메뉴 건너뛰기




Volumn 9, Issue , 2005, Pages 323-375

Theory of classification: A survey of some recent advances

Author keywords

Concentration inequalities; Empirical processes; Model selection; Pattern recognition; Statistical learning theory

Indexed keywords

PATTERN RECOGNITION;

EID: 84924053271     PISSN: 12928100     EISSN: 12623318     Source Type: Journal    
DOI: 10.1051/ps:2005018     Document Type: Article
Times cited : (510)

References (244)
  • 1
    • 0000911221 scopus 로고
    • Bounds on conditional probabilities with applications in multi-user communication
    • correction in 39 (1977) 353-354
    • R. Ahlswede, P. Gács and J. Körner, Bounds on conditional probabilities with applications in multi-user communication. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 34 (1976) 157-177. (correction in 39 (1977) 353-354).
    • (1976) Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete , vol.34 , pp. 157-177
    • Ahlswede, R.1    Gács, P.2    Körner, J.3
  • 2
    • 33747454027 scopus 로고
    • The method of potential functions for the problem of restoring the characteristic of a function converter from randomly observed points
    • M.A. Aizerman, E.M. Braverman and L.I. Rozonoer, The method of potential functions for the problem of restoring the characteristic of a function converter from randomly observed points. Automat. Remote Control 25 (1964) 1546-1556.
    • (1964) Automat. Remote Control , vol.25 , pp. 1546-1556
    • Aizerman, M.A.1    Braverman, E.M.2    Rozonoer, L.I.3
  • 3
    • 33747467331 scopus 로고
    • The probability problem of pattern recognition learning and the method of potential functions
    • M.A. Aizerman, E.M. Braverman and L.I. Rozonoer, The probability problem of pattern recognition learning and the method of potential functions. Automat. Remote Control 25 (1964) 1307-1323.
    • (1964) Automat. Remote Control , vol.25 , pp. 1307-1323
    • Aizerman, M.A.1    Braverman, E.M.2    Rozonoer, L.I.3
  • 4
    • 84932021208 scopus 로고
    • Theoretical foundations of the potential function method in pattern recognition learning
    • M.A. Aizerman, E.M. Braverman and L.I. Rozonoer, Theoretical foundations of the potential function method in pattern recognition learning. Automat. Remote Control 25 (1964) 917-936.
    • (1964) Automat. Remote Control , vol.25 , pp. 917-936
    • Aizerman, M.A.1    Braverman, E.M.2    Rozonoer, L.I.3
  • 6
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • H. Akaike, A new look at the statistical model identification. IEEE Trans. Automat. Control 19 (1974) 716-723.
    • (1974) IEEE Trans. Automat. Control , vol.19 , pp. 716-723
    • Akaike, H.1
  • 7
    • 0031519029 scopus 로고    scopus 로고
    • A remark on the Szarek-Talagrand theorem
    • S. Alesker, A remark on the Szarek-Talagrand theorem. Combin. Probab. Comput. 6 (1997) 139-144.
    • (1997) Combin. Probab. Comput. , vol.6 , pp. 139-144
    • Alesker, S.1
  • 8
    • 0031176507 scopus 로고    scopus 로고
    • Scale-sensitive dimensions, uniform convergence, and learnability
    • N. Alon, S. Ben-David, N. Cesa-Bianchi and D. Haussler, Scale-sensitive dimensions, uniform convergence, and learnability. J. ACM 44 (1997) 615-631.
    • (1997) J. ACM , vol.44 , pp. 615-631
    • Alon, N.1    Ben-David, S.2    Cesa-Bianchi, N.3    Haussler, D.4
  • 10
    • 0003487046 scopus 로고
    • Cambridge Tracts in Theoretical Computer Science (30). Cambridge University Press, Cambridge
    • M. Anthony and N. Biggs, Computational Learning Theory. Cambridge Tracts in Theoretical Computer Science (30). Cambridge University Press, Cambridge (1992).
    • (1992) Computational Learning Theory
    • Anthony, M.1    Biggs, N.2
  • 13
    • 0042967689 scopus 로고    scopus 로고
    • Data-dependent margin-based generalization bounds for classification
    • A. Antos, B. Kégl, T. Linder and G. Lugosi, Data-dependent margin-based generalization bounds for classification. J. Machine Learning Res. 3 (2002) 73-98.
    • (2002) J. Machine Learning Res. , vol.3 , pp. 73-98
    • Antos, A.1    Kégl, B.2    Linder, T.3    Lugosi, G.4
  • 14
    • 0031698444 scopus 로고    scopus 로고
    • Strong minimax lower bounds for learning
    • A. Antos and G. Lugosi, Strong minimax lower bounds for learning. Machine Learning 30 (1998) 31-56.
    • (1998) Machine Learning , vol.30 , pp. 31-56
    • Antos, A.1    Lugosi, G.2
  • 16
    • 84898977749 scopus 로고    scopus 로고
    • Pac-Bayesian generic chaining
    • L. Saul, S. Thrun and B. Schölkopf Eds., Cambridge, Mass., MIT Press
    • J.-Y. Audibert and O. Bousquet, Pac-Bayesian generic chaining, in Advances in Neural Information Processing Systems 16, L. Saul, S. Thrun and B. Schölkopf Eds., Cambridge, Mass., MIT Press (2004).
    • (2004) Advances in Neural Information Processing Systems , vol.16
    • Audibert, J.-Y.1    Bousquet, O.2
  • 18
    • 84972574511 scopus 로고
    • Weighted sums of certain dependent random variables
    • K. Azuma, Weighted sums of certain dependent random variables. Tohoku Math. J. 68 (1967) 357-367.
    • (1967) Tohoku Math. J. , vol.68 , pp. 357-367
    • Azuma, K.1
  • 19
    • 0034398141 scopus 로고    scopus 로고
    • Model selection for regression on a fixed design
    • Y. Baraud, Model selection for regression on a fixed design. Probability Theory and Related Fields 117 (2000) 467-493.
    • (2000) Probability Theory and Related Fields , vol.117 , pp. 467-493
    • Baraud, Y.1
  • 21
    • 0003757634 scopus 로고
    • Technical Report TR 56, Department of Statistics, Stanford University
    • A.R. Barron, Logically smooth density estimation. Technical Report TR 56, Department of Statistics, Stanford University (1985).
    • (1985) Logically Smooth Density Estimation
    • Barron, A.R.1
  • 22
    • 0001347323 scopus 로고
    • Complexity regularization with application to artificial neural networks
    • G. Roussas Ed. NATO ASI Series, Kluwer Academic Publishers, Dordrecht
    • A.R. Barron, Complexity regularization with application to artificial neural networks, in Nonparametric Functional Estimation and Related Topics, G. Roussas Ed. NATO ASI Series, Kluwer Academic Publishers, Dordrecht (1991) 561-576.
    • (1991) Nonparametric Functional Estimation and Related Topics , pp. 561-576
    • Barron, A.R.1
  • 26
    • 0037031025 scopus 로고    scopus 로고
    • Hardness results for neural network approximation problems
    • P.L. Bartlett and S. Ben-David, Hardness results for neural network approximation problems. Theoret. Comput. Sci. 284 (2002) 53-66.
    • (2002) Theoret. Comput. Sci. , vol.284 , pp. 53-66
    • Bartlett, P.L.1    Ben-David, S.2
  • 28
    • 4644327403 scopus 로고    scopus 로고
    • Vapnik-Chervonenkis dimension of neural nets
    • M.A. Arbib Ed. MIT Press, second edition
    • P.L. Bartlett and W. Maass, Vapnik-Chervonenkis dimension of neural nets, in Handbook Brain Theory Neural Networks, M.A. Arbib Ed. MIT Press, second edition. (2003) 1188-1192.
    • (2003) Handbook Brain Theory Neural Networks , pp. 1188-1192
    • Bartlett, P.L.1    Maass, W.2
  • 29
    • 0038453192 scopus 로고    scopus 로고
    • Rademacher and gaussian complexities: Risk bounds and structural results
    • P.L. Bartlett and S. Mendelson, Rademacher and gaussian complexities: risk bounds and structural results. J. Machine Learning Res. 3 (2002) 463-482.
