-
2
-
-
0027599793
-
Universal approximation bounds for superpositions of a sigmoidal function
-
A.R. Barron. Universal approximation bounds for superpositions of a sigmoidal function. IEEE Transactions on Information Theory, 39:930-944, 1993.
-
(1993)
IEEE Transactions on Information Theory
, vol.39
, pp. 930-944
-
-
Barron, A.R.1
-
4
-
-
1542367492
-
-
Manuscript
-
P.L. Bartlett, M. I. Jordan, and J. D. McAuliffe. Convexity, classification, and risk bounds. Manuscript, 2003.
-
(2003)
Convexity, Classification, and Risk Bounds
-
-
Bartlett, P.L.1
Jordan, M.I.2
McAuliffe, J.D.3
-
5
-
-
0038453192
-
Rademacher and Gaussian complexities: Risk bounds and structural results
-
P.L. Bartlett and S. Mendelson. Rademacher and Gaussian complexities: risk bounds and structural results. Journal of Machine Learning Research 3, 463-482, 2002.
-
(2002)
Journal of Machine Learning Research
, vol.3
, pp. 463-482
-
-
Bartlett, P.L.1
Mendelson, S.2
-
6
-
-
0036643047
-
Sparse regression ensembles in infinite and finite hypothesis spaces
-
K. Bennett, A. Demiriz, and G. Rátsch. Sparse regression ensembles in infinite and finite hypothesis spaces. Machine Learning, 48:193-221, 2002.
-
(2002)
Machine Learning
, vol.48
, pp. 193-221
-
-
Bennett, K.1
Demiriz, A.2
Rátsch, G.3
-
7
-
-
0000492892
-
Minimum contrast estimators on sieves: Exponential bounds and rates of convergence
-
L. Birgé and P. Massart. Minimum contrast estimators on sieves: exponential bounds and rates of convergence. Bernoulli 4, 329-375, 1998.
-
(1998)
Bernoulli
, vol.4
, pp. 329-375
-
-
Birgé, L.1
Massart, P.2
-
10
-
-
0346786584
-
Arcing classifiers
-
L. Breiman. Arcing classifiers. Annals of Statistics, 26:801-849, 1998.
-
(1998)
Annals of Statistics
, vol.26
, pp. 801-849
-
-
Breiman, L.1
-
11
-
-
0013228784
-
Some infinite theory for predictor ensembles
-
Statistics Department, UC Berkeley
-
L. Breiman. Some infinite theory for predictor ensembles. Technical Report 577, Statistics Department, UC Berkeley, 2000.
-
(2000)
Technical Report
, vol.577
-
-
Breiman, L.1
-
14
-
-
0024861871
-
Approximations by superpositions of sigmoidal functions
-
G. Cybenko. Approximations by superpositions of sigmoidal functions. Math. Control, Signals, Systems, 2:303-314, 1989.
-
(1989)
Math. Control, Signals, Systems
, vol.2
, pp. 303-314
-
-
Cybenko, G.1
-
15
-
-
0031531584
-
Rates of convex approximation in non-Hilbert spaces
-
C. Darken, M. Donahue, L. Gurvits, and E. Sontag. Rates of convex approximation in non-Hilbert spaces. Constructive Approximation, 13(2):187-220, 1997.
-
(1997)
Constructive Approximation
, vol.13
, Issue.2
, pp. 187-220
-
-
Darken, C.1
Donahue, M.2
Gurvits, L.3
Sontag, E.4
-
17
-
-
0000421687
-
Central limit theorems for empirical measures
-
R.M. Dudley. Central limit theorems for empirical measures. Annals of Probability, 6:899-929, 1978.
-
(1978)
Annals of Probability
, vol.6
, pp. 899-929
-
-
Dudley, R.M.1
-
18
-
-
84898984337
-
Potential boosters?
-
S.A. Solla, T.K. Leen, and K.-R. Müller, editors. MIT Press
-
N. Duffy and D. Helmbold. Potential boosters? In S.A. Solla, T.K. Leen, and K.-R. Müller, editors, Advances in Neural Information Processing Systems 12, pages 258-264. MIT Press, 2000.
