-
1
-
-
17944380943
-
The Y-family of DNA polymerases
-
Ohmori H., Friedberg E.C., Fuchs R.P., Goodman M.F., Hanaoka F., Hinkle D., Kunkel T.A., Lawrence C.W., Livneh Z., Nohmi T.et al. The Y-family of DNA polymerases. Mol Cell. 8:2001;7-8.
-
(2001)
Mol Cell
, vol.8
, pp. 7-8
-
-
Ohmori, H.1
Friedberg, E.C.2
Fuchs, R.P.3
Goodman, M.F.4
Hanaoka, F.5
Hinkle, D.6
Kunkel, T.A.7
Lawrence, C.W.8
Livneh, Z.9
Nohmi, T.10
-
2
-
-
0024461293
-
REV3, a Saccharomyces cerevisiae gene whose function is required for induced mutagenesis, is predicted to encode a nonessential DNA polymerase
-
Morrison A., Christensen R.B., Alley J., Beck A.K., Bernstine E.G., Lemontt J.F., Lawrence C.W. REV3, a Saccharomyces cerevisiae gene whose function is required for induced mutagenesis, is predicted to encode a nonessential DNA polymerase. J Bacteriol. 171:1989;5659-5667.
-
(1989)
J Bacteriol
, vol.171
, pp. 5659-5667
-
-
Morrison, A.1
Christensen, R.B.2
Alley, J.3
Beck, A.K.4
Bernstine, E.G.5
Lemontt, J.F.6
Lawrence, C.W.7
-
3
-
-
0029952294
-
Thymine-thymine dimer bypass by yeast DNA polymerase ζ
-
Nelson J.R., Lawrence C.W., Hinkle D.C. Thymine-thymine dimer bypass by yeast DNA polymerase ζ Science. 272:1996;1646-1649.
-
(1996)
Science
, vol.272
, pp. 1646-1649
-
-
Nelson, J.R.1
Lawrence, C.W.2
Hinkle, D.C.3
-
4
-
-
0034738983
-
Eukaryotic polymerases ι and ζ act sequentially to bypass DNA lesions
-
Johnson R.E., Washington M.T., Haracska L., Prakash S., Prakash L. Eukaryotic polymerases ι and ζ act sequentially to bypass DNA lesions. Nature. 406:2000;1015-1019.
-
(2000)
Nature
, vol.406
, pp. 1015-1019
-
-
Johnson, R.E.1
Washington, M.T.2
Haracska, L.3
Prakash, S.4
Prakash, L.5
-
5
-
-
0035946012
-
Evolution of the two-step model for UV-mutagenesis
-
Woodgate R. Evolution of the two-step model for UV-mutagenesis. Mutat Res. 485:2001;83-92.
-
(2001)
Mutat Res
, vol.485
, pp. 83-92
-
-
Woodgate, R.1
-
6
-
-
0035997344
-
Error-prone repair DNA polymerases in prokaryotes and eukaryotes
-
Goodman M.F. Error-prone repair DNA polymerases in prokaryotes and eukaryotes. Annu Rev Biochem. 71:2002;17-50.
-
(2002)
Annu Rev Biochem
, vol.71
, pp. 17-50
-
-
Goodman, M.F.1
-
7
-
-
0034847259
-
Structure of the catalytic core of S. cerevisiae DNA polymerase η: Implications for translesion DNA synthesis
-
Trincao J., Johnson R.E., Escalante C.R., Prakash S., Prakash L., Aggarwal A.K. Structure of the catalytic core of S. cerevisiae DNA polymerase η: implications for translesion DNA synthesis. Mol Cell. 8:2001;417-426.
-
(2001)
Mol Cell
, vol.8
, pp. 417-426
-
-
Trincao, J.1
Johnson, R.E.2
Escalante, C.R.3
Prakash, S.4
Prakash, L.5
Aggarwal, A.K.6
-
8
-
-
0034857266
-
Crystal structure of a DinB lesion bypass DNA polymerase catalytic fragment reveals a classic polymerase catalytic domain
-
Zhou B.L., Pata J.D., Steitz T.L. Crystal structure of a DinB lesion bypass DNA polymerase catalytic fragment reveals a classic polymerase catalytic domain. Mol Cell. 8:2001;427-437.