    • (2002) J. Machine Learning Res. , vol.3 , pp. 463-482
    • Bartlett, P.L.1    Mendelson, S.2
  • 31
    • 0039607373 scopus 로고
    • Potential function algorithms for pattern recognition learning machines
    • O. Bashkirov, E.M. Braverman and I.E. Muchnik, Potential function algorithms for pattern recognition learning machines. Automat. Remote Control 25 (1964) 692-695.
    • (1964) Automat. Remote Control , vol.25 , pp. 692-695
    • Bashkirov, O.1    Braverman, E.M.2    Muchnik, I.E.3
  • 32
    • 0042967747 scopus 로고    scopus 로고
    • Limitations of learning via embeddings in Euclidean half spaces
    • S. Ben-David, N. Eiron and H.-U. Simon, Limitations of learning via embeddings in Euclidean half spaces. J. Machine Learning Res. 3 (2002) 441-461.
    • (2002) J. Machine Learning Res. , vol.3 , pp. 441-461
    • Ben-David, S.1    Eiron, N.2    Simon, H.-U.3
  • 33
    • 0001917727 scopus 로고
    • Probability inequalities for the sum of independent random variables
    • G. Bennett, Probability inequalities for the sum of independent random variables. J. Amer. Statis. Assoc. 57 (1962) 33-45.
    • (1962) J. Amer. Statis. Assoc. , vol.57 , pp. 33-45
    • Bennett, G.1
  • 35
    • 0042613398 scopus 로고    scopus 로고
    • An alternative point of view on Lepski's method
    • State of the art in probability and statistics (Leiden, 1999), Inst. Math. Statist., Beachwood, OH
    • L. Birgé, An alternative point of view on Lepski's method, in State of the art in probability and statistics (Leiden, 1999), Inst. Math. Statist., Beachwood, OH, IMS Lecture Notes Monogr. Ser. 36 (2001) 113-133.
    • (2001) IMS Lecture Notes Monogr. Ser. , vol.36 , pp. 113-133
    • Birgé, L.1
  • 36
    • 21344492381 scopus 로고
    • Rates of convergence for minimum contrast estimators
    • L. Birgé and P. Massart, Rates of convergence for minimum contrast estimators. Probab. Theory Related Fields 97 (1993) 113-150.
    • (1993) Probab. Theory Related Fields , vol.97 , pp. 113-150
    • Birgé, L.1    Massart, P.2
  • 38
    • 0000492892 scopus 로고    scopus 로고
    • Minimum contrast estimators on sieves: Exponential bounds and rates of convergence
    • L. Birgé and P. Massart, Minimum contrast estimators on sieves: exponential bounds and rates of convergence. Bernoulli 4 (1998) 329-375.
    • (1998) Bernoulli , vol.4 , pp. 329-375
    • Birgé, L.1    Massart, P.2
  • 39
    • 48849111622 scopus 로고    scopus 로고
    • Statistical performance of support vector machines
    • to appear
    • G. Blanchard, O. Bousquet and P. Massart, Statistical performance of support vector machines. Ann. Statist., to appear (2006).
    • (2006) Ann. Statist.
    • Blanchard, G.1    Bousquet, O.2    Massart, P.3
  • 40
    • 3042675892 scopus 로고    scopus 로고
    • On the rates of convergence of regularized boosting classifiers
    • G. Blanchard, G. Lugosi and N. Vayatis, On the rates of convergence of regularized boosting classifiers. J. Machine Learning Res. 4 (2003) 861-894.
    • (2003) J. Machine Learning Res. , vol.4 , pp. 861-894
    • Blanchard, G.1    Lugosi, G.2    Vayatis, N.3
  • 41
    • 0024750852 scopus 로고
    • Learnability and the Vapnik-Chervonenkis dimension
    • A. Blumer, A. Ehrenfeucht, D. Haussler and M.K. Warmuth, Learnability and the Vapnik-Chervonenkis dimension. J. ACM 36 (1989) 929-965.
    • (1989) J. ACM , vol.36 , pp. 929-965
    • Blumer, A.1    Ehrenfeucht, A.2    Haussler, D.3    Warmuth, M.K.4
  • 42
    • 0031484536 scopus 로고    scopus 로고
    • Poincaré's inequalities and Talagrands's concentration phenomenon for the exponential distribution
    • S. Bobkov and M. Ledoux, Poincaré's inequalities and Talagrands's concentration phenomenon for the exponential distribution. Probab. Theory Related Fields 107 (1997) 383-400.
    • (1997) Probab. Theory Related Fields , vol.107 , pp. 383-400
    • Bobkov, S.1    Ledoux, M.2
  • 44
    • 17044422233 scopus 로고    scopus 로고
    • Moment inequalities for functions of independent random variables
    • S. Boucheron, O. Bousquet, G. Lugosi and P. Massart, Moment inequalities for functions of independent random variables. Ann. Probab. 33 (2005) 514-560.
    • (2005) Ann. Probab. , vol.33 , pp. 514-560
    • Boucheron, S.1    Bousquet, O.2    Lugosi, G.3    Massart, P.4
  • 46
    • 0038373013 scopus 로고    scopus 로고
    • Concentration inequalities using the entropy method
    • S. Boucheron, G. Lugosi and P. Massart, Concentration inequalities using the entropy method. Ann. Probab. 31 (2003) 1583-1614.
    • (2003) Ann. Probab. , vol.31 , pp. 1583-1614
    • Boucheron, S.1    Lugosi, G.2    Massart, P.3
  • 47
    • 0037561860 scopus 로고    scopus 로고
    • A Bennett concentration inequality and its application to suprema of empirical processes
    • O. Bousquet, A Bennett concentration inequality and its application to suprema of empirical processes. C. R. Acad. Sci. Paris 334 (2002) 495-500.
    • (2002) C. R. Acad. Sci. Paris , vol.334 , pp. 495-500
    • Bousquet, O.1
  • 48
    • 18844378634 scopus 로고    scopus 로고
    • Concentration inequalities for sub-additive functions using the entropy method
    • C. Houdré E. Giné and D. Nualart Eds., Birkhauser
    • O. Bousquet, Concentration inequalities for sub-additive functions using the entropy method, in Stochastic Inequalities and Applications, C. Houdré E. Giné and D. Nualart Eds., Birkhauser (2003).
    • (2003) Stochastic Inequalities and Applications
    • Bousquet, O.1
  • 51
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifiers
    • L. Breiman, Arcing classifiers. Ann. Statist. 26 (1998) 801-849.
    • (1998) Ann. Statist. , vol.26 , pp. 801-849
    • Breiman, L.1
  • 52
    • 14644395930 scopus 로고    scopus 로고
    • Some infinite theory for predictor ensembles
    • L. Breiman, Some infinite theory for predictor ensembles. Ann. Statist. 32 (2004) 1-11.
    • (2004) Ann. Statist. , vol.32 , pp. 1-11
    • Breiman, L.1
  • 54
    • 0043245810 scopus 로고    scopus 로고
    • 2-loss: Regression and classification
    • P. Bühlmann and B. Yu, Boosting with the l2-loss: Regression and classification. J. Amer. Statis. Assoc. 98 (2004) 324-339.
    • (2004) J. Amer. Statis. Assoc. , vol.98 , pp. 324-339
    • Bühlmann, P.1    Yu, B.2
  • 56
    • 0042265613 scopus 로고    scopus 로고
    • Density estimation via exponential model selection
    • G. Castellan, Density estimation via exponential model selection. IEEE Trans. Inform. Theory 49 (2003) 2052-2060.
    • (2003) IEEE Trans. Inform. Theory , vol.49 , pp. 2052-2060
    • Castellan, G.1
  • 58
    • 33646360369 scopus 로고    scopus 로고
    • Statistical learning theory and stochastic optimization
    • École d'été de Probabilités de Saint-Flour XXXI. Springer-Verlag
    • O. Catoni, Statistical learning theory and stochastic optimization. École d'été de Probabilités de Saint-Flour XXXI. Springer-Verlag. Lect. Notes Math. 1851 (2004).
