메뉴 건너뛰기




Volumn 4, Issue 5, 2004, Pages 861-894

On the rate of convergence of regularized boosting classifiers

Author keywords

Boosting; Classification; Consistency; Decision stumps; Rates of convergence

Indexed keywords

ERROR ANALYSIS; FUNCTIONS; MATHEMATICAL MODELS; PROBABILITY; PROBLEM SOLVING; THEOREM PROVING;

EID: 3042675892     PISSN: 15324435     EISSN: None     Source Type: Journal    
DOI: 10.1162/1532443041424319     Document Type: Conference Paper
Times cited : (101)

References (48)
  • 2
    • 0027599793 scopus 로고
    • Universal approximation bounds for superpositions of a sigmoidal function
    • A.R. Barron. Universal approximation bounds for superpositions of a sigmoidal function. IEEE Transactions on Information Theory, 39:930-944, 1993.
    • (1993) IEEE Transactions on Information Theory , vol.39 , pp. 930-944
    • Barron, A.R.1
  • 5
    • 0038453192 scopus 로고    scopus 로고
    • Rademacher and Gaussian complexities: Risk bounds and structural results
    • P.L. Bartlett and S. Mendelson. Rademacher and Gaussian complexities: risk bounds and structural results. Journal of Machine Learning Research 3, 463-482, 2002.
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 463-482
    • Bartlett, P.L.1    Mendelson, S.2
  • 6
    • 0036643047 scopus 로고    scopus 로고
    • Sparse regression ensembles in infinite and finite hypothesis spaces
    • K. Bennett, A. Demiriz, and G. Rátsch. Sparse regression ensembles in infinite and finite hypothesis spaces. Machine Learning, 48:193-221, 2002.
    • (2002) Machine Learning , vol.48 , pp. 193-221
    • Bennett, K.1    Demiriz, A.2    Rátsch, G.3
  • 7
    • 0000492892 scopus 로고    scopus 로고
    • Minimum contrast estimators on sieves: Exponential bounds and rates of convergence
    • L. Birgé and P. Massart. Minimum contrast estimators on sieves: exponential bounds and rates of convergence. Bernoulli 4, 329-375, 1998.
    • (1998) Bernoulli , vol.4 , pp. 329-375
    • Birgé, L.1    Massart, P.2
  • 10
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifiers
    • L. Breiman. Arcing classifiers. Annals of Statistics, 26:801-849, 1998.
    • (1998) Annals of Statistics , vol.26 , pp. 801-849
    • Breiman, L.1
  • 11
    • 0013228784 scopus 로고    scopus 로고
    • Some infinite theory for predictor ensembles
    • Statistics Department, UC Berkeley
    • L. Breiman. Some infinite theory for predictor ensembles. Technical Report 577, Statistics Department, UC Berkeley, 2000.
    • (2000) Technical Report , vol.577
    • Breiman, L.1
  • 14
    • 0024861871 scopus 로고
    • Approximations by superpositions of sigmoidal functions
    • G. Cybenko. Approximations by superpositions of sigmoidal functions. Math. Control, Signals, Systems, 2:303-314, 1989.
    • (1989) Math. Control, Signals, Systems , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 17
    • 0000421687 scopus 로고
    • Central limit theorems for empirical measures
    • R.M. Dudley. Central limit theorems for empirical measures. Annals of Probability, 6:899-929, 1978.
    • (1978) Annals of Probability , vol.6 , pp. 899-929
    • Dudley, R.M.1
  • 18
    • 84898984337 scopus 로고    scopus 로고
    • Potential boosters?
    • S.A. Solla, T.K. Leen, and K.-R. Müller, editors. MIT Press
    • N. Duffy and D. Helmbold. Potential boosters? In S.A. Solla, T.K. Leen, and K.-R. Müller, editors, Advances in Neural Information Processing Systems 12, pages 258-264. MIT Press, 2000.
    • (2000) Advances in Neural Information Processing Systems , vol.12 , pp. 258-264
    • Duffy, N.1    Helmbold, D.2
  • 19
    • 58149321460 scopus 로고
    • Boosting a weak learning algorithm by majority
