메뉴 건너뛰기




Volumn 21, Issue , 2005, Pages 529-550

Protein translocation by the Sec61/SecY channel

Author keywords

Membrane protein integration; Ribosome channel complex

Indexed keywords

ADENOSINE TRIPHOSPHATASE; CHAPERONE; GLUCOSE REGULATED PROTEIN 78; MEMBRANE PROTEIN; PROTEIN SEC61; PROTEIN SECA; SECY PROTEIN; UNCLASSIFIED DRUG;

EID: 27844485836     PISSN: 10810706     EISSN: None     Source Type: Book Series    
DOI: 10.1146/annurev.cellbio.21.012704.133214     Document Type: Review
Times cited : (316)

References (105)
  • 1
    • 0025999145 scopus 로고
    • Reconstitution of a protein translocation system containing purified SecY, SecE, and SecA from Escherichia coli
    • Akimaru J, Matsuyama SI, Tokuda H, Mizushima S. 1991. Reconstitution of a protein translocation system containing purified SecY, SecE, and SecA from Escherichia coli. Proc. Natl. Acad. Sci. USA 88:6545-49
    • (1991) Proc. Natl. Acad. Sci. USA , vol.88 , pp. 6545-6549
    • Akimaru, J.1    Matsuyama, S.I.2    Tokuda, H.3    Mizushima, S.4
  • 2
    • 0031473345 scopus 로고    scopus 로고
    • Alignment of conduits for the nascent polypeptide chain in the ribosome-Sec61 complex
    • Beckmann R, Bubeck D, Grassucci R, Penczek P, Verschoor A, et al. 1997. Alignment of conduits for the nascent polypeptide chain in the ribosome-Sec61 complex. Science 19:2123-26
    • (1997) Science , vol.19 , pp. 2123-2126
    • Beckmann, R.1    Bubeck, D.2    Grassucci, R.3    Penczek, P.4    Verschoor, A.5
  • 3
    • 0035798359 scopus 로고    scopus 로고
    • Architecture of the protein-conducting channel associated with the translating 80S ribosome
    • Beckmann R, Spahn CM, Eswar N, Helmers J, Penczek PA, et al. 2001. Architecture of the protein-conducting channel associated with the translating 80S ribosome. Cell 107:361-72
    • (2001) Cell , vol.107 , pp. 361-372
    • Beckmann, R.1    Spahn, C.M.2    Eswar, N.3    Helmers, J.4    Penczek, P.A.5
  • 4
    • 0037423278 scopus 로고    scopus 로고
    • Phospholipid-induced monomerization and signal-peptide-induced oligomerization of SecA
    • Benach J, Chou YT, Fak JJ, Itkin A, Nicolae DD, et al. 2003. Phospholipid-induced monomerization and signal-peptide-induced oligomerization of SecA. J. Biol. Chem. 278:3628-38
    • (2003) J. Biol. Chem. , vol.278 , pp. 3628-3638
    • Benach, J.1    Chou, Y.T.2    Fak, J.J.3    Itkin, A.4    Nicolae, D.D.5
  • 5
    • 0036091006 scopus 로고    scopus 로고
    • An accessory sec locus of Streptococcus gordonii is required for export of the surface protein GspB and for normal levels of binding to human platelets
    • Bensing BA, Sullam PM. 2002. An accessory sec locus of Streptococcus gordonii is required for export of the surface protein GspB and for normal levels of binding to human platelets. Mol. Microbiol. 44:1081-94
    • (2002) Mol. Microbiol. , vol.44 , pp. 1081-1094
    • Bensing, B.A.1    Sullam, P.M.2
  • 6
    • 0036500974 scopus 로고    scopus 로고
    • The SecYEG preprotein translocation channel is a conformationally dynamic and dimeric structure
    • Bessonneau P, Besson V, Collinson I, Duong F. 2002. The SecYEG preprotein translocation channel is a conformationally dynamic and dimeric structure. EMBO J. 21:995-1003
    • (2002) EMBO J , vol.21 , pp. 995-1003
    • Bessonneau, P.1    Besson, V.2    Collinson, I.3    Duong, F.4
  • 8
    • 0037043724 scopus 로고    scopus 로고
    • Three-dimensional structure of the bacterial protein-translocation complex SecYEG
