메뉴 건너뛰기




Volumn 32, Issue 1, 2004, Pages 135-166

Optimal aggregation of classifiers in statistical learning

Author keywords

Aggregation of classifiers; Classification; Complexity of classes of sets; Empirical processes; Margin; Optimal rates; Statistical learning

Indexed keywords


EID: 3142725508     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/aos/1079120131     Document Type: Article
Times cited : (675)

References (32)
  • 2
    • 0000356348 scopus 로고
    • Probability inequalities for empirical processes and a law of the iterated logarithm
    • [Correction (1987) 15 428-430.]
    • ALEXANDER, K. S. (1984). Probability inequalities for empirical processes and a law of the iterated logarithm. Ann. Probab. 12 1041-1067. [Correction (1987) 15 428-430.]
    • (1984) Ann. Probab. , vol.12 , pp. 1041-1067
    • Alexander, K.S.1
  • 3
    • 0043124612 scopus 로고
    • Rates of growth and sample moduli for weighted empirical processes indexed by sets
    • ALEXANDER, K. S. (1987). Rates of growth and sample moduli for weighted empirical processes indexed by sets. Probab. Theory Related Fields 75 379-423.
    • (1987) Probab. Theory Related Fields , vol.75 , pp. 379-423
    • Alexander, K.S.1
  • 5
    • 0001347323 scopus 로고
    • Complexity regularization with application to artificial neural networks
    • (G. Roussas, ed.). Kluwer, Dordrecht
    • BARRON, A. (1991). Complexity regularization with application to artificial neural networks. In Nonparametric Functional Estimation and Related Topics (G. Roussas, ed.) 561-576. Kluwer, Dordrecht.
    • (1991) Nonparametric Functional Estimation and Related Topics , pp. 561-576
    • Barron, A.1
  • 7
    • 21344492381 scopus 로고
    • Rates of convergence for minimum contrast estimators
    • BIRGÉ, L. and MASSART, P. (1993). Rates of convergence for minimum contrast estimators. Probab. Theory Related Fields 97 113-150.
    • (1993) Probab. Theory Related Fields , vol.97 , pp. 113-150
    • Birgé, L.1    Massart, P.2
  • 8
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • BREIMAN, L. (1996). Bagging predictors. Machine Learning 24 123-140.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 10
    • 0043289776 scopus 로고    scopus 로고
    • Analyzing bagging
    • BÜHLMANN, P. and YU, B. (2002). Analyzing bagging. Ann. Statist. 30 927-961.
    • (2002) Ann. Statist. , vol.30 , pp. 927-961
    • Bühlmann, P.1    Yu, B.2
  • 14
    • 0000765066 scopus 로고
    • Metric entropy of some classes of sets with differentiable boundaries
    • DUDLEY, R. M. (1974). Metric entropy of some classes of sets with differentiable boundaries. J. Approximation Theory 10 227-236.
    • (1974) J. Approximation Theory , vol.10 , pp. 227-236
    • Dudley, R.M.1
  • 15
    • 0346398192 scopus 로고    scopus 로고
    • Scale-sensitive dimensions and skeleton estimates for classification
    • HORVÁTH, M. and LUGOSI, G. (1998). Scale-sensitive dimensions and skeleton estimates for classification. Discrete Appl. Math. 86 37-61.
    • (1998) Discrete Appl. Math. , vol.86 , pp. 37-61
    • Horváth, M.1    Lugosi, G.2
  • 16
    • 0035397715 scopus 로고    scopus 로고
    • Rademacher penalties and structural risk minimization
    • KOLTCHINSKII, V. (2001). Rademacher penalties and structural risk minimization. IEEE Trans. Inform. Theory 47 1902-1914.
    • (2001) IEEE Trans. Inform. Theory , vol.47 , pp. 1902-1914
    • Koltchinskii, V.1
  • 17
    • 0036104545 scopus 로고    scopus 로고
    • Empirical margin distributions and bounding the generalization error of combined classifiers
    • KOLTCHINSKII, V. and PANCHENKO, D. (2002). Empirical margin distributions and bounding the generalization error of combined classifiers. Ann. Statist. 30 1-50.
    • (2002) Ann. Statist. , vol.30 , pp. 1-50
    • Koltchinskii, V.1    Panchenko, D.2
  • 18
  • 19
    • 0000012624 scopus 로고
    • A problem of adaptive estimation in Gaussian white noise
    • LEPSKI, O. V. (1990). A problem of adaptive estimation in Gaussian white noise. Theory Probab. Appl. 35 454-166.
    • (1990) Theory Probab. Appl. , vol.35 , pp. 454-1166
    • Lepski, O.V.1
  • 20
    • 0033234644 scopus 로고    scopus 로고
    • Adaptive model selection using empirical complexities
    • LUGOSI, G. and NOBEL, A. (1999). Adaptive model selection using empirical complexities. Ann. Statist. 27 1830-1864.
    • (1999) Ann. Statist. , vol.27 , pp. 1830-1864
    • Lugosi, G.1    Nobel, A.2
  • 21
    • 21844497119 scopus 로고
    • Asymptotical minimax recovery of sets with smooth boundaries
    • MAMMEN, E. and TSYBAKOV, A. B. (1995). Asymptotical minimax recovery of sets with smooth boundaries. Ann. Statist. 23 502-524.
    • (1995) Ann. Statist. , vol.23 , pp. 502-524
    • Mammen, E.1    Tsybakov, A.B.2
  • 22
    • 0033234630 scopus 로고    scopus 로고
    • Smooth discrimination analysis
    • MAMMEN, E. and TSYBAKOV, A. B. (1999). Smooth discrimination analysis. Ann. Statist. 27 1808-1829.
    • (1999) Ann. Statist. , vol.27 , pp. 1808-1829
    • Mammen, E.1    Tsybakov, A.B.2
  • 23
    • 0000595627 scopus 로고    scopus 로고
    • Some applications of concentration inequalities to statistics
    • MASSART, P. (2000). Some applications of concentration inequalities to statistics. Ann. Fac. Sci. Toulouse Math. 9 245-303.
    • (2000) Ann. Fac. Sci. Toulouse Math. , vol.9 , pp. 245-303
    • Massart, P.1
  • 24
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • SCHAPIRE, R. E., FREUND, Y., BARTLETT, P. L. and LEE, W. S. (1998). Boosting the margin: A new explanation for the effectiveness of voting methods. Ann. Statist. 26 1651-1686.
    • (1998) Ann. Statist. , vol.26 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.L.3    Lee, W.S.4
  • 26
    • 4744370055 scopus 로고    scopus 로고
    • Discussion of "Random rates in anisotropic regression," by M. Hoffmann and O. Lepskii
    • TSYBAKOV, A. B. (2002). Discussion of "Random rates in anisotropic regression," by M. Hoffmann and O. Lepskii. Ann. Statist. 30 379-385.
    • (2002) Ann. Statist. , vol.30 , pp. 379-385
    • Tsybakov, A.B.1
  • 32
    • 0033321586 scopus 로고    scopus 로고
    • Minimax nonparametric classification. I. Rates of convergence. II. Model selection for adaptation
    • YANG, Y. (1999). Minimax nonparametric classification. I. Rates of convergence. II. Model selection for adaptation. IEEE Trans. Inform. Theory 45 2271-2292.
    • (1999) IEEE Trans. Inform. Theory , vol.45 , pp. 2271-2292
    • Yang, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.