-
(2001)
Mol Cell
, vol.8
, pp. 427-437
-
-
Zhou, B.L.1
Pata, J.D.2
Steitz, T.L.3
-
9
-
-
0035812849
-
Crystal structure of a Y-family DNA polymerase in action: A mechanism for error-prone and lesion-bypass replication
-
Ling H., Boudsocq F., Woodgate R., Yang W. Crystal structure of a Y-family DNA polymerase in action: a mechanism for error-prone and lesion-bypass replication. Cell. 107:2001;91-102.
-
(2001)
Cell
, vol.107
, pp. 91-102
-
-
Ling, H.1
Boudsocq, F.2
Woodgate, R.3
Yang, W.4
-
10
-
-
0034762679
-
Crystal structure of a DinB family error-prone DNA polymerase from Sulfolobus solfataricus
-
Silvian L.F., Toth E.A., Pham P., Goodman M.F., Ellenberger T. Crystal structure of a DinB family error-prone DNA polymerase from Sulfolobus solfataricus. Nat Struct Biol. 8:2001;984-989.
-
(2001)
Nat Struct Biol
, vol.8
, pp. 984-989
-
-
Silvian, L.F.1
Toth, E.A.2
Pham, P.3
Goodman, M.F.4
Ellenberger, T.5
-
11
-
-
0041864009
-
Replication of a cis-syn thymine dimer at atomic resolution
-
Ling H., Boudsocq F., Plosky B.S., Woodgate R., Yang W. Replication of a cis-syn thymine dimer at atomic resolution. Nature. 424:2003;1083-1087.
-
(2003)
Nature
, vol.424
, pp. 1083-1087
-
-
Ling, H.1
Boudsocq, F.2
Plosky, B.S.3
Woodgate, R.4
Yang, W.5
-
12
-
-
0033578040
-
The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase η
-
Masutani C., Kusumoto R., Yamada A., Dohmae N., Yokoi M., Yuasa M., Araki M., Iwai S., Takio K., Hanaoka F. The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase η Nature. 399:1999;700-704.
-
(1999)
Nature
, vol.399
, pp. 700-704
-
-
Masutani, C.1
Kusumoto, R.2
Yamada, A.3
Dohmae, N.4
Yokoi, M.5
Yuasa, M.6
Araki, M.7
Iwai, S.8
Takio, K.9
Hanaoka, F.10
-
13
-
-
0033564917
-
Xeroderma pigmentosum variant (XP-V) correcting protein from HeLa cells has a thymine dimer bypass DNA polymerase activity
-
Masutani C., Araki M., Yamada A., Kusumoto R., Nogimori T., Maekawa T., Iwai S., Hanaoka F. Xeroderma pigmentosum variant (XP-V) correcting protein from HeLa cells has a thymine dimer bypass DNA polymerase activity. EMBO J. 18:1999;3491-3501.
-
(1999)
EMBO J
, vol.18
, pp. 3491-3501
-
-
Masutani, C.1
Araki, M.2
Yamada, A.3
Kusumoto, R.4
Nogimori, T.5
Maekawa, T.6
Iwai, S.7
Hanaoka, F.8
-
14
-
-
0033538470
-
HRAD30 mutations in the variant form of xeroderma pigmentosum
-
Johnson R.E., Kondratick C.M., Prakash S., Prakash L. hRAD30 mutations in the variant form of xeroderma pigmentosum. Science. 285:1999;263-265.
-
(1999)
Science
, vol.285
, pp. 263-265
-
-
Johnson, R.E.1
Kondratick, C.M.2
Prakash, S.3
Prakash, L.4
-
15
-
-
1942544155
-
Biological functions of translesion synthesis proteins in vertebrates
-
Jansen J.G., de Wind N. Biological functions of translesion synthesis proteins in vertebrates. DNA Repair. 2:2003;1075-1085.