    • (2004) Lect. Notes Math. , vol.1851
    • Catoni, O.1
  • 60
    • 0345767185 scopus 로고    scopus 로고
    • A graph-theoretic generalization of the Sauer-Shelah lemma
    • N. Cesa-Bianchi and D. Haussler, A graph-theoretic generalization of the Sauer-Shelah lemma. Discrete Appl. Math. 86 (1998) 27-35.
    • (1998) Discrete Appl. Math. , vol.86 , pp. 27-35
    • Cesa-Bianchi, N.1    Haussler, D.2
  • 61
    • 0036643072 scopus 로고    scopus 로고
    • Logistic regression, AdaBoost and Bregman distances
    • M. Collins, R.E. Schapire and Y. Singer, Logistic regression, AdaBoost and Bregman distances. Machine Learning 48 (2002) 253-285.
    • (2002) Machine Learning , vol.48 , pp. 253-285
    • Collins, M.1    Schapire, R.E.2    Singer, Y.3
  • 63
    • 84918441630 scopus 로고
    • Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition
    • T.M. Cover, Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition. IEEE Trans. Electronic Comput. 14 (1965) 326-334.
    • (1965) IEEE Trans. Electronic Comput. , vol.14 , pp. 326-334
    • Cover, T.M.1
  • 64
    • 34250263445 scopus 로고
    • Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross-validation
    • P. Craven and G. Wahba, Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalized cross-validation. Numer. Math. 31 (1979) 377-403.
    • (1979) Numer. Math. , vol.31 , pp. 377-403
    • Craven, P.1    Wahba, G.2
  • 66
    • 0036611605 scopus 로고    scopus 로고
    • Large-scale typicality of Markov sample paths and consistency of MDL order estimators
    • I. Csiszár, Large-scale typicality of Markov sample paths and consistency of MDL order estimators. IEEE Trans. Inform. Theory 48 (2002) 1616-1628.
    • (2002) IEEE Trans. Inform. Theory , vol.48 , pp. 1616-1628
    • Csiszár, I.1
  • 67
    • 0034343421 scopus 로고    scopus 로고
    • The consistency of the BIC Markov order estimator
    • I. Csiszár and P. Shields, The consistency of the BIC Markov order estimator. Ann. Statist. 28 (2000) 1601-1619.
    • (2000) Ann. Statist. , vol.28 , pp. 1601-1619
    • Csiszár, I.1    Shields, P.2
  • 68
    • 0036071370 scopus 로고    scopus 로고
    • On the mathematical foundations of learning
    • F. Cucker and S. Smale, On the mathematical foundations of learning. Bull. Amer. Math. Soc. (2002) 1-50.
    • (2002) Bull. Amer. Math. Soc. , pp. 1-50
    • Cucker, F.1    Smale, S.2
  • 69
    • 0031514634 scopus 로고    scopus 로고
    • Information inequalities and concentration of measure
    • A. Dembo, Information inequalities and concentration of measure. Ann. Probab. 25 (1997) 927-939.
    • (1997) Ann. Probab. , vol.25 , pp. 927-939
    • Dembo, A.1
  • 71
    • 0024053797 scopus 로고
    • Automatic pattern recognition: A study of the probability of error
    • L. Devroye, Automatic pattern recognition: A study of the probability of error. IEEE Trans. Pattern Anal. Machine Intelligence 10 (1988) 530-543.
    • (1988) IEEE Trans. Pattern Anal. Machine Intelligence , vol.10 , pp. 530-543
    • Devroye, L.1
  • 73
    • 0029342607 scopus 로고
    • Lower bounds in pattern recognition and learning
    • L. Devroye and G. Lugosi, Lower bounds in pattern recognition and learning. Pattern Recognition 28 (1995) 1011-1018.
    • (1995) Pattern Recognition , vol.28 , pp. 1011-1018
    • Devroye, L.1    Lugosi, G.2
  • 74
    • 0018444763 scopus 로고
    • Distribution-free inequalities for the deleted and holdout error estimates
    • L. Devroye and T. Wagner, Distribution-free inequalities for the deleted and holdout error estimates. IEEE Trans. Inform. Theory 25(2) (1979) 202-207.
    • (1979) IEEE Trans. Inform. Theory , vol.25 , Issue.2 , pp. 202-207
    • Devroye, L.1    Wagner, T.2
  • 75
    • 0018520640 scopus 로고
    • Distribution-free performance bounds for potential function rules
    • L. Devroye and T. Wagner, Distribution-free performance bounds for potential function rules. IEEE Trans. Inform. Theory 25(5) (1979) 601-604.
    • (1979) IEEE Trans. Inform. Theory , vol.25 , Issue.5 , pp. 601-604
    • Devroye, L.1    Wagner, T.2
  • 76
    • 0041958932 scopus 로고
    • Ideal spatial adaptation by wavelet shrinkage
    • D.L. Donoho and I.M. Johnstone, Ideal spatial adaptation by wavelet shrinkage. Biometrika 81(3) (1994) 425-455.
    • (1994) Biometrika , vol.81 , Issue.3 , pp. 425-455
    • Donoho, D.L.1    Johnstone, I.M.2
  • 79
    • 0000421687 scopus 로고
    • Central limit theorems for empirical measures
    • R.M. Dudley, Central limit theorems for empirical measures. Ann. Probab. 6 (1978) 899-929.
    • (1978) Ann. Probab. , vol.6 , pp. 899-929
    • Dudley, R.M.1
  • 80
    • 0011275803 scopus 로고
    • k do not cut all subsets of k + 2 points
    • R.M. Dudley, Balls in Rk do not cut all subsets of k + 2 points. Advances Math. 31 (3) (1979) 306-308.
    • (1979) Advances Math. , vol.31 , Issue.3 , pp. 306-308
    • Dudley, R.M.1
  • 81
    • 0000085854 scopus 로고
    • Empirical processes in École de Probabilité de St. Flour 1982
    • R.M. Dudley, Empirical processes, in École de Probabilité de St. Flour 1982. Lect. Notes Math. 1097 (1984).
    • (1984) Lect. Notes Math. , vol.1097
    • Dudley, R.M.1
  • 82
    • 0001605679 scopus 로고
    • Universal Donsker classes and metric entropy
    • R.M. Dudley, Universal Donsker classes and metric entropy. Ann. Probab. 15 (1987) 1306-1326.
    • (1987) Ann. Probab. , vol.15 , pp. 1306-1326
    • Dudley, R.M.1
  • 84
    • 0000050198 scopus 로고
    • Uniform and universal Glivenko-Cantelli classes
    • R.M. Dudley, E. Giné and J. Zinn, Uniform and universal Glivenko-Cantelli classes. J. Theoret. Probab. 4 (1991) 485-510.
    • (1991) J. Theoret. Probab. , vol.4 , pp. 485-510
    • Dudley, R.M.1    Giné, E.2    Zinn, J.3
  • 85
    • 0002344794 scopus 로고
    • Bootstrap methods: Another look at the jackknife
    • B. Efron, Bootstrap methods: another look at the jackknife. Ann. Statist. 7 (1979) 1-26.
    • (1979) Ann. Statist. , vol.7 , pp. 1-26
    • Efron, B.1
  • 88
    • 0024739191 scopus 로고
    • A general lower bound on the number of examples needed for learning
    • A. Ehrenfeucht, D. Haussler, M. Kearns and L. Valiant, A general lower bound on the number of examples needed for learning. Inform. Comput. 82 (1989) 247-261.
    • (1989) Inform. Comput. , vol.82 , pp. 247-261
    • Ehrenfeucht, A.1    Haussler, D.2    Kearns, M.3    Valiant, L.4
  • 89
    • 0002439508 scopus 로고    scopus 로고
    • Regularization networks and support vector machines
    • A.J. Smola, P.L. Bartlett B. Schölkopf and D. Schuurmans, Eds., Cambridge, MA, MIT Press.
    • T. Evgeniou, M. Pontil and T. Poggio, Regularization networks and support vector machines, in Advances in Large Margin Classifiers, A.J. Smola, P.L. Bartlett B. Schölkopf and D. Schuurmans, Eds., Cambridge, MA, MIT Press. (2000) 171-203.
    • (2000) Advances in Large Margin Classifiers , pp. 171-203
    • Evgeniou, T.1    Pontil, M.2    Poggio, T.3
  • 90
    • 0037600798 scopus 로고
    • On the trace of finite sets
    • P. Frankl, On the trace of finite sets. J. Combin. Theory, Ser. A 34 (1983) 41-45.