    • Breyton C, Haase W, Rapoport TA, Kuhlbrandt W, Collinson I. 2002. Three-dimensional structure of the bacterial protein-translocation complex SecYEG. Nature 418:662-65
    • (2002) Nature , vol.418 , pp. 662-665
    • Breyton, C.1    Haase, W.2    Rapoport, T.A.3    Kuhlbrandt, W.4    Collinson, I.5
  • 9
    • 0025087853 scopus 로고
    • The purified E. coli integral membrane protein SecY/E is sufficient for reconstitution of SecA-dependent precursor protein translocation
    • Brundage L, Hendrick JP, Schiebel E, Driessen AJM, Wickner W. 1990. The purified E. coli integral membrane protein SecY/E is sufficient for reconstitution of SecA-dependent precursor protein translocation. Cell 62:649-57
    • (1990) Cell , vol.62 , pp. 649-657
    • Brundage, L.1    Hendrick, J.P.2    Schiebel, E.3    Ajm, D.4    Wickner, W.5
  • 10
    • 0042736538 scopus 로고    scopus 로고
    • Nucleotide binding induces changes in the oligomeric state and conformation of Sec a in a lipid environment: A small-angle neutron-scattering study
    • Bu Z, Wang L, Kendall DA. 2003. Nucleotide binding induces changes in the oligomeric state and conformation of Sec A in a lipid environment: a small-angle neutron-scattering study. J. Mol. Biol. 332:23-30
    • (2003) J. Mol. Biol. , vol.332 , pp. 23-30
    • Bu, Z.1    Wang, L.2    Kendall, D.A.3
  • 11
    • 18544380083 scopus 로고    scopus 로고
    • Disulfide bridge formation between SecY and a translocating polypeptide localizes the translocation pore to the center of SecY
    • Cannon KS, Or E, Clemons WM Jr, Shibata Y, Rapoport TA. 2005. Disulfide bridge formation between SecY and a translocating polypeptide localizes the translocation pore to the center of SecY. J. Cell Biol. 169:219-25
    • (2005) J. Cell Biol. , vol.169 , pp. 219-225
    • Cannon, K.S.1    Or, E.2    Clemons Jr., W.M.3    Shibata, Y.4    Rapoport, T.A.5
  • 12
    • 0027985063 scopus 로고
    • Secretory proteins move through the endoplasmic reticulum membrane via an aqueous, gated pore
    • Crowley KS, Liao SR, Worrell VE, Reinhart GD, Johnson AE. 1994. Secretory proteins move through the endoplasmic reticulum membrane via an aqueous, gated pore. Cell 78:461-71
    • (1994) Cell , vol.78 , pp. 461-471
    • Crowley, K.S.1    Liao, S.R.2    Worrell, V.E.3    Reinhart, G.D.4    Johnson, A.E.5
  • 13
    • 0027162564 scopus 로고
    • The signal sequence moves through a ribosomal tunnel into a noncytoplasmic aqueous environment at the ER membrane early in translocation
    • Crowley KS, Reinhart GD, Johnson AE. 1993. The signal sequence moves through a ribosomal tunnel into a noncytoplasmic aqueous environment at the ER membrane early in translocation. Cell 73:1101-15
    • (1993) Cell , vol.73 , pp. 1101-1115
    • Crowley, K.S.1    Reinhart, G.D.2    Johnson, A.E.3
  • 14
    • 4544233713 scopus 로고    scopus 로고
    • YidC family members are involved in the membrane insertion, lateral integration, folding, and assembly of membrane proteins
    • Dalbey RE, Kuhn A. 2004. YidC family members are involved in the membrane insertion, lateral integration, folding, and assembly of membrane proteins. J. Cell Biol. 166:769-74
    • (2004) J. Cell Biol. , vol.166 , pp. 769-774
    • Dalbey, R.E.1    Kuhn, A.2
  • 15
    • 0037195803 scopus 로고    scopus 로고
    • Kinetic analysis of the translocation of fluorescent precursor proteins into Escherichia coli membrane vesicles