-
(2003)
DNA Repair
, vol.2
, pp. 1075-1085
-
-
Jansen, J.G.1
De Wind, N.2
-
16
-
-
0348134870
-
Competitive processivity-clamp usage by DNA polymerases during DNA replication and repair
-
By carrying out several competition assays, the authors determine the relative affinities of each of the E. coli DNA polymerases for the β-clamp. DNA Pol III has the highest affinity for the β-clamp and, because only two polymerases can be bound to the β-clamp at any given time, the authors propose that the increased concentration of Pol II, Pol IV and Pol V during the SOS response enables the TLS polymerases to gain access to the β-clamp after DNA damage.
-
Lopez de Saro F.J., Georgescu R.E., Goodman M.F., O'Donnell M. Competitive processivity-clamp usage by DNA polymerases during DNA replication and repair. EMBO J. 22:2003;6408-6418 By carrying out several competition assays, the authors determine the relative affinities of each of the E. coli DNA polymerases for the β-clamp. DNA Pol III has the highest affinity for the β-clamp and, because only two polymerases can be bound to the β-clamp at any given time, the authors propose that the increased concentration of Pol II, Pol IV and Pol V during the SOS response enables the TLS polymerases to gain access to the β-clamp after DNA damage.
-
(2003)
EMBO J
, vol.22
, pp. 6408-6418
-
-
Lopez De Saro, F.J.1
Georgescu, R.E.2
Goodman, M.F.3
O'Donnell, M.4
-
17
-
-
0032544079
-
2C mutagenic complex and RecA protein
-
2C mutagenic complex and RecA protein. Proc Natl Acad Sci USA. 95:1998;9755-9760.
-
(1998)
Proc Natl Acad Sci USA
, vol.95
, pp. 9755-9760
-
-
Tang, M.1
Bruck, I.2
Eritja, R.3
Turner, J.4
Frank, E.G.5
Woodgate, R.6
O'Donnell, M.7
Goodman, M.F.8
-
18
-
-
0036171550
-
The processivity factor β controls DNA polymerase IV traffic during spontaneous mutagenesis and translesion synthesis in vivo
-
Lenne-Samuel N., Wagner J., Etienne H., Fuchs R.P. The processivity factor β controls DNA polymerase IV traffic during spontaneous mutagenesis and translesion synthesis in vivo. EMBO Rep. 3:2002;45-49.
-
(2002)
EMBO Rep
, vol.3
, pp. 45-49
-
-
Lenne-Samuel, N.1
Wagner, J.2
Etienne, H.3
Fuchs, R.P.4
-
19
-
-
0037019606
-
Pivotal role of the β-clamp in translesion DNA synthesis and mutagenesis in E. coli cells
-
This paper demonstrates that mutagenesis by Pol IV and Pol V is dependent on the β-clamp interaction motif. The authors propose a 'tool-belt' model in which the β-clamp may tether several polymerases, thereby allowing it to switch polymerases easily when necessary.
-
Becherel O.J., Fuchs R.P.P., Wagner J. Pivotal role of the β-clamp in translesion DNA synthesis and mutagenesis in E. coli cells. DNA Repair. 1:2002;703-708 This paper demonstrates that mutagenesis by Pol IV and Pol V is dependent on the β-clamp interaction motif. The authors propose a 'tool-belt' model in which the β-clamp may tether several polymerases, thereby allowing it to switch polymerases easily when necessary.
-
(2002)
DNA Repair
, vol.1
, pp. 703-708
-
-
Becherel, O.J.1
Fuchs, R.P.P.2
Wagner, J.3
-
20
-
-
0037072865
-
Fidelity of Escherichia coli DNA polymerase IV. Preferential generation of small deletion mutations by dNTP-stabilized misalignment
-
Kobayashi S., Valentine M.R., Pham P., O'Donnell M., Goodman M.F. Fidelity of Escherichia coli DNA polymerase IV. Preferential generation of small deletion mutations by dNTP-stabilized misalignment. J Biol Chem. 277:2002;34198-34207.
-
(2002)
J Biol Chem
, vol.277
, pp. 34198-34207
-
-
Kobayashi, S.1
Valentine, M.R.2
Pham, P.3
O'Donnell, M.4
Goodman, M.F.5
-
21
-
-
0035045440
-
Genetic interactions between the Escherichia coli umuDC gene products and the β processivity clamp of the replicative DNA polymerase
-
Sutton M.D., Farrow M.F., Burton B.M., Walker G.C. Genetic interactions between the Escherichia coli umuDC gene products and the β processivity clamp of the replicative DNA polymerase. J Bacteriol. 183:2001;2897-2909.