    • (1983) J. Combin. Theory, Ser. A , vol.34 , pp. 41-45
    • Frankl, P.1
  • 91
    • 58149321460 scopus 로고
    • Boosting a weak learning algorithm by majority
    • Y. Freund, Boosting a weak learning algorithm by majority. Inform. Comput. 121 (1995) 256-285.
    • (1995) Inform. Comput. , vol.121 , pp. 256-285
    • Freund, Y.1
  • 93
    • 24344500472 scopus 로고    scopus 로고
    • Generalization bounds for averaged classifiers (how to be a Bayesian without believing)
    • Y. Freund, Y. Mansour and R.E. Schapire, Generalization bounds for averaged classifiers (how to be a Bayesian without believing). Ann. Statist. (2004).
    • (2004) Ann. Statist.
    • Freund, Y.1    Mansour, Y.2    Schapire, R.E.3
  • 94
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Y. Freund and R. Schapire, A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55 (1997) 119-139.
    • (1997) J. Comput. Syst. Sci. , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.2
  • 95
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • J. Friedman, T. Hastie and R. Tibshirani, Additive logistic regression: a statistical view of boosting. Ann. Statist. 28 (2000) 337-374.
    • (2000) Ann. Statist. , vol.28 , pp. 337-374
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 98
    • 0002957273 scopus 로고    scopus 로고
    • Empirical processes and applications: An overview
    • E. Giné, Empirical processes and applications: an overview. Bernoulli 2 (1996) 1-28.
    • (1996) Bernoulli , vol.2 , pp. 1-28
    • Giné, E.1
  • 99
    • 0000145024 scopus 로고
    • Some limit theorems for empirical processes
    • E. Giné and J. Zinn, Some limit theorems for empirical processes. Ann. Probab. 12 (1984) 929-989.
    • (1984) Ann. Probab. , vol.12 , pp. 929-989
    • Giné, E.1    Zinn, J.2
  • 100
    • 0347559217 scopus 로고    scopus 로고
    • Lectures on some aspects of the bootstrap
    • Lectures on probability theory and statistics (Saint-Flour, 1996)
    • E. Giné, Lectures on some aspects of the bootstrap, in Lectures on probability theory and statistics (Saint-Flour, 1996). Lect. Notes Math. 1665 (1997) 37-151.
    • (1997) Lect. Notes Math. , vol.1665 , pp. 37-151
    • Giné, E.1
  • 101
    • 0029256399 scopus 로고
    • Bounding the Vapnik-Chervonenkis dimension of concept classes parametrized by real numbers
    • P. Goldberg and M. Jerrum, Bounding the Vapnik-Chervonenkis dimension of concept classes parametrized by real numbers. Machine Learning 18 (1995) 131-148.
    • (1995) Machine Learning , vol.18 , pp. 131-148
    • Goldberg, P.1    Jerrum, M.2
  • 102
  • 103
    • 0000638595 scopus 로고
    • Large sample optimality of least squares cross-validation in density estimation
    • P. Hall, Large sample optimality of least squares cross-validation in density estimation. Ann. Statist. 11 (1983) 1156-1174.
    • (1983) Ann. Statist. , vol.11 , pp. 1156-1174
    • Hall, P.1
  • 105
    • 0002192516 scopus 로고
    • Decision theoretic generalizations of the pac model for neural nets and other learning applications
    • D. Haussler, Decision theoretic generalizations of the pac model for neural nets and other learning applications. Inform. Comput. 100 (1992) 78-150.
    • (1992) Inform. Comput. , vol.100 , pp. 78-150
    • Haussler, D.1
  • 106
    • 0000996139 scopus 로고
    • Sphere packing numbers for subsets of the boolean n-cube with bounded Vapnik-Chervonenkis dimension
    • D. Haussler, Sphere packing numbers for subsets of the boolean n-cube with bounded Vapnik-Chervonenkis dimension. J. Combin. Theory, Ser. A 69 (1995) 217-232.
    • (1995) J. Combin. Theory, Ser. A , vol.69 , pp. 217-232
    • Haussler, D.1
  • 109
    • 84947403595 scopus 로고
    • Probability inequalities for sums of bounded random variables
    • W. Hoeffding, Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58 (1963) 13-30.
    • (1963) J. Amer. Statist. Assoc. , vol.58 , pp. 13-30
    • Hoeffding, W.1
  • 110
    • 0000250624 scopus 로고
    • The behavior of the maximum likelihood estimates under non-standard conditions
    • Univ. California Press
    • P. Huber, The behavior of the maximum likelihood estimates under non-standard conditions, in Proc. Fifth Berkeley Symposium on Probability and Mathematical Statistics, Univ. California Press (1967) 221-233.
    • (1967) Proc. Fifth Berkeley Symposium on Probability and Mathematical Statistics , pp. 221-233
    • Huber, P.1
  • 111
    • 26444545593 scopus 로고    scopus 로고
    • Process consistency for adaboost
    • W. Jiang, Process consistency for adaboost. Ann. Statist. 32 (2004) 13-29.
    • (2004) Ann. Statist. , vol.32 , pp. 13-29
    • Jiang, W.1
  • 114
    • 0031077292 scopus 로고    scopus 로고
    • Polynomial bounds for vc dimension of sigmoidal and general pfaffian neural networks
    • M. Karpinski and A. Macintyre, Polynomial bounds for vc dimension of sigmoidal and general pfaffian neural networks. J. Comput. Syst. Sci. 54 (1997).
    • (1997) J. Comput. Syst. Sci. , vol.54
    • Karpinski, M.1    Macintyre, A.2
  • 116
    • 0033566418 scopus 로고    scopus 로고
    • Algorithmic stability and sanity-check bounds for leave-one-out cross-validation
    • M.J. Kearns and D. Ron, Algorithmic stability and sanity-check bounds for leave-one-out cross-validation. Neural Comput. 11(6) (1999) 1427-1453.
    • (1999) Neural Comput. , vol.11 , Issue.6 , pp. 1427-1453
    • Kearns, M.J.1    Ron, D.2
  • 119
    • 0027601935 scopus 로고
    • Strongly consistent code-based identification and order estimation for constrained finite-state model classes
    • J.C. Kieffer, Strongly consistent code-based identification and order estimation for constrained finite-state model classes. IEEE Trans. Inform. Theory 39 (1993) 893-902.
    • (1993) IEEE Trans. Inform. Theory , vol.39 , pp. 893-902
    • Kieffer, J.C.1
  • 120
    • 0000406385 scopus 로고
    • A correspondence between Bayesian estimation on stochastic processes and smoothing by splines
    • G.S. Kimeldorf and G. Wahba, A correspondence between Bayesian estimation on stochastic processes and smoothing by splines. Ann. Math. Statist. 41 (1970) 495-502.
    • (1970) Ann. Math. Statist. , vol.41 , pp. 495-502
    • Kimeldorf, G.S.1    Wahba, G.2
  • 121
    • 0031077291 scopus 로고    scopus 로고
    • Neural networks with quadratic vc dimension
    • P. Koiran and E.D. Sontag, Neural networks with quadratic vc dimension. J. Comput. Syst. Sci. 54 (1997).
    • (1997) J. Comput. Syst. Sci. , vol.54
    • Koiran, P.1    Sontag, E.D.2
  • 122
    • 0001321136 scopus 로고
    • On the representation of continuous functions of several variables by superposition of continuous functions of one variable and addition
    • A.N. Kolmogorov, On the representation of continuous functions of several variables by superposition of continuous functions of one variable and addition. Dokl. Akad. Nauk SSSR 114 (1957) 953-956.
    • (1957) Dokl. Akad. Nauk SSSR , vol.114 , pp. 953-956
    • Kolmogorov, A.N.1
  • 123
    • 0000624821 scopus 로고
    • ε-entropy and ε-capacity of sets in functional spaces
    • A.N. Kolmogorov and V.M. Tikhomirov, ε-entropy and ε-capacity of sets in functional spaces. Amer. Math. Soc. Transl., Ser. 2 17 (1961) 277-364.