-
(2000)
Advances in Neural Information Processing Systems
, vol.12
, pp. 258-264
-
-
Duffy, N.1
Helmbold, D.2
-
19
-
-
58149321460
-
Boosting a weak learning algorithm by majority
-
Y. Freund. Boosting a weak learning algorithm by majority. Information and Computation, 121:256-285, 1995.
-
(1995)
Information and Computation
, vol.121
, pp. 256-285
-
-
Freund, Y.1
-
20
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Y. Freund and R. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55:119-139, 1997.
-
(1997)
Journal of Computer and System Sciences
, vol.55
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.2
-
21
-
-
0034164230
-
Additive logistic regression: A statistical view of boosting
-
J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view of boosting. Annals of Statistics, 28:337-374, 2000.
-
(2000)
Annals of Statistics
, vol.28
, pp. 337-374
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
22
-
-
0003085388
-
Rates of convergence for radial basis functions and neural networks
-
Chapman and Hall
-
F. Girosi and G. Anzelloti. Rates of convergence for radial basis functions and neural networks. Artificial Neural Networks for Speech and Vision, p.169-176, Chapman and Hall, 1993.
-
(1993)
Artificial Neural Networks for Speech and Vision
, pp. 169-176
-
-
Girosi, F.1
Anzelloti, G.2
-
24
-
-
0024880831
-
Multi-layer feedforward networks are universal approximators
-
K. Hornik, M. Stinchcombe, and H. White. Multi-layer feedforward networks are universal approximators. Neural Networks, 2:359-366, 1989.
-
(1989)
Neural Networks
, vol.2
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
25
-
-
3142657752
-
Process consistency for AdaBoost
-
to appear (with discussion)
-
W. Jiang. Process consistency for AdaBoost. Annals of Statistics, 2003, to appear (with discussion).
-
(2003)
Annals of Statistics
-
-
Jiang, W.1
-
26
-
-
0036104545
-
Empirical margin distributions and bounding the generalization error of combined classifiers
-
V. Koltchinskii and D. Panchenko. Empirical margin distributions and bounding the generalization error of combined classifiers. Annals of Statistics, 30, 2002.
-
(2002)
Annals of Statistics
, vol.30
-
-
Koltchinskii, V.1
Panchenko, D.2
-
29
-
-
9444269961
-
On the Bayes-risk consistency of regularized boosting methods
-
to appear (with discussion)
-
G. Lugosi and N. Vayatis. On the Bayes-risk consistency of regularized boosting methods. Annals of Statistics, 2003, to appear (with discussion).
-
(2003)
Annals of Statistics
-
-
Lugosi, G.1
Vayatis, N.2
-
30
-
-
0013166467
-
On the approximation of functional classes equipped with a uniform measure using ridge functions
-
V. Maiorov, R. Meir, and J. Ratsaby. On the approximation of functional classes equipped with a uniform measure using ridge functions. Jour. of Approximation Theory, 99:95-111, 1999.
-
(1999)
Jour. of Approximation Theory
, vol.99
, pp. 95-111
-
-
Maiorov, V.1
Meir, R.2
Ratsaby, J.3
-
34
-
-
0002550596
-
Functional gradient techniques for combining hypotheses
-
A.J. Smola, P.L. Bartlett, B. Schölkopf, and D. Schuurmans, editors. MIT Press, Cambridge, MA
-
L. Mason, J. Baxter, P.L. Bartlett, and M. Frean. Functional gradient techniques for combining hypotheses. In A.J. Smola, P.L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 221-247. MIT Press, Cambridge, MA, 1999.
-
(1999)
Advances in Large Margin Classifiers
, pp. 221-247
-
-
Mason, L.1
Baxter, J.2
Bartlett, P.L.3
Frean, M.4
-
35
-
-
0033732457
-
On the Optimality of neural network approximation using incremental algorithms
-
R. Meir and V. Maiorov. On the Optimality of neural network approximation using incremental algorithms. IEEE Trans. Neural Network, 11(2):323-337, 2000.
