메뉴 건너뛰기




Volumn 8, Issue 2, 2006, Pages 99-119

Analysis of support vector machine classification

Author keywords

Bayes risk consistency; Consistency with hypothesis space; Mercer kernel; Misclassification error; Regularization error; Support vector machine classification

Indexed keywords


EID: 33748649672     PISSN: 15211398     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (105)

References (32)
  • 1
    • 5844297152 scopus 로고
    • Theory of reproducing kernels
    • N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950), 337-404.
    • (1950) Trans. Amer. Math. Soc. , vol.68 , pp. 337-404
    • Aronszajn, N.1
  • 3
    • 0032028728 scopus 로고    scopus 로고
    • The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network
    • P. L. Bartlett, The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network, IEEE Trans. Inform. Theory 44 (1998), 525-536.
    • (1998) IEEE Trans. Inform. Theory , vol.44 , pp. 525-536
    • Bartlett, P.L.1
  • 6
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes and V. Vapnik, Support-vector networks, Mach. Learning 20 (1995), 273-297.
    • (1995) Mach. Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 8
    • 0036071370 scopus 로고    scopus 로고
    • On the mathematical foundations of learning
    • F. Cucker and S. Smale, On the mathematical foundations of learning, Bull. Amer. Math. Soc. 39 (2992), 1-49.
    • Bull. Amer. Math. Soc. , vol.39 , Issue.2992 , pp. 1-49
    • Cucker, F.1    Smale, S.2
  • 10
    • 0034419669 scopus 로고    scopus 로고
    • Regularization networks and support vector machines
    • T. Evgeniou, M. Pontil, and T. Poggio, Regularization networks and support vector machines, Adv. Comput. Math. 13 (2000), 1-50.
    • (2000) Adv. Comput. Math. , vol.13 , pp. 1-50
    • Evgeniou, T.1    Pontil, M.2    Poggio, T.3
  • 11
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • R. A. Fisher, The use of multiple measurements in taxonomic problems, Ann. Eugenics 7 (1936), 111-132.
    • (1936) Ann. Eugenics , vol.7 , pp. 111-132
    • Fisher, R.A.1
  • 12
    • 0032166052 scopus 로고    scopus 로고
    • The importance of convexity in learning with least square loss
    • W. S. Lee, P. Bartlett, and R. Williamson, The importance of convexity in learning with least square loss, IEEE Trans. Inform. Theory 44 (1998), 1974-1980.
    • (1998) IEEE Trans. Inform. Theory , vol.44 , pp. 1974-1980
    • Lee, W.S.1    Bartlett, P.2    Williamson, R.3
  • 13
    • 0036258405 scopus 로고    scopus 로고
    • Support vector machines and the Bayes rule in classification
    • Y. Lin, Support vector machines and the Bayes rule in classification, Data Mining and Knowledge Discovery 6 (2002), 259-275.
    • (2002) Data Mining and Knowledge Discovery , vol.6 , pp. 259-275
    • Lin, Y.1
  • 14
    • 17444401898 scopus 로고    scopus 로고
    • Regression and classification with regularization
    • D. D. Denison et al. (eds.), Springer-Verlag, New York
    • S. Mukherjee, R. Rifkin, and T. Poggio, Regression and classification with regularization, in Nonlinear Estimation and Classification, D. D. Denison et al. (eds.), Springer-Verlag, New York, pp. 107-124, 2002.
    • (2002) Nonlinear Estimation and Classification , pp. 107-124
    • Mukherjee, S.1    Rifkin, R.2    Poggio, T.3
  • 15
    • 0000482137 scopus 로고    scopus 로고
    • On the relationship between generalization error, hypothesis complexity, and sample complexity for radial basis functions
    • P. Niyogi and F. Girosi, On the relationship between generalization error, hypothesis complexity, and sample complexity for radial basis functions, Neural Comp. 8 (1996), 819-842.
    • (1996) Neural Comp. , vol.8 , pp. 819-842
    • Niyogi, P.1    Girosi, F.2
  • 16
    • 0141726806 scopus 로고    scopus 로고
    • A note on different covering numbers in learning theory
    • M. Pontil, A note on different covering numbers in learning theory, J. Complexity 19 (2003), 665-671.