    • (1961) Amer. Math. Soc. Transl., Ser. , vol.2 , Issue.17 , pp. 277-364
    • Kolmogorov, A.N.1    Tikhomirov, V.M.2
  • 124
    • 0035397715 scopus 로고    scopus 로고
    • Rademacher penalties and structural risk minimization
    • V. Koltchinskii, Rademacher penalties and structural risk minimization. IEEE Trans. Inform. Theory 47 (2001) 1902-1914.
    • (2001) IEEE Trans. Inform. Theory , vol.47 , pp. 1902-1914
    • Koltchinskii, V.1
  • 126
    • 0001166808 scopus 로고    scopus 로고
    • Rademacher processes and bounding the risk of function learning
    • E. Giné, D.M. Mason and J.A. Wellner, Eds.
    • V. Koltchinskii and D. Panchenko, Rademacher processes and bounding the risk of function learning, in High Dimensional Probability II, E. Giné, D.M. Mason and J.A. Wellner, Eds. (2000) 443-459.
    • (2000) High Dimensional Probability II , pp. 443-459
    • Koltchinskii, V.1    Panchenko, D.2
  • 127
    • 0036104545 scopus 로고    scopus 로고
    • Empirical margin distributions and bounding the generalization error of combined classifiers
    • V. Koltchinskii and D. Panchenko, Empirical margin distributions and bounding the generalization error of combined classifiers. Ann. Statist. 30 (2002).
    • (2002) Ann. Statist. , vol.30
    • Koltchinskii, V.1    Panchenko, D.2
  • 128
    • 0032182920 scopus 로고    scopus 로고
    • Learning pattern classification - A survey
    • Information Theory: 1948-1998. Commemorative special issue
    • S. Kulkarni, G. Lugosi and S. Venkatesh, Learning pattern classification - a survey. IEEE Trans. Inform. Theory 44 (1998) 2178-2206. Information Theory: 1948-1998. Commemorative special issue.
    • (1998) IEEE Trans. Inform. Theory , vol.44 , pp. 2178-2206
    • Kulkarni, S.1    Lugosi, G.2    Venkatesh, S.3
  • 131
    • 0000639280 scopus 로고    scopus 로고
    • Isoperimetry and gaussian analysis
    • P. Bernard Ed., École d'Été de Probabilités de St-Flour XXIV-1994
    • M. Ledoux, Isoperimetry and gaussian analysis in Lectures on Probability Theory and Statistics, P. Bernard Ed., École d'Été de Probabilités de St-Flour XXIV-1994 (1996) 165-294.
    • (1996) Lectures on Probability Theory and Statistics , pp. 165-294
    • Ledoux, M.1
  • 132
    • 84996133877 scopus 로고    scopus 로고
    • On Talagrand's deviation inequalities for product measures
    • M. Ledoux, On Talagrand's deviation inequalities for product measures. ESAIM: PS 1 (1997) 63-87.
    • (1997) ESAIM: PS , vol.1 , pp. 63-87
    • Ledoux, M.1
  • 135
    • 0031504935 scopus 로고    scopus 로고
    • Optimal spatial adaptation to inhomogeneous smoothness: An approach based on kernel estimates with variable bandwidth selectors
    • O.V. LepskiѤ, E. Mammen and V.G. Spokoiny, Optimal spatial adaptation to inhomogeneous smoothness: an approach based on kernel estimates with variable bandwidth selectors. Ann. Statist. 25 (1997) 929-947.
    • (1997) Ann. Statist. , vol.25 , pp. 929-947
    • LepskiѤ, O.V.1    Mammen, E.2    Spokoiny, V.G.3
  • 136
    • 0000012624 scopus 로고
    • A problem of adaptive estimation in Gaussian white noise
    • O.V. LepskiѤ, A problem of adaptive estimation in Gaussian white noise. Teor. Veroyatnost. i Primenen. 35 (1990) 459-470.
    • (1990) Teor. Veroyatnost. i Primenen. , vol.35 , pp. 459-470
    • LepskiѤ, O.V.1
  • 137
    • 0005443544 scopus 로고
    • Asymptotically minimax adaptive estimation. I. Upper bounds. Optimally adaptive estimates
    • O.V. LepskiѤ, Asymptotically minimax adaptive estimation. I. Upper bounds. Optimally adaptive estimates. Teor. Veroyatnost. i Primenen. 36 (1991) 645-659.
    • (1991) Teor. Veroyatnost. i Primenen. , vol.36 , pp. 645-659
    • LepskiѤ, O.V.1
  • 138
    • 0035340553 scopus 로고    scopus 로고
    • Improved bounds on the sample complexity of learning
    • Y. Li, P.M. Long and A. Srinivasan, Improved bounds on the sample complexity of learning. J. Comput. Syst. Sci. 62 (2001) 516-527.
    • (2001) J. Comput. Syst. Sci. , vol.62 , pp. 516-527
    • Li, Y.1    Long, P.M.2    Srinivasan, A.3
  • 139
  • 140
    • 0242520265 scopus 로고    scopus 로고
    • Technical Report 1044r, Department of Statistics, University of Wisconsin, Madison
    • Y. Lin, Some asymptotic properties of the support vector machine. Technical Report 1044r, Department of Statistics, University of Wisconsin, Madison (1999).
    • (1999) Some Asymptotic Properties of the Support Vector Machine
    • Lin, Y.1
  • 141
    • 0036258405 scopus 로고    scopus 로고
    • Support vector machines and the bayes rule in classification
    • Y. Lin, Support vector machines and the bayes rule in classification. Data Mining and Knowledge Discovery 6 (2002) 259-275.
    • (2002) Data Mining and Knowledge Discovery , vol.6 , pp. 259-275
    • Lin, Y.1
  • 143
    • 84867925611 scopus 로고    scopus 로고
    • Concentration for locally acting permutations
    • M.J. Luczak and C. McDiarmid, Concentration for locally acting permutations. Discrete Math. 265 (2003) 159-171.
    • (2003) Discrete Math. , vol.265 , pp. 159-171
    • Luczak, M.J.1    McDiarmid, C.2
  • 144
    • 0005375288 scopus 로고    scopus 로고
    • Pattern classification and learning theory
    • L. Györfi Ed., Springer, Wien
    • G. Lugosi, Pattern classification and learning theory, in Principles of Nonparametric Learning, L. Györfi Ed., Springer, Wien (2002) 5-62.
    • (2002) Principles of Nonparametric Learning , pp. 5-62
    • Lugosi, G.1
  • 145
    • 0033234644 scopus 로고    scopus 로고
    • Adaptive model selection using empirical complexities
    • G. Lugosi and A. Nobel, Adaptive model selection using empirical complexities. Ann. Statist. 27 (1999) 1830-1864.
    • (1999) Ann. Statist. , vol.27 , pp. 1830-1864
    • Lugosi, G.1    Nobel, A.2
  • 146
    • 9444269961 scopus 로고    scopus 로고
    • On the Bayes-risk consistency of regularized boosting methods
    • G. Lugosi and N. Vayatis, On the Bayes-risk consistency of regularized boosting methods. Ann. Statist. 32 (2004) 30-55.
    • (2004) Ann. Statist. , vol.32 , pp. 30-55
    • Lugosi, G.1    Vayatis, N.2
  • 147
    • 23744490659 scopus 로고    scopus 로고
    • Complexity regularization via localized random penalties
    • G. Lugosi and M. Wegkamp, Complexity regularization via localized random penalties. Ann. Statist. 2 (2004) 1679-1697.
    • (2004) Ann. Statist. , vol.2 , pp. 1679-1697
    • Lugosi, G.1    Wegkamp, M.2
  • 148
    • 0029754587 scopus 로고    scopus 로고
    • Concept learning using complexity regularization
    • G. Lugosi and K. Zeger, Concept learning using complexity regularization. IEEE Trans. Inform. Theory 42 (1996) 48-54.
    • (1996) IEEE Trans. Inform. Theory , vol.42 , pp. 48-54
    • Lugosi, G.1    Zeger, K.2
  • 150
    • 84915425007 scopus 로고    scopus 로고
    • p
    • C.L. Mallows, Some comments on Cp. Technometrics 15 (1997) 661-675.