-
(2000)
IEEE Trans. Neural Network
, vol.11
, Issue.2
, pp. 323-337
-
-
Meir, R.1
Maiorov, V.2
-
36
-
-
35248862907
-
An introduction to boosting and leveraging
-
S. Mendelson and A. Smola, editors, LNCS. Springer. (In press)
-
R. Meir and G. Rätsch. An introduction to boosting and leveraging. In S. Mendelson and A. Smola, editors, Advanced Lectures on Machine Learning, LNCS, pages 119-184. Springer, 2003. (In press).
-
(2003)
Advanced Lectures on Machine Learning
, pp. 119-184
-
-
Meir, R.1
Rätsch, G.2
-
37
-
-
0036648803
-
Improving the sample complexity using global data
-
S. Mendelson. Improving the sample complexity using global data, IEEE Transactions on Information Theory 48(7), 1977-1991, 2002.
-
(2002)
IEEE Transactions on Information Theory
, vol.48
, Issue.7
, pp. 1977-1991
-
-
Mendelson, S.1
-
39
-
-
85011438572
-
Approximation theory of the MLP model in neural networks
-
A. Pinkus. Approximation theory of the MLP model in neural networks. Acta Numerica, 8143-196, 1999.
-
(1999)
Acta Numerica
, pp. 8143-8196
-
-
Pinkus, A.1
-
41
-
-
0025448521
-
The strength of weak learnability
-
R.E. Schapire. The strength of weak learnability. Machine Learning, 5:197-227, 1990.
-
(1990)
Machine Learning
, vol.5
, pp. 197-227
-
-
Schapire, R.E.1
-
42
-
-
0032280519
-
Boosting the margin: A new explanation for the effectiveness of voting methods
-
R.E. Schapire, Y. Freund, P. Bartlett, and W.S. Lee. Boosting the margin: a new explanation for the effectiveness of voting methods. Annals of Statistics, 26:1651-1686, 1998.
-
(1998)
Annals of Statistics
, vol.26
, pp. 1651-1686
-
-
Schapire, R.E.1
Freund, Y.2
Bartlett, P.3
Lee, W.S.4
-
43
-
-
0026953356
-
Feedback stabilization using two-hidden-layer nets
-
E. Sontag. Feedback stabilization using two-hidden-layer nets. IEEE Trans. Neural Networks, 3:981-990, 1992.
-
(1992)
IEEE Trans. Neural Networks
, vol.3
, pp. 981-990
-
-
Sontag, E.1
-
44
-
-
3142738468
-
Optimal aggregation of classifiers in statistical learning
-
to appear
-
A. B. Tsybakov. Optimal aggregation of classifiers in statistical learning. Annals of Statistics, to appear, 2003.
-
(2003)
Annals of Statistics
-
-
Tsybakov, A.B.1
-
46
-
-
0033321586
-
Minimax nonparametric classification - Part I: Rates of convergence
-
Y. Yang. Minimax nonparametric classification - part I: rates of convergence. IEEE Transaction on Information Theory, vol. 45, pp. 2271-2284, 1999.
-
(1999)
IEEE Transaction on Information Theory
, vol.45
, pp. 2271-2284
-
-
Yang, Y.1
-
47
-
-
0033356514
-
Minimax nonparametric classification - Part II: Model selection for adaptation
-
Y. Yang. Minimax nonparametric classification - part II: model selection for adaptation. IEEE Transaction on Information Theory, vol. 45, pp. 2285-2292, 1999.
-
(1999)
IEEE Transaction on Information Theory
, vol.45
, pp. 2285-2292
-
-
Yang, Y.1
-
48
-
-
0347344561
-
Statistical behavior and consistency of classification methods based on convex risk minimization
-
to appear (with discussion)
-
T. Zhang. Statistical behavior and consistency of classification methods based on convex risk minimization. Annals of Statistics, 2003, to appear (with discussion).
-
(2003)
Annals of Statistics
-
-
Zhang, T.1
|