    • Y. Freund. Boosting a weak learning algorithm by majority. Information and Computation, 121:256-285, 1995.
    • (1995) Information and Computation , vol.121 , pp. 256-285
    • Freund, Y.1
  • 20
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Y. Freund and R. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55:119-139, 1997.
    • (1997) Journal of Computer and System Sciences , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.2
  • 21
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view of boosting. Annals of Statistics, 28:337-374, 2000.
    • (2000) Annals of Statistics , vol.28 , pp. 337-374
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 22
    • 0003085388 scopus 로고
    • Rates of convergence for radial basis functions and neural networks
    • Chapman and Hall
    • F. Girosi and G. Anzelloti. Rates of convergence for radial basis functions and neural networks. Artificial Neural Networks for Speech and Vision, p.169-176, Chapman and Hall, 1993.
    • (1993) Artificial Neural Networks for Speech and Vision , pp. 169-176
    • Girosi, F.1    Anzelloti, G.2
  • 24
    • 0024880831 scopus 로고
    • Multi-layer feedforward networks are universal approximators
    • K. Hornik, M. Stinchcombe, and H. White. Multi-layer feedforward networks are universal approximators. Neural Networks, 2:359-366, 1989.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 25
    • 3142657752 scopus 로고    scopus 로고
    • Process consistency for AdaBoost
    • to appear (with discussion)
    • W. Jiang. Process consistency for AdaBoost. Annals of Statistics, 2003, to appear (with discussion).
    • (2003) Annals of Statistics
    • Jiang, W.1
  • 26
    • 0036104545 scopus 로고    scopus 로고
    • Empirical margin distributions and bounding the generalization error of combined classifiers
    • V. Koltchinskii and D. Panchenko. Empirical margin distributions and bounding the generalization error of combined classifiers. Annals of Statistics, 30, 2002.
    • (2002) Annals of Statistics , vol.30
    • Koltchinskii, V.1    Panchenko, D.2
  • 29
    • 9444269961 scopus 로고    scopus 로고
    • On the Bayes-risk consistency of regularized boosting methods
    • to appear (with discussion)
    • G. Lugosi and N. Vayatis. On the Bayes-risk consistency of regularized boosting methods. Annals of Statistics, 2003, to appear (with discussion).
    • (2003) Annals of Statistics
    • Lugosi, G.1    Vayatis, N.2
  • 30
    • 0013166467 scopus 로고    scopus 로고
    • On the approximation of functional classes equipped with a uniform measure using ridge functions
    • V. Maiorov, R. Meir, and J. Ratsaby. On the approximation of functional classes equipped with a uniform measure using ridge functions. Jour. of Approximation Theory, 99:95-111, 1999.
    • (1999) Jour. of Approximation Theory , vol.99 , pp. 95-111
    • Maiorov, V.1    Meir, R.2    Ratsaby, J.3
  • 34
    • 0002550596 scopus 로고    scopus 로고
    • Functional gradient techniques for combining hypotheses
    • A.J. Smola, P.L. Bartlett, B. Schölkopf, and D. Schuurmans, editors. MIT Press, Cambridge, MA
    • L. Mason, J. Baxter, P.L. Bartlett, and M. Frean. Functional gradient techniques for combining hypotheses. In A.J. Smola, P.L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 221-247. MIT Press, Cambridge, MA, 1999.
    • (1999) Advances in Large Margin Classifiers , pp. 221-247
    • Mason, L.1    Baxter, J.2    Bartlett, P.L.3    Frean, M.4
  • 35
    • 0033732457 scopus 로고    scopus 로고
    • On the Optimality of neural network approximation using incremental algorithms
