-
1
-
-
5844297152
-
Theory of reproducing kernels
-
N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950), 337-404.
-
(1950)
Trans. Amer. Math. Soc.
, vol.68
, pp. 337-404
-
-
Aronszajn, N.1
-
3
-
-
0032028728
-
The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network
-
P. L. Bartlett, The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network, IEEE Trans. Inform. Theory 44 (1998), 525-536.
-
(1998)
IEEE Trans. Inform. Theory
, vol.44
, pp. 525-536
-
-
Bartlett, P.L.1
-
4
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
Pittsburgh, ACM
-
B. E. Boser, I. Guyon, and V. Vapnik, A training algorithm for optimal margin classifiers, in Proceedings of the Fifth Annual Workshop of Computational Learning Theory 5 (1992), Pittsburgh, ACM, pp. 144-152.
-
(1992)
Proceedings of the Fifth Annual Workshop of Computational Learning Theory
, vol.5
, pp. 144-152
-
-
Boser, B.E.1
Guyon, I.2
Vapnik, V.3
-
6
-
-
34249753618
-
Support-vector networks
-
C. Cortes and V. Vapnik, Support-vector networks, Mach. Learning 20 (1995), 273-297.
-
(1995)
Mach. Learning
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
8
-
-
0036071370
-
On the mathematical foundations of learning
-
F. Cucker and S. Smale, On the mathematical foundations of learning, Bull. Amer. Math. Soc. 39 (2992), 1-49.
-
Bull. Amer. Math. Soc.
, vol.39
, Issue.2992
, pp. 1-49
-
-
Cucker, F.1
Smale, S.2
-
9
-
-
0004019773
-
-
Springer-Verlag, New York
-
L. Devroye, L. Györfi, and G. Lugosi, A Probabilistic Theory of Pattern Recognition, Springer-Verlag, New York, 1997.
-
(1997)
A Probabilistic Theory of Pattern Recognition
-
-
Devroye, L.1
Györfi, L.2
Lugosi, G.3
-
10
-
-
0034419669
-
Regularization networks and support vector machines
-
T. Evgeniou, M. Pontil, and T. Poggio, Regularization networks and support vector machines, Adv. Comput. Math. 13 (2000), 1-50.
-
(2000)
Adv. Comput. Math.
, vol.13
, pp. 1-50
-
-
Evgeniou, T.1
Pontil, M.2
Poggio, T.3
-
11
-
-
0000764772
-
The use of multiple measurements in taxonomic problems
-
R. A. Fisher, The use of multiple measurements in taxonomic problems, Ann. Eugenics 7 (1936), 111-132.
-
(1936)
Ann. Eugenics
, vol.7
, pp. 111-132
-
-
Fisher, R.A.1
-
12
-
-
0032166052
-
The importance of convexity in learning with least square loss
-
W. S. Lee, P. Bartlett, and R. Williamson, The importance of convexity in learning with least square loss, IEEE Trans. Inform. Theory 44 (1998), 1974-1980.
-
(1998)
IEEE Trans. Inform. Theory
, vol.44
, pp. 1974-1980
-
-
Lee, W.S.1
Bartlett, P.2
Williamson, R.3
-
13
-
-
0036258405
-
Support vector machines and the Bayes rule in classification
-
Y. Lin, Support vector machines and the Bayes rule in classification, Data Mining and Knowledge Discovery 6 (2002), 259-275.
-
(2002)
Data Mining and Knowledge Discovery
, vol.6
, pp. 259-275
-
-
Lin, Y.1
-
14
-
-
17444401898
-
Regression and classification with regularization
-
D. D. Denison et al. (eds.), Springer-Verlag, New York
-
S. Mukherjee, R. Rifkin, and T. Poggio, Regression and classification with regularization, in Nonlinear Estimation and Classification, D. D. Denison et al. (eds.), Springer-Verlag, New York, pp. 107-124, 2002.
-
(2002)
Nonlinear Estimation and Classification
, pp. 107-124
-
-
Mukherjee, S.1
Rifkin, R.2
Poggio, T.3
-
15
-
-
0000482137
-
On the relationship between generalization error, hypothesis complexity, and sample complexity for radial basis functions
-
P. Niyogi and F. Girosi, On the relationship between generalization error, hypothesis complexity, and sample complexity for radial basis functions, Neural Comp. 8 (1996), 819-842.
-
(1996)
Neural Comp.
, vol.8
, pp. 819-842
-
-
Niyogi, P.1
Girosi, F.2
-
16
-
-
0141726806
-
A note on different covering numbers in learning theory
-
M. Pontil, A note on different covering numbers in learning theory, J. Complexity 19 (2003), 665-671.
-
(2003)
J. Complexity
, vol.19
, pp. 665-671
-
-
Pontil, M.1
-
17
-
-
33746061490
-
Stability results in learning theory
-
A. Rakhlin, S. Mukherjee, and T. Poggio, Stability results in learning theory, Anal. Appl. 3 (2005), 397-417.
-
(2005)
Anal. Appl.