-
(2001)
J Bacteriol
, vol.183
, pp. 2897-2909
-
-
Sutton, M.D.1
Farrow, M.F.2
Burton, B.M.3
Walker, G.C.4
-
22
-
-
0035949599
-
A universal protein-protein interaction motif in the eubacterial DNA replication and repair systems
-
Dalrymple B.P., Kongsuwan K., Wijffels G., Dixon N.E., Jennings P.A. A universal protein-protein interaction motif in the eubacterial DNA replication and repair systems. Proc Natl Acad Sci USA. 98:2001;11627-11632.
-
(2001)
Proc Natl Acad Sci USA
, vol.98
, pp. 11627-11632
-
-
Dalrymple, B.P.1
Kongsuwan, K.2
Wijffels, G.3
Dixon, N.E.4
Jennings, P.A.5
-
23
-
-
0242389787
-
Structural basis for recruitment of translesion DNA polymerase Pol IV/DinB to the β-clamp
-
This paper presents the first crystal structure of a large protein domain (the little-finger domain of Pol IV) interacting with the β-clamp of E. coli. The structure shows two Pol IV little-finger domains bound to a single β-clamp homodimer. The interface between Pol IV and the β-clamp includes the conserved amino acid motif at the carboxyl terminus of Pol IV, but more than two-thirds of the interaction surface between β and Pol IV is contributed by the surface of the little-finger domain.
-
Bunting K.A., Roe S.M., Pearl L.H. Structural basis for recruitment of translesion DNA polymerase Pol IV/DinB to the β-clamp. EMBO J. 22:2003;5883-5892 This paper presents the first crystal structure of a large protein domain (the little-finger domain of Pol IV) interacting with the β-clamp of E. coli. The structure shows two Pol IV little-finger domains bound to a single β-clamp homodimer. The interface between Pol IV and the β-clamp includes the conserved amino acid motif at the carboxyl terminus of Pol IV, but more than two-thirds of the interaction surface between β and Pol IV is contributed by the surface of the little-finger domain.
-
(2003)
EMBO J
, vol.22
, pp. 5883-5892
-
-
Bunting, K.A.1
Roe, S.M.2
Pearl, L.H.3
-
24
-
-
0037115955
-
How DNA lesions are turned into mutations within cells?
-
Pages V., Fuchs R.P. How DNA lesions are turned into mutations within cells? Oncogene. 21:2002;8957-8966.
-
(2002)
Oncogene
, vol.21
, pp. 8957-8966
-
-
Pages, V.1
Fuchs, R.P.2
-
25
-
-
0035941229
-
Eukaryotic DNA polymerases: Proposal for a revised nomenclature
-
Burgers P.M.J., Koonin E.V., Bruford E., Blanco L., Burtis K.C., Christman M.F., Copeland W.C., Friedberg E.C., Hanaoka F., Hinkle D.C.et al. Eukaryotic DNA polymerases: proposal for a revised nomenclature. J Biol Chem. 276:2001;43487-43490.
-
(2001)
J Biol Chem
, vol.276
, pp. 43487-43490
-
-
Burgers, P.M.J.1
Koonin, E.V.2
Bruford, E.3
Blanco, L.4
Burtis, K.C.5
Christman, M.F.6
Copeland, W.C.7
Friedberg, E.C.8
Hanaoka, F.9
Hinkle, D.C.10
-
26
-
-
0034785579
-
Physical and functional interactions of human DNA polymerase η with PCNA
-
Haracska L., Johnson R.E., Unk I., Phillips B., Hurwitz J., Prakash L., Prakash S. Physical and functional interactions of human DNA polymerase η with PCNA. Mol Cell Biol. 21:2001;7199-7206.
-
(2001)
Mol Cell Biol
, vol.21
, pp. 7199-7206
-
-
Haracska, L.1
Johnson, R.E.2
Unk, I.3
Phillips, B.4
Hurwitz, J.5
Prakash, L.6
Prakash, S.7
-
27
-
-
0035807870
-
Targeting of human DNA polymerase ι to the replication machinery via interaction with PCNA
-
Haracska L., Johnson R.E., Unk I., Phillips B.B., Hurwitz J., Prakash L., Prakash S. Targeting of human DNA polymerase ι to the replication machinery via interaction with PCNA. Proc Natl Acad Sci USA. 98:2001;14256-14261.