    • R. Meir and V. Maiorov. On the Optimality of neural network approximation using incremental algorithms. IEEE Trans. Neural Network, 11(2):323-337, 2000.
    • (2000) IEEE Trans. Neural Network , vol.11 , Issue.2 , pp. 323-337
    • Meir, R.1    Maiorov, V.2
  • 36
    • 35248862907 scopus 로고    scopus 로고
    • An introduction to boosting and leveraging
    • S. Mendelson and A. Smola, editors, LNCS. Springer. (In press)
    • R. Meir and G. Rätsch. An introduction to boosting and leveraging. In S. Mendelson and A. Smola, editors, Advanced Lectures on Machine Learning, LNCS, pages 119-184. Springer, 2003. (In press).
    • (2003) Advanced Lectures on Machine Learning , pp. 119-184
    • Meir, R.1    Rätsch, G.2
  • 37
    • 0036648803 scopus 로고    scopus 로고
    • Improving the sample complexity using global data
    • S. Mendelson. Improving the sample complexity using global data, IEEE Transactions on Information Theory 48(7), 1977-1991, 2002.
    • (2002) IEEE Transactions on Information Theory , vol.48 , Issue.7 , pp. 1977-1991
    • Mendelson, S.1
  • 39
    • 85011438572 scopus 로고    scopus 로고
    • Approximation theory of the MLP model in neural networks
    • A. Pinkus. Approximation theory of the MLP model in neural networks. Acta Numerica, 8143-196, 1999.
    • (1999) Acta Numerica , pp. 8143-8196
    • Pinkus, A.1
  • 41
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • R.E. Schapire. The strength of weak learnability. Machine Learning, 5:197-227, 1990.
    • (1990) Machine Learning , vol.5 , pp. 197-227
    • Schapire, R.E.1
  • 42
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • R.E. Schapire, Y. Freund, P. Bartlett, and W.S. Lee. Boosting the margin: a new explanation for the effectiveness of voting methods. Annals of Statistics, 26:1651-1686, 1998.
    • (1998) Annals of Statistics , vol.26 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.3    Lee, W.S.4
  • 43
    • 0026953356 scopus 로고
    • Feedback stabilization using two-hidden-layer nets
    • E. Sontag. Feedback stabilization using two-hidden-layer nets. IEEE Trans. Neural Networks, 3:981-990, 1992.
    • (1992) IEEE Trans. Neural Networks , vol.3 , pp. 981-990
    • Sontag, E.1
  • 44
    • 3142738468 scopus 로고    scopus 로고
    • Optimal aggregation of classifiers in statistical learning
    • to appear
    • A. B. Tsybakov. Optimal aggregation of classifiers in statistical learning. Annals of Statistics, to appear, 2003.
    • (2003) Annals of Statistics
    • Tsybakov, A.B.1
  • 46
    • 0033321586 scopus 로고    scopus 로고
    • Minimax nonparametric classification - Part I: Rates of convergence
    • Y. Yang. Minimax nonparametric classification - part I: rates of convergence. IEEE Transaction on Information Theory, vol. 45, pp. 2271-2284, 1999.
    • (1999) IEEE Transaction on Information Theory , vol.45 , pp. 2271-2284
    • Yang, Y.1
  • 47
    • 0033356514 scopus 로고    scopus 로고
    • Minimax nonparametric classification - Part II: Model selection for adaptation
    • Y. Yang. Minimax nonparametric classification - part II: model selection for adaptation. IEEE Transaction on Information Theory, vol. 45, pp. 2285-2292, 1999.
    • (1999) IEEE Transaction on Information Theory , vol.45 , pp. 2285-2292
    • Yang, Y.1
  • 48
    • 0347344561 scopus 로고    scopus 로고
    • Statistical behavior and consistency of classification methods based on convex risk minimization
    • to appear (with discussion)
    • T. Zhang. Statistical behavior and consistency of classification methods based on convex risk minimization. Annals of Statistics, 2003, to appear (with discussion).
    • (2003) Annals of Statistics
    • Zhang, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.