    • (1997) Technometrics , vol.15 , pp. 661-675
    • Mallows, C.L.1
  • 151
    • 0033234630 scopus 로고    scopus 로고
    • Smooth discrimination analysis
    • E. Mammen and A. Tsybakov, Smooth discrimination analysis. Ann. Statist. 27(6) (1999) 1808-1829.
    • (1999) Ann. Statist. , vol.27 , Issue.6 , pp. 1808-1829
    • Mammen, E.1    Tsybakov, A.2
  • 154
    • 0022720166 scopus 로고
    • A simple proof of the blowing-up lemma
    • K. Marton, A simple proof of the blowing-up lemma. IEEE Trans. Inform. Theory 32 (1986) 445-446.
    • (1986) IEEE Trans. Inform. Theory , vol.32 , pp. 445-446
    • Marton, K.1
  • 155
    • 0030514042 scopus 로고    scopus 로고
    • Bounding d¯-distance by informational divergence: A way to prove measure concentration
    • K. Marton, Bounding d¯-distance by informational divergence: a way to prove measure concentration. Ann. Probab. 24 (1996) 857-866.
    • (1996) Ann. Probab. , vol.24 , pp. 857-866
    • Marton, K.1
  • 156
    • 0030557447 scopus 로고    scopus 로고
    • A measure concentration inequality for contracting Markov chains
    • Erratum: 7 (1997) 609-613
    • K. Marton, A measure concentration inequality for contracting Markov chains. Geometric Functional Analysis 6 (1996) 556-571. Erratum: 7 (1997) 609-613.
    • (1996) Geometric Functional Analysis , vol.6 , pp. 556-571
    • Marton, K.1
  • 157
    • 0002550596 scopus 로고    scopus 로고
    • Functional gradient techniques for combining hypotheses
    • A.J. Smola, P.L. Bartlett, B. Schölkopf and D. Schuurmans Eds., MIT Press, Cambridge, MA
    • L. Mason, J. Baxter, P.L. Bartlett and M. Frean, Functional gradient techniques for combining hypotheses, in Advances in Large Margin Classifiers, A.J. Smola, P.L. Bartlett, B. Schölkopf and D. Schuurmans Eds., MIT Press, Cambridge, MA (1999) 221-247.
    • (1999) Advances in Large Margin Classifiers , pp. 221-247
    • Mason, L.1    Baxter, J.2    Bartlett, P.L.3    Frean, M.4
  • 159
    • 0034345597 scopus 로고    scopus 로고
    • About the constants in Talagrand's concentration inequalities for empirical processes
    • P. Massart, About the constants in Talagrand's concentration inequalities for empirical processes. Ann. Probab. 28 (2000) 863-884.
    • (2000) Ann. Probab. , vol.28 , pp. 863-884
    • Massart, P.1
  • 160
    • 0000595627 scopus 로고    scopus 로고
    • Some applications of concentration inequalities to statistics
    • P. Massart, Some applications of concentration inequalities to statistics. Ann. Fac. Sci. Toulouse IX (2000) 245-303.
    • (2000) Ann. Fac. Sci. Toulouse IX , pp. 245-303
    • Massart, P.1
  • 162
    • 33746094123 scopus 로고    scopus 로고
    • Risk bounds for statistical learning
    • to appear
    • P. Massart and E. Nédélec, Risk bounds for statistical learning, Ann. Statist., to appear.
    • Ann. Statist.
    • Massart, P.1    Nédélec, E.2
  • 165
    • 0037399538 scopus 로고    scopus 로고
    • Pac-Bayesian stochastic model selection
    • D.A. McAllester, pac-Bayesian stochastic model selection. Machine Learning 51 (2003) 5-21.
    • (2003) Machine Learning , vol.51 , pp. 5-21
    • McAllester, D.A.1
  • 166
    • 0001035413 scopus 로고
    • On the method of bounded differences
    • Cambridge University Press, Cambridge
    • C. McDiarmid, On the method of bounded differences, in Surveys in Combinatorics 1989, Cambridge University Press, Cambridge (1989) 148-188.
    • (1989) Surveys in Combinatorics 1989 , pp. 148-188
    • McDiarmid, C.1
  • 167
    • 0000672724 scopus 로고    scopus 로고
    • Concentration
    • M. Habib, C. McDiarmid, J. Ramirez-Alfonsin and B. Reed Eds., Springer, New York
    • C. McDiarmid, Concentration, in Probabilistic Methods for Algorithmic Discrete Mathematics, M. Habib, C. McDiarmid, J. Ramirez-Alfonsin and B. Reed Eds., Springer, New York (1998) 195-248.
    • (1998) Probabilistic Methods for Algorithmic Discrete Mathematics , pp. 195-248
    • McDiarmid, C.1
  • 168
    • 0036004171 scopus 로고    scopus 로고
    • Concentration for independent permutations
    • C. McDiarmid, Concentration for independent permutations. Combin. Probab. Comput. 2 (2002) 163-178.
    • (2002) Combin. Probab. Comput. , vol.2 , pp. 163-178
    • McDiarmid, C.1
  • 170
    • 0036648803 scopus 로고    scopus 로고
    • Improving the sample complexity using global data
    • S. Mendelson, Improving the sample complexity using global data. IEEE Trans. Inform. Theory 48 (2002) 1977-1991.
    • (2002) IEEE Trans. Inform. Theory , vol.48 , pp. 1977-1991
    • Mendelson, S.1
  • 171
    • 35248851077 scopus 로고    scopus 로고
    • A few notes on statistical learning theory, in Advanced Lectures in Machine Learning
    • S. Mendelson and A. Smola Eds., Springer
    • S. Mendelson, A few notes on statistical learning theory, in Advanced Lectures in Machine Learning. Lect. Notes Comput. Sci. 2600, S. Mendelson and A. Smola Eds., Springer (2003) 1-40.
    • (2003) Lect. Notes Comput. Sci. , vol.2600 , pp. 1-40
    • Mendelson, S.1
  • 172
    • 84897541071 scopus 로고    scopus 로고
    • On the importance of "small" coordinate projections
    • S. Mendelson and P. Philips, On the importance of "small" coordinate projections. J. Machine Learning Res. 5 (2004) 219-238.
    • (2004) J. Machine Learning Res. , vol.5 , pp. 219-238
    • Mendelson, S.1    Philips, P.2
  • 176
    • 0347979483 scopus 로고    scopus 로고
    • A note on Talagrand's concentration inequality
    • D. Panchenko, A note on Talagrand's concentration inequality. Electron. Comm. Probab. 6 (2001).
    • (2001) Electron. Comm. Probab. , vol.6
    • Panchenko, D.1
  • 177
    • 0347349284 scopus 로고    scopus 로고
    • Some extensions of an inequality of Vapnik and Chervonenkis
    • D. Panchenko, Some extensions of an inequality of Vapnik and Chervonenkis. Electron. Comm. Probab. 7 (2002).
    • (2002) Electron. Comm. Probab. , vol.7
    • Panchenko, D.1
  • 178
    • 0347593390 scopus 로고    scopus 로고
    • Symmetrization approach to concentration inequalities for empirical processes
    • D. Panchenko, Symmetrization approach to concentration inequalities for empirical processes. Ann. Probab. 31 (2003) 2068-2081.
    • (2003) Ann. Probab. , vol.31 , pp. 2068-2081
    • Panchenko, D.1
  • 179
    • 1842420581 scopus 로고    scopus 로고
    • General conditions for predictivity in learning theory
    • T. Poggio, S. Rifkin, S. Mukherjee and P. Niyogi, General conditions for predictivity in learning theory. Nature 428 (2004) 419-422.
    • (2004) Nature , vol.428 , pp. 419-422
    • Poggio, T.1    Rifkin, S.2    Mukherjee, S.3    Niyogi, P.4
  • 181
    • 0001191685 scopus 로고
    • Uniform ratio limit theorems for empirical processes
    • D. Pollard, Uniform ratio limit theorems for empirical processes. Scand. J. Statist. 22 (1995) 271-278.
    • (1995) Scand. J. Statist. , vol.22 , pp. 271-278
    • Pollard, D.1
  • 182
    • 0001030653 scopus 로고
    • Measuring mass concentrations and estimating density contour clusters-an excess mass approach
    • W. Polonik, Measuring mass concentrations and estimating density contour clusters-an excess mass approach. Ann. Statist. 23(3) (1995) 855-881.
