-
3
-
-
0030211964
-
Bagging predictors
-
BREIMAN, L. (1996a). Bagging predictors. Machine Learning 24 123-140.
-
(1996)
Machine Learning
, vol.24
, pp. 123-140
-
-
Breiman, L.1
-
4
-
-
0003619255
-
Bias, variance, and arcing classifiers
-
Dept. Statistics, Univ. California, Berkeley
-
BREIMAN, L. (1996b). Bias, variance, and arcing classifiers. Technical Report 460, Dept. Statistics, Univ. California, Berkeley.
-
(1996)
Technical Report
, vol.460
-
-
Breiman, L.1
-
5
-
-
0004198448
-
Arcing the edge
-
Dept. Statistics, Univ. California, Berkeley
-
BREIMAN, L. (1997a). Arcing the edge. Technical Report 486, Dept. Statistics, Univ. California, Berkeley.
-
(1997)
Technical Report
, vol.486
-
-
Breiman, L.1
-
6
-
-
0007325881
-
Pasting bites together for prediction in large data sets and on-line
-
Dept. Statistics, Univ. California, Berkeley
-
BREIMAN, L. (1997b). Pasting bites together for prediction in large data sets and on-line. Technical report, Dept. Statistics, Univ. California, Berkeley.
-
(1997)
Technical Report
-
-
Breiman, L.1
-
7
-
-
0346786584
-
Arcing classifiers
-
BREIMAN, L. (1998). Arcing classifiers (with discussion). Ann. Statist. 26 801-849.
-
(1998)
Ann. Statist.
, vol.26
, pp. 801-849
-
-
Breiman, L.1
-
8
-
-
0000275022
-
Prediction games and arcing algorithms
-
BREIMAN, L. (1999). Prediction games and arcing algorithms. Neural Computation 11 1493-1517.
-
(1999)
Neural Computation
, vol.11
, pp. 1493-1517
-
-
Breiman, L.1
-
9
-
-
0013228784
-
Some infinite theory for predictor ensembles
-
Dept. Statistics, Univ. California, Berkeley
-
BREIMAN, L. (2000). Some infinite theory for predictor ensembles. Technical Report 577, Dept. Statistics, Univ. California, Berkeley.
-
(2000)
Technical Report
, vol.577
-
-
Breiman, L.1
-
10
-
-
0041612447
-
Discussion of "Additive logistic regression: A statistical view of boosting" by J. Friedman, T. Hastie and R. Tibshirani
-
J. Friedman, T. Hastie and R. Tibshirani.
-
BÜHLMANN, P. and Yu, B. (2000). Discussion of "Additive logistic regression: A statistical view of boosting" by J. Friedman, T. Hastie and R. Tibshirani. Ann. Statist. 28 377-386.
-
(2000)
Ann. Statist.
, vol.28
, pp. 377-386
-
-
Bühlmann, P.1
Yu, B.2
-
12
-
-
0036643072
-
Logistic regression, AdaBoost and Bregman distances
-
COLLINS, M., SCHAPIRE, R. E. and SINGER, Y. (2002). Logistic regression, AdaBoost and Bregman distances. Machine Learning 48 253-285.
-
(2002)
Machine Learning
, vol.48
, pp. 253-285
-
-
Collins, M.1
Schapire, R.E.2
Singer, Y.3
-
15
-
-
58149321460
-
Boosting a weak learning algorithm by majority
-
FREUND, Y. (1995). Boosting a weak learning algorithm by majority. Inform, and Comput. 121 256-285.
-
(1995)
Inform, and Comput.
, vol.121
, pp. 256-285
-
-
Freund, Y.1
-
19
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
FREUND, Y. and SCHAPIRE, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. System Sci. 55 119-139.
-
(1997)
J. Comput. System Sci.
, vol.55
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
20
-
-
26844494532
-
Discussion of "Additive logistic regression: A statistical view of boosting," by J. Friedman, T. Hastie and R. Tibshirani
-
FREUND, Y. and SCHAPIRE, R. E. (2000). Discussion of "Additive logistic regression: A statistical view of boosting," by J. Friedman, T. Hastie and R. Tibshirani. Ann. Statist. 28 391-393.
