-
1
-
-
0001325515
-
Approximation and estimation bounds for artificial neural networks
-
A. R. Barron, Approximation and estimation bounds for artificial neural networks, Machine Learning 14 (1994), 115-133.
-
(1994)
Machine Learning
, vol.14
, pp. 115-133
-
-
Barron, A.R.1
-
2
-
-
0033459856
-
Risk bounds for model selection via penalisation
-
A. R. Barron, L. Birgé, and P. Massart, Risk bounds for model selection via penalisation, Probab. Theory Related Fields 113 (1995), 301-403.
-
(1995)
Probab. Theory Related Fields
, vol.113
, pp. 301-403
-
-
Barron, A.R.1
Birgé, L.2
Massart, P.3
-
4
-
-
0036071370
-
On the mathematical foundations of learning
-
F. Cucker and S. Smale, On the mathematical foundations of learning, Bull. Amer. Math. Soc. 39 (2002), 1-49.
-
(2002)
Bull. Amer. Math. Soc.
, vol.39
, pp. 1-49
-
-
Cucker, F.1
Smale, S.2
-
5
-
-
0034419669
-
Regularization networks and support vector machines
-
T. Evgeniou, M. Pontil, and T. Poggio, Regularization networks and support vector machines, Adv. in Comput. Math. 13 (2000), 1-50.
-
(2000)
Adv. in Comput. Math.
, vol.13
, pp. 1-50
-
-
Evgeniou, T.1
Pontil, M.2
Poggio, T.3
-
6
-
-
32044449925
-
Generalized cross-validation as a method for choosing a good ridge parameter
-
G. Golub, M. Heat, and G. Wahba, Generalized cross-validation as a method for choosing a good ridge parameter, Technometrics 21 (1979), 215-223.
-
(1979)
Technometrics
, vol.21
, pp. 215-223
-
-
Golub, G.1
Heat, M.2
Wahba, G.3
-
8
-
-
0001066342
-
Asymptotically minimax adaptive estimation. I: Upper bounds, optimally adaptive estimates
-
O. V. Lepskii, Asymptotically minimax adaptive estimation. I: Upper bounds, optimally adaptive estimates, Theory Probab. Appl. 36 (1991), 682-697.
-
(1991)
Theory Probab. Appl.
, vol.36
, pp. 682-697
-
-
Lepskii, O.V.1
-
9
-
-
0007267891
-
Asymptotically minimax adaptive estimation. II: Schemes without optimal adaption, adaptive estimators
-
O. V. Lepskii, Asymptotically minimax adaptive estimation. II: Schemes without optimal adaption, adaptive estimators, Theory Probab. Appl. 37 (1992), 433-448.
-
(1992)
Theory Probab. Appl.
, vol.37
, pp. 433-448
-
-
Lepskii, O.V.1
-
11
-
-
0000482137
-
On the relationship between generalization error, hypothesis complexity and sample complexity for radial basis functions
-
P. Niyogi and F. Girosi, On the relationship between generalization error, hypothesis complexity and sample complexity for radial basis functions, Neural Comput. 8 (1996), 819-842.
-
(1996)
Neural Comput.
, vol.8
, pp. 819-842
-
-
Niyogi, P.1
Girosi, F.2
-
12
-
-
0033480745
-
Generalization bounds for function approximation from scattered noisy data
-
P. Niyogi and F. Girosi, Generalization bounds for function approximation from scattered noisy data, Adv. in Comput. Math. 50 (1999), 51-80.
-
(1999)
Adv. in Comput. Math.
, vol.50
, pp. 51-80
-
-
Niyogi, P.1
Girosi, F.2
-
15
-
-
84876628219
-
The covering numbers in learning theory
-
to appear
-
D.-X. Zhou, The covering numbers in learning theory, J. Complexity 2001 (to appear).
-
(2001)
J. Complexity
-
-
Zhou, D.-X.1
|