-
(2001)
Proc Natl Acad Sci USA
, vol.98
, pp. 14256-14261
-
-
Haracska, L.1
Johnson, R.E.2
Unk, I.3
Phillips, B.B.4
Hurwitz, J.5
Prakash, L.6
Prakash, S.7
-
28
-
-
0036140598
-
Stimulation of DNA synthesis activity of human DNA polymerase κ by PCNA
-
Haracska L., Unk I., Johnson R.E., Phillips B.B., Hurwitz J., Prakash L., Prakash S. Stimulation of DNA synthesis activity of human DNA polymerase κ by PCNA. Mol Cell Biol. 22:2002;784-791.
-
(2002)
Mol Cell Biol
, vol.22
, pp. 784-791
-
-
Haracska, L.1
Unk, I.2
Johnson, R.E.3
Phillips, B.B.4
Hurwitz, J.5
Prakash, L.6
Prakash, S.7
-
29
-
-
0034852569
-
Interaction with PCNA is essential for yeast DNA polymerase η function
-
Haracska L., Kondratick C.M., Unk I., Prakash S., Prakash L. Interaction with PCNA is essential for yeast DNA polymerase η function. Mol Cell. 8:2001;407-415.
-
(2001)
Mol Cell
, vol.8
, pp. 407-415
-
-
Haracska, L.1
Kondratick, C.M.2
Unk, I.3
Prakash, S.4
Prakash, L.5
-
30
-
-
0035862988
-
Domain structure, localization, and function of DNA polymerase η, defective in xeroderma pigmentosum variant cells
-
Kannouche P., Broughton B.C., Volker M., Hanaoka F., Mullenders L.H., Lehmann A.R. Domain structure, localization, and function of DNA polymerase η, defective in xeroderma pigmentosum variant cells. Genes Dev. 15:2001;158-172.
-
(2001)
Genes Dev
, vol.15
, pp. 158-172
-
-
Kannouche, P.1
Broughton, B.C.2
Volker, M.3
Hanaoka, F.4
Mullenders, L.H.5
Lehmann, A.R.6
-
31
-
-
0037416811
-
Localization of DNA polymerases η and ι to the replication machinery is tightly co-ordinated in human cells
-
Using fluorescently tagged recombinant proteins, the authors show that Pol ι localizes to foci after DNA damage. Furthermore, Pol ι foci colocalize with Pol η foci, and the two proteins physically interact. The number of cells containing Pol ι foci is greatly reduced when the tagged protein is expressed in xeroderma pigmentosum variant cells.
-
Kannouche P., Fernández de Henestrosa A.R., Coull B., Vidal A.E., Gray C., Zicha D., Woodgate R., Lehmann A.R. Localization of DNA polymerases η and ι to the replication machinery is tightly co-ordinated in human cells. EMBO J. 22:2003;1223-1233 Using fluorescently tagged recombinant proteins, the authors show that Pol ι localizes to foci after DNA damage. Furthermore, Pol ι foci colocalize with Pol η foci, and the two proteins physically interact. The number of cells containing Pol ι foci is greatly reduced when the tagged protein is expressed in xeroderma pigmentosum variant cells.
-
(2003)
EMBO J
, vol.22
, pp. 1223-1233
-
-
Kannouche, P.1
Fernández De Henestrosa, A.R.2
Coull, B.3
Vidal, A.E.4
Gray, C.5
Zicha, D.6
Woodgate, R.7
Lehmann, A.R.8
-
32
-
-
0036903705
-
Localisation of human DNA polymerase κ to replication foci
-
Bergoglio V., Bavoux C., Verbiest V., Hoffmann J.S., Cazaux C. Localisation of human DNA polymerase κ to replication foci. J Cell Sci. 115:2002;4413-4418.
