 로고
    • Improving the sample complexity using global data
    • Mendelson, S. (2002). Improving the sample complexity using global data. IEEE Trans. Inform. Theory, 48, 1977-1991.
    • (2002) IEEE Trans. Inform. Theory , vol.48 , pp. 1977-1991
    • Mendelson, S.1
  • 19
    • 17444401898 scopus 로고    scopus 로고
    • Regression and classification with regularization
    • D. D. Denison, M. H. Hansen, C. C. Holmes, B. Mallick, & B. Yu (Eds.). New York: Springer-Verlag
    • Mukherjee, S., Rifkin, R., & Poggio, T. (2002). Regression and classification with regularization. In D. D. Denison, M. H. Hansen, C. C. Holmes, B. Mallick, & B. Yu (Eds.), Nonlinear estimation and classification (pp. 107-124). New York: Springer-Verlag.
    • (2002) Nonlinear Estimation and Classification , pp. 107-124
    • Mukherjee, S.1    Rifkin, R.2    Poggio, T.3
  • 21
    • 0000482137 scopus 로고    scopus 로고
    • On the relationship between generalization error, hypothesis complexity, and sample complexity for radial basis functions
    • Niyogi, P., & Girosi, F. (1996). On the relationship between generalization error, hypothesis complexity, and sample complexity for radial basis functions. Neural Comp., 8, 819-842.
    • (1996) Neural Comp. , vol.8 , pp. 819-842
    • Niyogi, P.1    Girosi, F.2
  • 22
    • 0034859938 scopus 로고    scopus 로고
    • Support vector machines with different norms: Motivation, formulations and results
    • Pedroso, J. P., & Murata, N. (2001). Support vector machines with different norms: Motivation, formulations and results. Pattern Recognition Letters, 22, 1263-1272.
    • (2001) Pattern Recognition Letters , vol.22 , pp. 1263-1272
    • Pedroso, J.P.1    Murata, N.2
  • 23
    • 0141726806 scopus 로고    scopus 로고
    • A note on different covering numbers in learning theory
    • Pontil, M. (2003). A note on different covering numbers in learning theory. J. Complexity, 19, 665-671.
    • (2003) J. Complexity , vol.19 , pp. 665-671
    • Pontil, M.1
  • 26
    • 0037749769 scopus 로고    scopus 로고
    • Estimating the approximation error in learning theory
    • Smale, S., & Zhou, D. X. (2003). Estimating the approximation error in learning theory. Anal. Appl., 1, 17-41.
    • (2003) Anal. Appl. , vol.1 , pp. 17-41
    • Smale, S.1    Zhou, D.X.2
  • 27
    • 3042850649 scopus 로고    scopus 로고
    • Shannon sampling and function reconstruction from point values
    • Smale, S., & Zhou, D. X. (2004). Shannon sampling and function reconstruction from point values. Bull. Amer. Math. Soc., 41, 279-305.
    • (2004) Bull. Amer. Math. Soc. , vol.41 , pp. 279-305
    • Smale, S.1    Zhou, D.X.2
  • 28
    • 0036749277 scopus 로고    scopus 로고
    • Support vector machines are universally consistent
    • Steinwart, I. (2002). Support vector machines are universally consistent. J. Complexity, 18, 768-791.
    • (2002) J. Complexity , vol.18 , pp. 768-791
    • Steinwart, I.1
  • 29
    • 3142725508 scopus 로고    scopus 로고
    • Optimal aggregation of classifiers in statistical learning
    • Tsybakov, A. B. (2004). Optimal aggregation of classifiers in statistical learning. Ann. Statis., 32, 135-166.
    • (2004) Ann. Statis. , vol.32 , pp. 135-166
    • Tsybakov, A.B.1
  • 35
    • 0347067948 scopus 로고    scopus 로고
    • Covering number bounds of certain regularized linear function classes
    • Zhang, T. (2002). Covering number bounds of certain regularized linear function classes. J. Machine Learning Research, 2, 527-550.
    • (2002) J. Machine Learning Research , vol.2 , pp. 527-550
    • Zhang, T.1
  • 36
    • 4644257995 scopus 로고    scopus 로고
    • Statistical behavior and consistency of classification methods based on convex risk minimization
    • Zhang, T. (2004). Statistical behavior and consistency of classification methods based on convex risk minimization. Ann. Statis., 32, 56-85.
    • (2004) Ann. Statis. , vol.32 , pp. 56-85
    • Zhang, T.1
  • 37
    • 0036748375 scopus 로고    scopus 로고
    • The covering number in learning theory
    • Zhou, D. X. (2002). The covering number in learning theory. J. Complexity, 18, 739-767.
    • (2002) J. Complexity , vol.18 , pp. 739-767
    • Zhou, D.X.1
  • 38
    • 0038105204 scopus 로고    scopus 로고
    • Capacity of reproducing kernel spaces in learning theory
    • Zhou, D. X. (2003). Capacity of reproducing kernel spaces in learning theory. IEEE Trans. Inform. Theory, 49, 1743-1752.
    • (2003) IEEE Trans. Inform. Theory , vol.49 , pp. 1743-1752
    • Zhou, D.X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.