-
(2000)
Ann. Statist.
, vol.28
, pp. 391-393
-
-
Freund, Y.1
Schapire, R.E.2
-
21
-
-
0034164230
-
Additive logistic regression: A statistical view of boosting
-
FRIEDMAN, J., HASTIE, T. and TIBSHIRANI, R. (2000). Additive logistic regression: A statistical view of boosting (with discussion). Ann. Statist. 28 337-407.
-
(2000)
Ann. Statist.
, vol.28
, pp. 337-407
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
22
-
-
0041372893
-
Some theoretical aspects of boosting in the presence of noisy data
-
Morgan Kaufmann, San Francisco
-
JIANG, W. (2001). Some theoretical aspects of boosting in the presence of noisy data. In Proc. 18th International Conference on Machine Learning (ICML-2001) 234-241. Morgan Kaufmann, San Francisco.
-
(2001)
Proc. 18th International Conference on Machine Learning (ICML-2001)
, pp. 234-241
-
-
Jiang, W.1
-
23
-
-
26444545593
-
Process consistency for AdaBoost
-
JIANG, W. (2004). Process consistency for AdaBoost. Ann. Statist. 32 13-29.
-
(2004)
Ann. Statist.
, vol.32
, pp. 13-29
-
-
Jiang, W.1
-
24
-
-
0036104545
-
Empirical margin distributions and bounding the generalization error of combined classifiers
-
KOLTCHINSKII, V. and PANCHENKO, D. (2002). Empirical margin distributions and bounding the generalization error of combined classifiers. Ann. Statist. 30 1-50.
-
(2002)
Ann. Statist.
, vol.30
, pp. 1-50
-
-
Koltchinskii, V.1
Panchenko, D.2
-
28
-
-
84937440094
-
The consistency of greedy algorithms for classification
-
Springer, New York
-
MANNOR, S., MEIR, R. and ZHANG, T. (2002). The consistency of greedy algorithms for classification. In Proc. 15th Annual Conference on Computational Learning Theory. Lecture Notes in Computer Science 2375 319-333. Springer, New York.
-
(2002)
Proc. 15th Annual Conference on Computational Learning Theory. Lecture Notes in Computer Science
, vol.2375
, pp. 319-333
-
-
Mannor, S.1
Meir, R.2
Zhang, T.3
-
29
-
-
0002550596
-
Functional gradient techniques for combining hypotheses
-
(A. J. Smola, P. L. Bartlett, B. Schölkopf and D. Schuurmans, eds.). MIT Press, Cambridge, MA
-
MASON, L., BAXTER, J., BARTLETT, P. L. and FREAN, M. (2000). Functional gradient techniques for combining hypotheses. In Advances in Large Margin Classifiers (A. J. Smola, P. L. Bartlett, B. Schölkopf and D. Schuurmans, eds.) 221-247. MIT Press, Cambridge, MA.
-
(2000)
Advances in Large Margin Classifiers
, pp. 221-247
-
-
Mason, L.1
Baxter, J.2
Bartlett, P.L.3
Frean, M.4
-
30
-
-
0025448521
-
The strength of weak learnability
-
SCHAPIRE, R. E. (1990). The strength of weak learnability. Machine Learning 5 197-227.
-
(1990)
Machine Learning
, vol.5
, pp. 197-227
-
-
Schapire, R.E.1
-
31
-
-
0032280519
-
Boosting the margin: A new explanation for the effectiveness of voting methods
-
SCHAPIRE, R. E., FREUND, Y., BARTLETT, P. and LEE, W. S. (1998). Boosting the margin: A new explanation for the effectiveness of voting methods. Ann. Statist. 26 1651-1686.
-
(1998)
Ann. Statist.
, vol.26
, pp. 1651-1686
-
-
Schapire, R.E.1
Freund, Y.2
Bartlett, P.3
Lee, W.S.4
-
33
-
-
4644257995
-
Statistical behavior and consistency of classification methods based on convex risk minimization
-
ZHANG, T. (2004). Statistical behavior and consistency of classification methods based on convex risk minimization. Ann. Statist. 32 56-85.
-
(2004)
Ann. Statist.
, vol.32
, pp. 56-85
-
-
Zhang, T.1
|