-
(2002)
J Cell Sci
, vol.115
, pp. 4413-4418
-
-
Bergoglio, V.1
Bavoux, C.2
Verbiest, V.3
Hoffmann, J.S.4
Cazaux, C.5
-
33
-
-
0030735538
-
The Saccharomyces cerevisiae RAD30 gene, a homologue of Escherichia coli dinB and umuC, is DNA damage inducible and functions in a novel error-free postreplication repair mechanism
-
McDonald J.P., Levine A.S., Woodgate R. The Saccharomyces cerevisiae RAD30 gene, a homologue of Escherichia coli dinB and umuC, is DNA damage inducible and functions in a novel error-free postreplication repair mechanism. Genetics. 147:1997;1557-1568.
-
(1997)
Genetics
, vol.147
, pp. 1557-1568
-
-
McDonald, J.P.1
Levine, A.S.2
Woodgate, R.3
-
34
-
-
0035833662
-
DNA postreplication repair and mutagenesis in Saccharomyces cerevisiae
-
Broomfield S., Hryciw T., Xiao W. DNA postreplication repair and mutagenesis in Saccharomyces cerevisiae. Mutat Res. 486:2001;167-184.
-
(2001)
Mutat Res
, vol.486
, pp. 167-184
-
-
Broomfield, S.1
Hryciw, T.2
Xiao, W.3
-
35
-
-
0023236126
-
The yeast DNA repair gene RAD6 encodes a ubiquitin-conjugating enzyme
-
Jentsch S., McGrath J.P., Varshavsky A. The yeast DNA repair gene RAD6 encodes a ubiquitin-conjugating enzyme. Nature. 329:1987;131-134.
-
(1987)
Nature
, vol.329
, pp. 131-134
-
-
Jentsch, S.1
McGrath, J.P.2
Varshavsky, A.3
-
36
-
-
0030800865
-
Yeast DNA repair proteins Rad6 and Rad18 form a heterodimer that has ubiquitin conjugating, DNA binding, and ATP hydrolytic activities
-
Bailly V., Lauder S., Prakash S., Prakash L. Yeast DNA repair proteins Rad6 and Rad18 form a heterodimer that has ubiquitin conjugating, DNA binding, and ATP hydrolytic activities. J Biol Chem. 272:1997;23360-23365.
-
(1997)
J Biol Chem
, vol.272
, pp. 23360-23365
-
-
Bailly, V.1
Lauder, S.2
Prakash, S.3
Prakash, L.4
-
37
-
-
0032510731
-
MMS2, encoding a ubiquitin-conjugating-enzyme-like protein, is a member of the yeast error-free postreplication repair pathway
-
Broomfield S., Chow B.L., Xiao W. MMS2, encoding a ubiquitin-conjugating- enzyme-like protein, is a member of the yeast error-free postreplication repair pathway. Proc Natl Acad Sci USA. 95:1998;5678-5683.
-
(1998)
Proc Natl Acad Sci USA
, vol.95
, pp. 5678-5683
-
-
Broomfield, S.1
Chow, B.L.2
Xiao, W.3
-
38
-
-
0033525582
-
Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair
-
Hofmann R.M., Pickart C.M. Noncanonical MMS2-encoded ubiquitin- conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell. 96:1999;645-653.
-
(1999)
Cell
, vol.96
, pp. 645-653
-
-
Hofmann, R.M.1
Pickart, C.M.2
-
39
-
-
0037068455
-
RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO
-
This article describes the SUMO and ubiquitin modification of PCNA in budding yeast. Synchronization experiments show that the amount of SUMO-conjugated PCNA increases during S phase, and that this increase is dependent on Ubc9, a SUMO conjugating enzyme. In fact, Ubc9 interacts directly with PCNA and predominantly modifies a conserved lysine residue. By using mutations in the ubiquitin and SUMO conjugation pathways, as well by generating mutations in PCNA, the authors show that ubiquitination of PCNA occurs during normal postreplication repair.
-
Hoege C., Pfander B., Moldovan G.L., Pyrowolakis G., Jentsch S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature. 419:2002;135-141 This article describes the SUMO and ubiquitin modification of PCNA in budding yeast. Synchronization experiments show that the amount of SUMO-conjugated PCNA increases during S phase, and that this increase is dependent on Ubc9, a SUMO conjugating enzyme. In fact, Ubc9 interacts directly with PCNA and predominantly modifies a conserved lysine residue. By using mutations in the ubiquitin and SUMO conjugation pathways, as well by generating mutations in PCNA, the authors show that ubiquitination of PCNA occurs during normal postreplication repair.