, vol.3
, pp. 397-417
-
-
Rakhlin, A.1
Mukherjee, S.2
Poggio, T.3
-
18
-
-
0003232514
-
Principles of neurodynamics
-
New York
-
F. Rosenblatt, Principles of Neurodynamics, Spartan Book, New York, 1962.
-
(1962)
Spartan Book
-
-
Rosenblatt, F.1
-
19
-
-
0032166068
-
Structural risk minimization over data-dependent hierarchies
-
J. Shawe-Taylor, P. L. Bartlett, R. C. Williamson, and M. Anthony, Structural risk minimization over data-dependent hierarchies, IEEE Trans. Inform. Theory 44 (1998), 1926-1940.
-
(1998)
IEEE Trans. Inform. Theory
, vol.44
, pp. 1926-1940
-
-
Shawe-Taylor, J.1
Bartlett, P.L.2
Williamson, R.C.3
Anthony, M.4
-
20
-
-
0037749769
-
Estimating the approximation error in learning theory
-
S. Smale and D. X. Zhou, Estimating the approximation error in learning theory, Anal. Appl. 1 (2003), 17-41.
-
(2003)
Anal. Appl.
, vol.1
, pp. 17-41
-
-
Smale, S.1
Zhou, D.X.2
-
21
-
-
3042850649
-
Shannon sampling and function reconstruction from point values
-
S. Smale and D. X. Zhou, Shannon sampling and function reconstruction from point values, Bull. Amer. Math. Soc. 41 (2004), 279-305.
-
(2004)
Bull. Amer. Math. Soc.
, vol.41
, pp. 279-305
-
-
Smale, S.1
Zhou, D.X.2
-
22
-
-
27844555491
-
Shannon sampling II. Connections to learning theory
-
S. Smale and D. X. Zhou, Shannon sampling II. Connections to learning theory, Appl. Comput. Harmonic Anal. 19 (2005), 285-302.
-
(2005)
Appl. Comput. Harmonic Anal.
, vol.19
, pp. 285-302
-
-
Smale, S.1
Zhou, D.X.2
-
23
-
-
0036749277
-
Support vector machines are universally consistent
-
I. Steinwart, Support vector machines are universally consistent, J. Complexity 18 (2002), 768-791.
-
(2002)
J. Complexity
, vol.18
, pp. 768-791
-
-
Steinwart, I.1
-
27
-
-
0001873883
-
Support vector machines, reproducing kernel Hilbert spaces and the Randomized GACV
-
Schölkopf, Burges and Smola (eds.), MIT Press
-
G. Wahba, Support vector machines, reproducing kernel Hilbert spaces and the Randomized GACV, In 'Advances in Kernel Methods - Support Vector Learning', Schölkopf, Burges and Smola (eds.), MIT Press, pp. 69-88, 1999.
-
(1999)
Advances in Kernel Methods - Support Vector Learning
, pp. 69-88
-
-
Wahba, G.1
-
28
-
-
0035441827
-
Generalization performance of regularization networks and support vector machines via entropy numbers of compact operators
-
R. C. Williamson, A. J. Smola, and B. Schölkopf, Generalization performance of regularization networks and support vector machines via entropy numbers of compact operators, IEEE Trans. Inform. Theory 47 (2001), 2516-2532.
-
(2001)
IEEE Trans. Inform. Theory
, vol.47
, pp. 2516-2532
-
-
Williamson, R.C.1
Smola, A.J.2
Schölkopf, B.3
-
29
-
-
4644257995
-
Statistical behavior and consistency of classification methods based on convex risk minimization
-
T. Zhang, Statistical behavior and consistency of classification methods based on convex risk minimization, Ann. Stat. 32 (2004), 56-85.
-
(2004)
Ann. Stat.
, vol.32
, pp. 56-85
-
-
Zhang, T.1
-
30
-
-
0036748375
-
The covering number in learning theory
-
D. X. Zhou, The covering number in learning theory, J. Complexity 18 (2002), 739-767.
-
(2002)
J. Complexity
, vol.18
, pp. 739-767
-
-
Zhou, D.X.1
-
31
-
-
0038105204
-
Capacity of reproducing kernel spaces in learning theory
-
D. X. Zhou, Capacity of reproducing kernel spaces in learning theory, IEEE Trans. Inform. Theory 49 (2003), 1743-1752.
-
(2003)
IEEE Trans. Inform. Theory
, vol.49
, pp. 1743-1752
-
-
Zhou, D.X.1
|