    • (2003) J. Complexity , vol.19 , pp. 665-671
    • Pontil, M.1
  • 17
    • 33746061490 scopus 로고    scopus 로고
    • Stability results in learning theory
    • A. Rakhlin, S. Mukherjee, and T. Poggio, Stability results in learning theory, Anal. Appl. 3 (2005), 397-417.
    • (2005) Anal. Appl. , vol.3 , pp. 397-417
    • Rakhlin, A.1    Mukherjee, S.2    Poggio, T.3
  • 18
    • 0003232514 scopus 로고
    • Principles of neurodynamics
    • New York
    • F. Rosenblatt, Principles of Neurodynamics, Spartan Book, New York, 1962.
    • (1962) Spartan Book
    • Rosenblatt, F.1
  • 20
    • 0037749769 scopus 로고    scopus 로고
    • Estimating the approximation error in learning theory
    • S. Smale and D. X. Zhou, Estimating the approximation error in learning theory, Anal. Appl. 1 (2003), 17-41.
    • (2003) Anal. Appl. , vol.1 , pp. 17-41
    • Smale, S.1    Zhou, D.X.2
  • 21
    • 3042850649 scopus 로고    scopus 로고
    • Shannon sampling and function reconstruction from point values
    • S. Smale and D. X. Zhou, Shannon sampling and function reconstruction from point values, Bull. Amer. Math. Soc. 41 (2004), 279-305.
    • (2004) Bull. Amer. Math. Soc. , vol.41 , pp. 279-305
    • Smale, S.1    Zhou, D.X.2
  • 22
    • 27844555491 scopus 로고    scopus 로고
    • Shannon sampling II. Connections to learning theory
    • S. Smale and D. X. Zhou, Shannon sampling II. Connections to learning theory, Appl. Comput. Harmonic Anal. 19 (2005), 285-302.
    • (2005) Appl. Comput. Harmonic Anal. , vol.19 , pp. 285-302
    • Smale, S.1    Zhou, D.X.2
  • 23
    • 0036749277 scopus 로고    scopus 로고
    • Support vector machines are universally consistent
    • I. Steinwart, Support vector machines are universally consistent, J. Complexity 18 (2002), 768-791.
    • (2002) J. Complexity , vol.18 , pp. 768-791
    • Steinwart, I.1
  • 27
    • 0001873883 scopus 로고    scopus 로고
    • Support vector machines, reproducing kernel Hilbert spaces and the Randomized GACV
    • Schölkopf, Burges and Smola (eds.), MIT Press
    • G. Wahba, Support vector machines, reproducing kernel Hilbert spaces and the Randomized GACV, In 'Advances in Kernel Methods - Support Vector Learning', Schölkopf, Burges and Smola (eds.), MIT Press, pp. 69-88, 1999.
    • (1999) Advances in Kernel Methods - Support Vector Learning , pp. 69-88
    • Wahba, G.1
  • 28
    • 0035441827 scopus 로고    scopus 로고
    • Generalization performance of regularization networks and support vector machines via entropy numbers of compact operators
    • R. C. Williamson, A. J. Smola, and B. Schölkopf, Generalization performance of regularization networks and support vector machines via entropy numbers of compact operators, IEEE Trans. Inform. Theory 47 (2001), 2516-2532.
    • (2001) IEEE Trans. Inform. Theory , vol.47 , pp. 2516-2532
    • Williamson, R.C.1    Smola, A.J.2    Schölkopf, B.3
  • 29
    • 4644257995 scopus 로고    scopus 로고
    • Statistical behavior and consistency of classification methods based on convex risk minimization
    • T. Zhang, Statistical behavior and consistency of classification methods based on convex risk minimization, Ann. Stat. 32 (2004), 56-85.
    • (2004) Ann. Stat. , vol.32 , pp. 56-85
    • Zhang, T.1
  • 30
    • 0036748375 scopus 로고    scopus 로고
    • The covering number in learning theory
    • D. X. Zhou, The covering number in learning theory, J. Complexity 18 (2002), 739-767.
    • (2002) J. Complexity , vol.18 , pp. 739-767
    • Zhou, D.X.1
  • 31
    • 0038105204 scopus 로고    scopus 로고
    • Capacity of reproducing kernel spaces in learning theory
    • D. X. Zhou, Capacity of reproducing kernel spaces in learning theory, IEEE Trans. Inform. Theory 49 (2003), 1743-1752.
    • (2003) IEEE Trans. Inform. Theory , vol.49 , pp. 1743-1752
    • Zhou, D.X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.