    • (1995) Ann. Statist. , vol.23 , Issue.3 , pp. 855-881
    • Polonik, W.1
  • 183
    • 0040437027 scopus 로고    scopus 로고
    • Inégalités de concentration pour les processus empiriques de classes de parties
    • E. Rio, Inégalités de concentration pour les processus empiriques de classes de parties. Probab. Theory Related Fields 119 (2001) 163-175.
    • (2001) Probab. Theory Related Fields , vol.119 , pp. 163-175
    • Rio, E.1
  • 186
    • 0037551756 scopus 로고
    • A finite sample distribution-free performance bound for local discrimination rules
    • W.H. Rogers and T.J. Wagner, A finite sample distribution-free performance bound for local discrimination rules. Ann. Statist. 6 (1978) 506-514.
    • (1978) Ann. Statist. , vol.6 , pp. 506-514
    • Rogers, W.H.1    Wagner, T.J.2
  • 187
    • 84924079271 scopus 로고    scopus 로고
    • Combinatorics of random processes and sections of convex bodies
    • to appear
    • M. Rudelson, R. Vershynin, Combinatorics of random processes and sections of convex bodies. Ann. Math, to appear (2004).
    • (2004) Ann. Math
    • Rudelson, M.1    Vershynin, R.2
  • 188
    • 0001703864 scopus 로고
    • On the density of families of sets
    • N. Sauer, On the density of families of sets. J. Combin. Theory, Ser A 13 (1972) 145-147.
    • (1972) J. Combin. Theory, ser A , vol.13 , pp. 145-147
    • Sauer, N.1
  • 189
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • R.E. Schapire, The strength of weak learnability. Machine Learning 5 (1990) 197-227.
    • (1990) Machine Learning , vol.5 , pp. 197-227
    • Schapire, R.E.1
  • 190
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • R.E. Schapire, Y. Freund, P. Bartlett and W.S. Lee, Boosting the margin: a new explanation for the effectiveness of voting methods. Ann. Statist. 26 (1998) 1651-1686.
    • (1998) Ann. Statist. , vol.26 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.3    Lee, W.S.4
  • 194
    • 0041464774 scopus 로고    scopus 로고
    • PAC-Bayesian generalisation error bounds for gaussian process classification
    • M. Seeger, PAC-Bayesian generalisation error bounds for gaussian process classification. J. Machine Learning Res. 3 (2002) 233-269.
    • (2002) J. Machine Learning Res. , vol.3 , pp. 233-269
    • Seeger, M.1
  • 196
    • 84972576948 scopus 로고
    • A combinatorial problem: Stability and order for models and theories in infinity languages
    • S. Shelah, A combinatorial problem: Stability and order for models and theories in infinity languages. Pacific J. Mathematics 41 (1972) 247-261.
    • (1972) Pacific J. Mathematics , vol.41 , pp. 247-261
    • Shelah, S.1
  • 198
    • 0027808303 scopus 로고
    • General lower bounds on the number of examples needed for learning probabilistic concepts
    • Association for Computing Machinery, New York
    • H.U. Simon, General lower bounds on the number of examples needed for learning probabilistic concepts, in Proc. of the Sixth Annual ACM Conference on Computational Learning Theory, Association for Computing Machinery, New York (1993) 402-412.
    • (1993) Proc. of the Sixth Annual ACM Conference on Computational Learning Theory , pp. 402-412
    • Simon, H.U.1
  • 200
    • 0032098361 scopus 로고    scopus 로고
    • The connection between regularization operators and support vector kernels
    • A.J. Smola, B. Schölkopf and K.-R. Müller, The connection between regularization operators and support vector kernels. Neural Networks 11 (1998) 637-649.
    • (1998) Neural Networks , vol.11 , pp. 637-649
    • Smola, A.J.1    Schölkopf, B.2    Müller, K.-R.3
  • 201
    • 0025399335 scopus 로고
    • Probabilistic neural networks and the polynomial Adaline as complementary techniques for classification
    • D.F. Specht, Probabilistic neural networks and the polynomial Adaline as complementary techniques for classification. IEEE Trans. Neural Networks 1 (1990) 111-121.
    • (1990) IEEE Trans. Neural Networks , vol.1 , pp. 111-121
    • Specht, D.F.1
  • 202
    • 0041525684 scopus 로고
    • Existence of submatrices with all possible columns
    • J.M. Steele, Existence of submatrices with all possible columns. J. Combin. Theory, Ser. A 28 (1978) 84-88.
    • (1978) J. Combin. Theory, Ser. A , vol.28 , pp. 84-88
    • Steele, J.M.1
  • 203
    • 0010786475 scopus 로고    scopus 로고
    • On the influence of the kernel on the consistency of support vector machines
    • I. Steinwart, On the influence of the kernel on the consistency of support vector machines. J. Machine Learning Res. (2001) 67-93.
    • (2001) J. Machine Learning Res. , pp. 67-93
    • Steinwart, I.1
  • 204
    • 12444265838 scopus 로고    scopus 로고
    • Consistency of support vector machines and other regularized kernel machines
    • I. Steinwart, Consistency of support vector machines and other regularized kernel machines. IEEE Trans. Inform. Theory 51(2005) 128-142.
    • (2005) IEEE Trans. Inform. Theory , vol.51 , pp. 128-142
    • Steinwart, I.1
  • 205
    • 0036749277 scopus 로고    scopus 로고
    • Support vector machines are universally consistent
    • I. Steinwart, Support vector machines are universally consistent. J. Complexity 18 (2002) 768-791.
    • (2002) J. Complexity , vol.18 , pp. 768-791
    • Steinwart, I.1
  • 206
    • 0142039767 scopus 로고    scopus 로고
    • On the optimal parameter choice in ν-support vector machines
    • I. Steinwart, On the optimal parameter choice in ν-support vector machines. IEEE Trans. Pattern Anal. Machine Intelligence 25 (2003) 1274-1284.
    • (2003) IEEE Trans. Pattern Anal. Machine Intelligence , vol.25 , pp. 1274-1284
    • Steinwart, I.1
  • 207
    • 4644354708 scopus 로고    scopus 로고
    • Sparseness of support vector machines
    • I. Steinwart, Sparseness of support vector machines. J. Machine Learning Res. 4 (2003) 1071-1105.
    • (2003) J. Machine Learning Res. , vol.4 , pp. 1071-1105
    • Steinwart, I.1
  • 209
    • 0000080373 scopus 로고
    • The Glivenko-Cantelli problem
    • M. Talagrand, The Glivenko-Cantelli problem. Ann. Probab. 15 (1987) 837-870.
    • (1987) Ann. Probab. , vol.15 , pp. 837-870
    • Talagrand, M.1
  • 210
    • 0001957366 scopus 로고
    • Sharper bounds for Gaussian and empirical processes
    • M. Talagrand, Sharper bounds for Gaussian and empirical processes. Ann. Probab. 22 (1994) 28-76.
    • (1994) Ann. Probab. , vol.22 , pp. 28-76
    • Talagrand, M.1
  • 211
    • 51249165477 scopus 로고
    • Concentration of measure and isoperimetric inequalities in product spaces
    • M. Talagrand, Concentration of measure and isoperimetric inequalities in product spaces. Publications Mathématiques de l'I.H.E.S. 81 (1995) 73-205.
    • (1995) Publications Mathématiques de L'I.H.E.S. , vol.81 , pp. 73-205
    • Talagrand, M.1
  • 212
    • 21344444087 scopus 로고    scopus 로고
    • The Glivenko-Cantelli problem, ten years later
    • M. Talagrand, The Glivenko-Cantelli problem, ten years later. J. Theoret. Probab. 9 (1996) 371-384.
    • (1996) J. Theoret. Probab. , vol.9 , pp. 371-384
    • Talagrand, M.1
  • 213
    • 0030369277 scopus 로고    scopus 로고
    • Majorizing measures: The generic chaining
    • Special Invited Paper
    • M. Talagrand, Majorizing measures: the generic chaining. Ann. Probab. 24 (1996) 1049-1103. (Special Invited Paper).