-
(2002)
Nature
, vol.419
, pp. 135-141
-
-
Hoege, C.1
Pfander, B.2
Moldovan, G.L.3
Pyrowolakis, G.4
Jentsch, S.5
-
40
-
-
0141831006
-
Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation
-
The authors examine the phenotype of yeast expressing PCNA with a mutation at a conserved lysine residue (K164), and further explore the roles of Pol ζ and Pol η in SUMO- and ubiquitin-dependent mutagenesis.
-
Stelter P., Ulrich H.D. Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature. 425:2003;188-191 The authors examine the phenotype of yeast expressing PCNA with a mutation at a conserved lysine residue (K164), and further explore the roles of Pol ζ and Pol η in SUMO- and ubiquitin-dependent mutagenesis.
-
(2003)
Nature
, vol.425
, pp. 188-191
-
-
Stelter, P.1
Ulrich, H.D.2
-
41
-
-
0029821929
-
Requirement of proliferating cell nuclear antigen in RAD6-dependent postreplicational DNA repair
-
Torres-Ramos C.A., Yoder B.L., Burgers P.M., Prakash S., Prakash L. Requirement of proliferating cell nuclear antigen in RAD6-dependent postreplicational DNA repair. Proc Natl Acad Sci USA. 93:1996;9676-9681.
-
(1996)
Proc Natl Acad Sci USA
, vol.93
, pp. 9676-9681
-
-
Torres-Ramos, C.A.1
Yoder, B.L.2
Burgers, P.M.3
Prakash, S.4
Prakash, L.5
-
42
-
-
0017192819
-
Spontaneous mutation by mutagenic repair of spontaneous lesions in DNA
-
Hastings P.J., Quah S.K., von Borstel R.C. Spontaneous mutation by mutagenic repair of spontaneous lesions in DNA. Nature. 264:1976;719-722.
-
(1976)
Nature
, vol.264
, pp. 719-722
-
-
Hastings, P.J.1
Quah, S.K.2
Von Borstel, R.C.3
-
43
-
-
0034018312
-
The yeast ULP2 (SMT4) gene encodes a novel protease specific for the ubiquitin-like Smt3 protein
-
Li S.J., Hochstrasser M. The yeast ULP2 (SMT4) gene encodes a novel protease specific for the ubiquitin-like Smt3 protein. Mol Cell Biol. 20:2000;2367-2377.
-
(2000)
Mol Cell Biol
, vol.20
, pp. 2367-2377
-
-
Li, S.J.1
Hochstrasser, M.2
-
45
-
-
0036531901
-
A unified view of the DNA-damage checkpoint
-
Melo J., Toczyski D. A unified view of the DNA-damage checkpoint. Curr Opin Cell Biol. 14:2002;237-245.
-
(2002)
Curr Opin Cell Biol
, vol.14
, pp. 237-245
-
-
Melo, J.1
Toczyski, D.2
-
46
-
-
0034235463
-
Structure-based predictions of Rad1, Rad9, Hus1 and Rad17 participation in sliding clamp and clamp-loading complexes
-
Venclovas C., Thelen M.P. Structure-based predictions of Rad1, Rad9, Hus1 and Rad17 participation in sliding clamp and clamp-loading complexes. Nucleic Acids Res. 28:2000;2481-2493.
-
(2000)
Nucleic Acids Res
, vol.28
, pp. 2481-2493
-
-
Venclovas, C.1
Thelen, M.P.2
-
48
-
-
0036668474
-
Clamp and clamp loader structures of the human checkpoint protein complexes, Rad9-1-1 and Rad17-RFC
-
Shiomi Y., Shinozaki A., Nakada D., Sugimoto K., Usukura J., Obuse C., Tsurimoto T. Clamp and clamp loader structures of the human checkpoint protein complexes, Rad9-1-1 and Rad17-RFC. Genes Cells. 7:2002;861-868.
