-
1
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
D. Haussler (Ed.). Pittsburgh, PA: ACM Press
-
Boser, B.E., Guyon, I.M., and Vapnik, V.N. 1992. A training algorithm for optimal margin classifiers. In Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory, D. Haussler (Ed.). Pittsburgh, PA: ACM Press.
-
(1992)
Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory
-
-
Boser, B.E.1
Guyon, I.M.2
Vapnik, V.N.3
-
2
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
Burges, C.J.C. 1998. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2):121-167.
-
(1998)
Data Mining and Knowledge Discovery
, vol.2
, Issue.2
, pp. 121-167
-
-
Burges, C.J.C.1
-
4
-
-
0000541146
-
Asymptotic analysis of penalized likelihood and related estimates
-
Cox, D.D. and O'Sullivan, F. 1990. Asymptotic analysis of penalized likelihood and related estimates. The Annals of Statistics, 18(4): 1676-1695.
-
(1990)
The Annals of Statistics
, vol.18
, Issue.4
, pp. 1676-1695
-
-
Cox, D.D.1
O'Sullivan, F.2
-
5
-
-
0003798631
-
A unified framework for regularization networks and support vector machines
-
M.I.T. Artificial Intelligence Laboratory and Center for Biological and Computational Learning, Department of Brain and Cognitive Sciences
-
Evgeniou, T., Pontil, M., and Poggio, T. 1999. A unified framework for regularization networks and support vector machines. Technical Report, M.I.T. Artificial Intelligence Laboratory and Center for Biological and Computational Learning, Department of Brain and Cognitive Sciences.
-
(1999)
Technical Report
-
-
Evgeniou, T.1
Pontil, M.2
Poggio, T.3
-
6
-
-
21744462998
-
On bias, variance, 0/1-loss, and the curse-of-dimensionality
-
Friedman, J.H. 1997. On bias, variance, 0/1-loss, and the curse-of-dimensionality. Data Mining and Knowledge Discovery, 1(1):55-77.
-
(1997)
Data Mining and Knowledge Discovery
, vol.1
, Issue.1
, pp. 55-77
-
-
Friedman, J.H.1
-
7
-
-
0001559380
-
Solving the quadratic programming problem arising in support vector classification
-
B. Schölkopf, C.J.C. Burges, and A.J. Smola (Eds.). Cambridge, MA: MIT Press
-
Kaufman, L. 1999. Solving the quadratic programming problem arising in support vector classification. In Advances in Kernel Methods - Support Vector Learning, B. Schölkopf, C.J.C. Burges, and A.J. Smola (Eds.). Cambridge, MA: MIT Press, pp. 147-168.
-
(1999)
Advances in Kernel Methods - Support Vector Learning
, pp. 147-168
-
-
Kaufman, L.1
-
9
-
-
0034366751
-
Tensor product space ANOVA models
-
Lin, Y. 2000a. Tensor product space ANOVA models. The Annals of Statistics, 28(3):734-755.
-
(2000)
The Annals of Statistics
, vol.28
, Issue.3
, pp. 734-755
-
-
Lin, Y.1
-
10
-
-
0003984748
-
On the support vector machine
-
Department of Statistics, University of Wisconsin, Madison
-
Lin, Y. 2000b. On the support vector machine. Technical Report 1029, Department of Statistics, University of Wisconsin, Madison.
-
(2000)
Technical Report
, vol.1029
-
-
Lin, Y.1
-
11
-
-
0036161029
-
Support vector machines for classification in nonstandard situations
-
Lin, Y., Lee, Y., and Wahba, G. 2002. Support vector machines for classification in nonstandard situations. Machine Learning, 46:191-202.
-
(2002)
Machine Learning
, vol.46
, pp. 191-202
-
-
Lin, Y.1
Lee, Y.2
Wahba, G.3
-
12
-
-
0012186186
-
Robust bounds on the generalization from the margin distribution
-
Shawe-Taylor, J. and Cristianini, N. 1998. Robust bounds on the generalization from the margin distribution. Neuro COLT Technical Report TR-1998-029.
-
(1998)
Neuro COLT Technical Report
, vol.TR-1998-029
-
-
Shawe-Taylor, J.1
Cristianini, N.2
-
14
-
-
0003466536
-
-
Philadelphia, PA: Society for Industrial and Applied Mathematics
-
Wahba, G. 1990. Spline Models for Observational Data. Philadelphia, PA: Society for Industrial and Applied Mathematics.
-
(1990)
Spline Models for Observational Data
-
-
Wahba, G.1
-
15
-
-
0001873883
-
Support vector machines, reproducing kernel Hilbert spaces and the randomized GACV
-
B. Scholkopf, C.J.C. Burges, and A.J. Smola (Eds.). Cambridge, MA: MIT Press
-
Wahba, G. 1999. Support vector machines, reproducing kernel Hilbert spaces and the randomized GACV. In Advances in Kernel Methods-Support Vector Learning, B. Scholkopf, C.J.C. Burges, and A.J. Smola (Eds.). Cambridge, MA: MIT Press.
-
(1999)
Advances in Kernel Methods-Support Vector Learning
-
-
Wahba, G.1
-
16
-
-
0003267918
-
GACV for support vector machines, or, another way to look at margin-like quantities
-
A.J. Smola, P. Bartlett, B. Scholkopf, and D. Schurmans (Eds.). Cambridge, MA and London, England: MIT Press
-
Wahba, G., Lin, Y., and Zhang, H. 2000. GACV for support vector machines, or, another way to look at margin-like quantities. In Advances in Large Margin Classifiers, A.J. Smola, P. Bartlett, B. Scholkopf, and D. Schurmans (Eds.). Cambridge, MA and London, England: MIT Press.
-
(2000)
Advances in Large Margin Classifiers
-
-
Wahba, G.1
Lin, Y.2
Zhang, H.3
|