    • (1996) Ann. Probab. , vol.24 , pp. 1049-1103
    • Talagrand, M.1
  • 214
    • 0030489977 scopus 로고    scopus 로고
    • New concentration inequalities in product spaces
    • M. Talagrand, New concentration inequalities in product spaces. Inventiones Mathematicae 126 (1996) 505-563.
    • (1996) Inventiones Mathematicae , vol.126 , pp. 505-563
    • Talagrand, M.1
  • 215
    • 0030522124 scopus 로고    scopus 로고
    • A new look at independence
    • Special Invited Paper
    • M. Talagrand, A new look at independence. Ann. Probab. 24 (1996) 1-34. (Special Invited Paper).
    • (1996) Ann. Probab. , vol.24 , pp. 1-34
    • Talagrand, M.1
  • 216
    • 0037696883 scopus 로고    scopus 로고
    • Vapnik-Chervonenkis type conditions and uniform Donsker classes of functions
    • M. Talagrand, Vapnik-Chervonenkis type conditions and uniform Donsker classes of functions. Ann. Probab. 31 (2003) 1565-1582.
    • (2003) Ann. Probab. , vol.31 , pp. 1565-1582
    • Talagrand, M.1
  • 218
    • 0031478562 scopus 로고    scopus 로고
    • On nonparametric estimation of density level sets
    • A. Tsybakov. On nonparametric estimation of density level sets. Ann. Stat. 25 (1997) 948-969.
    • (1997) Ann. Stat. , vol.25 , pp. 948-969
    • Tsybakov, A.1
  • 219
    • 3142725508 scopus 로고    scopus 로고
    • Optimal aggregation of classifiers in statistical learning
    • A.B. Tsybakov, Optimal aggregation of classifiers in statistical learning. Ann. Statist. 32 (2004) 135-166.
    • (2004) Ann. Statist. , vol.32 , pp. 135-166
    • Tsybakov, A.B.1
  • 221
    • 23744505130 scopus 로고    scopus 로고
    • Square root penalty: Adaptation to the margin in classification and in edge estimation
    • to appear
    • A. Tsybakov and S. van de Geer, Square root penalty: adaptation to the margin in classification and in edge estimation. Ann. Statist., to appear (2005).
    • (2005) Ann. Statist.
    • Tsybakov, A.1    Van De Geer, S.2
  • 222
    • 0006531393 scopus 로고
    • A new approach to least-squares estimation, with applications
    • S. Van de Geer, A new approach to least-squares estimation, with applications. Ann. Statist. 15 (1987) 587-602.
    • (1987) Ann. Statist. , vol.15 , pp. 587-602
    • Van De Geer, S.1
  • 223
    • 0000709835 scopus 로고
    • Estimating a regression function
    • S. Van de Geer, Estimating a regression function. Ann. Statist. 18 (1990) 907-924.
    • (1990) Ann. Statist. , vol.18 , pp. 907-924
    • Van De Geer, S.1
  • 226
    • 0010864753 scopus 로고
    • Pattern recognition using generalized portrait method
    • V. Vapnik and A. Lerner, Pattern recognition using generalized portrait method. Automat. Remote Control 24 (1963) 774-780.
    • (1963) Automat. Remote Control , vol.24 , pp. 774-780
    • Vapnik, V.1    Lerner, A.2
  • 230
    • 0001024505 scopus 로고
    • On the uniform convergence of relative frequencies of events to their probabilities
    • V.N. Vapnik and A.Ya. Chervonenkis, On the uniform convergence of relative frequencies of events to their probabilities.Theory Probab. Appl. 16 (1971) 264-280.
    • (1971) Theory Probab. Appl. , vol.16 , pp. 264-280
    • Vapnik, V.N.1    Chervonenkis, A.Ya.2
  • 232
    • 0005071949 scopus 로고
    • Akademie Verlag, Berlin
    • German translation: Theorie der Zeichenerkennung, Akademie Verlag, Berlin (1979).
    • (1979) Theorie der Zeichenerkennung
  • 233
    • 0001954668 scopus 로고
    • Necessary and sufficient conditions for the uniform convergence of means to their expectations
    • V.N. Vapnik and A.Ya. Chervonenkis, Necessary and sufficient conditions for the uniform convergence of means to their expectations. Theory Probab. Appl. 26 (1981) 821-832.
    • (1981) Theory Probab. Appl. , vol.26 , pp. 821-832
    • Vapnik, V.N.1    Chervonenkis, A.Ya.2
  • 235
    • 0032202061 scopus 로고    scopus 로고
    • On the infeasibility of training neural networks with small mean squared error
    • V. Vu, On the infeasibility of training neural networks with small mean squared error. IEEE Trans. Inform. Theory 44 (1998) 2892-2900.
    • (1998) IEEE Trans. Inform. Theory , vol.44 , pp. 2892-2900
    • Vu, V.1
  • 236
    • 21144432799 scopus 로고    scopus 로고
    • Model selection in nonparametric regression
    • M. Wegkamp, Model selection in nonparametric regression. Ann. Statist. 31(1) (2003) 252-273.
    • (2003) Ann. Statist. , vol.31 , Issue.1 , pp. 252-273
    • Wegkamp, M.1
  • 237
    • 0000392470 scopus 로고
    • Some special Vapnik-Chervonenkis classes
    • R.S. Wenocur and R.M. Dudley, Some special Vapnik-Chervonenkis classes. Discrete Math. 33 (1981) 313-318.
    • (1981) Discrete Math. , vol.33 , pp. 313-318
    • Wenocur, R.S.1    Dudley, R.M.2
  • 238
    • 0033321586 scopus 로고    scopus 로고
    • Minimax nonparametric classification. I. Rates of convergence
    • Y. Yang, Minimax nonparametric classification. I. Rates of convergence. IEEE Trans. Inform. Theory 45(7) (1999) 2271-2284.
    • (1999) IEEE Trans. Inform. Theory , vol.45 , Issue.7 , pp. 2271-2284
    • Yang, Y.1
  • 239
    • 0033356514 scopus 로고    scopus 로고
    • Minimax nonparametric classification. II. Model selection for adaptation
    • Y. Yang, Minimax nonparametric classification. II. Model selection for adaptation. IEEE Trans. Inform. Theory 45(7) (1999) 2285-2292.
    • (1999) IEEE Trans. Inform. Theory , vol.45 , Issue.7 , pp. 2285-2292
    • Yang, Y.1
  • 240
    • 0347607206 scopus 로고    scopus 로고
    • Adaptive estimation in pattern recognition by combining different procedures
    • Y. Yang, Adaptive estimation in pattern recognition by combining different procedures. Statistica Sinica 10 (2000) 1069-1089.
    • (2000) Statistica Sinica , vol.10 , pp. 1069-1089
    • Yang, Y.1
  • 241
    • 0000297410 scopus 로고
    • Exponential bounds for large deviations
    • V.V. Yurinksii, Exponential bounds for large deviations. Theory Probab. Appl. 19 (1974) 154-155.
    • (1974) Theory Probab. Appl. , vol.19 , pp. 154-155
    • Yurinksii, V.V.1
  • 242
    • 0000836223 scopus 로고
    • Exponential inequalities for sums of random vectors
    • V.V. Yurinksii, Exponential inequalities for sums of random vectors. J. Multivariate Anal. 6 (1976) 473-499.
    • (1976) J. Multivariate Anal. , vol.6 , pp. 473-499
    • Yurinksii, V.V.1
  • 243
    • 4644257995 scopus 로고    scopus 로고
    • Statistical behavior and consistency of classification methods based on convex risk minimization
    • T. Zhang, Statistical behavior and consistency of classification methods based on convex risk minimization. Ann. Statist. 32 (2004) 56-85.
    • (2004) Ann. Statist. , vol.32 , pp. 56-85
    • Zhang, T.1
  • 244
    • 0038105204 scopus 로고    scopus 로고
    • Capacity of reproducing kernel spaces in learning theory
    • D.-X. Zhou, Capacity of reproducing kernel spaces in learning theory. IEEE Trans. Inform. Theory 49 (2003) 1743-1752.
    • (2003) IEEE Trans. Inform. Theory , vol.49 , pp. 1743-1752
    • Zhou, D.-X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.