-
(2002)
Genes Cells
, vol.7
, pp. 861-868
-
-
Shiomi, Y.1
Shinozaki, A.2
Nakada, D.3
Sugimoto, K.4
Usukura, J.5
Obuse, C.6
Tsurimoto, T.7
-
49
-
-
0037452605
-
Loading of the human 9-1-1 checkpoint complex onto DNA by the checkpoint clamp loader hRad17-replication factor C complex in vitro
-
2-5 can function as a clamp loader for the 9-1-1 complex. The loading of 9-1-1 occurs in the presence of the non-hydrolysable ATP analog, ATP-γS. The addition of ATP-γS stimulates loading of the 9-1-1 clamp onto gapped circular DNA, especially when followed by the addition of ATP, but ATP alone is insufficient for clamp loading.
-
2-5 can function as a clamp loader for the 9-1-1 complex. The loading of 9-1-1 occurs in the presence of the non-hydrolysable ATP analog, ATP-γS. The addition of ATP-γS stimulates loading of the 9-1-1 clamp onto gapped circular DNA, especially when followed by the addition of ATP, but ATP alone is insufficient for clamp loading.
-
(2003)
Proc Natl Acad Sci USA
, vol.100
, pp. 1633-1638
-
-
Bermudez, V.P.1
Lindsey-Boltz, L.A.2
Cesare, A.J.3
Maniwa, Y.4
Griffith, J.D.5
Hurwitz, J.6
Sancar, A.7
-
50
-
-
0028844502
-
Fission yeast rad17: A homologue of budding yeast RAD24 that shares regions of sequence similarity with DNA polymerase accessory proteins
-
Griffiths D.J., Barbet N.C., McCready S., Lehmann A.R., Carr A.M. Fission yeast rad17: a homologue of budding yeast RAD24 that shares regions of sequence similarity with DNA polymerase accessory proteins. EMBO J. 14:1995;5812-5823.
-
(1995)
EMBO J
, vol.14
, pp. 5812-5823
-
-
Griffiths, D.J.1
Barbet, N.C.2
McCready, S.3
Lehmann, A.R.4
Carr, A.M.5
-
51
-
-
0037418195
-
Yeast Rad17/Mec3/Ddc1: A sliding clamp for the DNA damage checkpoint
-
Majka J., Burgers P.M. Yeast Rad17/Mec3/Ddc1: a sliding clamp for the DNA damage checkpoint. Proc Natl Acad Sci USA. 100:2003;2249-2254.
-
(2003)
Proc Natl Acad Sci USA
, vol.100
, pp. 2249-2254
-
-
Majka, J.1
Burgers, P.M.2
-
52
-
-
0037224965
-
Checkpoint activation regulates mutagenic translesion synthesis
-
By using a fission yeast strain with a temperature-sensitive mutation in Pol α to induce replicative stress, which activates checkpoint proteins, the authors demonstrate that damaged-induced mutagenesis is dependent on Pol ζ, Pol κ and Rad17. They also show that 9-1-1 checkpoint proteins interact physically and functionally with the S. pombe DinB protein (Pol κ).
-
Kai M., Wang T.S. Checkpoint activation regulates mutagenic translesion synthesis. Genes Dev. 17:2003;64-76 By using a fission yeast strain with a temperature-sensitive mutation in Pol α to induce replicative stress, which activates checkpoint proteins, the authors demonstrate that damaged-induced mutagenesis is dependent on Pol ζ, Pol κ and Rad17. They also show that 9-1-1 checkpoint proteins interact physically and functionally with the S. pombe DinB protein (Pol κ).
-
(2003)
Genes Dev
, vol.17
, pp. 64-76
-
-
Kai, M.1
Wang, T.S.2
-
53
-
-
0031716616
-
The Saccharomyces cerevisiae RAD9, RAD17, RAD24 and MEC3 genes are required for tolerating irreparable, ultraviolet-induced DNA damage
-
Paulovich A.G., Armour C.D., Hartwell L.H. The Saccharomyces cerevisiae RAD9, RAD17, RAD24 and MEC3 genes are required for tolerating irreparable, ultraviolet-induced DNA damage. Genetics. 150:1998;75-93.
-
(1998)
Genetics
, vol.150
, pp. 75-93
-
-
Paulovich, A.G.1
Armour, C.D.2
Hartwell, L.H.3
|