    • De Keyzer J, Van Der Does C, Driessen AJ. 2002. Kinetic analysis of the translocation of fluorescent precursor proteins into Escherichia coli membrane vesicles. J. Biol. Chem. 277:46059-65
    • (2002) J. Biol. Chem. , vol.277 , pp. 46059-46065
    • De Keyzer, J.1    Van Der Does, C.2    Driessen, A.J.3
  • 16
    • 0027457077 scopus 로고
    • A signal sequence is not required for protein export in prlA mutants of Escherichia coli
    • Derman AI, Puziss JW, Bassford PJ, Beckwith J. 1993. A signal sequence is not required for protein export in prlA mutants of Escherichia coli. EMBO J. 12:879-88
    • (1993) EMBO J , vol.12 , pp. 879-888
    • Derman, A.I.1    Puziss, J.W.2    Bassford, P.J.3    Beckwith, J.4
  • 17
    • 0025970051 scopus 로고
    • Assembly of yeast Sec proteins involved in translocation into the endoplasmic reticulum into a membrane-bound multi-subunit complex
    • Deshaies RJ, Sanders SL, Feldheim DA, Schekman R. 1991. Assembly of yeast Sec proteins involved in translocation into the endoplasmic reticulum into a membrane-bound multi-subunit complex. Nature 349:806-8
    • (1991) Nature , vol.349 , pp. 806-808
    • Deshaies, R.J.1    Sanders, S.L.2    Feldheim, D.A.3    Schekman, R.4
  • 18
    • 0042347712 scopus 로고    scopus 로고
    • Bacillus subtilis SecA. ATPase exists as an antiparallel dimer in solution
    • Ding H, Hunt JF, Mukerji I, Oliver D. 2003. Bacillus subtilis SecA. ATPase exists as an antiparallel dimer in solution. Biochemistry 42:8729-38
    • (2003) Biochemistry , vol.42 , pp. 8729-8738
    • Ding, H.1    Hunt, J.F.2    Mukerji, I.3    Oliver, D.4
  • 19
    • 0342995731 scopus 로고    scopus 로고
    • The cotranslational integration of membrane proteins into the phospholipid bilayer is a multistep process
    • Do H, Falcone D, Lin J, Andrews DW, Johnson AE. 1996. The cotranslational integration of membrane proteins into the phospholipid bilayer is a multistep process. Cell 85:369-78
    • (1996) Cell , vol.85 , pp. 369-378
    • Do, H.1    Falcone, D.2    Lin, J.3    Andrews, D.W.4    Johnson, A.E.5
  • 20
    • 0041736710 scopus 로고    scopus 로고
    • Binding, activation and dissociation of the dimeric SecA ATPase at the dimeric SecYEG translocase
    • Duong F. 2003. Binding, activation and dissociation of the dimeric SecA ATPase at the dimeric SecYEG translocase. EMBO J. 22:4375-84
    • (2003) EMBO J , vol.22 , pp. 4375-4384
    • Duong, F.1
  • 21
    • 0032472958 scopus 로고    scopus 로고
    • Sec-dependent membrane protein biogenesis: SecYEG, preprotein hydrophobicity and translocation kinetics control the stop-transfer function
    • Duong F, Wickner W. 1998. Sec-dependent membrane protein biogenesis: SecYEG, preprotein hydrophobicity and translocation kinetics control the stop-transfer function. EMBO J. 17:696-705
    • (1998) EMBO J , vol.17 , pp. 696-705
    • Duong, F.1    Wickner, W.2
  • 22
    • 0028064967 scopus 로고
    • SecA promotes preprotein translocation by undergoing ATP-driven cycles of membrane insertion and deinsertion
    • Economou A, Wickner W. 1994. SecA promotes preprotein translocation by undergoing ATP-driven cycles of membrane insertion and deinsertion. Cell 78:835-43
    • (1994) Cell , vol.78 , pp. 835-843
    • Economou, A.1    Wickner, W.2
  • 23
    • 0030903689 scopus 로고    scopus 로고
    • Both an N-terminal 65-kDa domain and a C-terminal 30-kDa domain of SecA cycle into the membrane at SecYEG during translocation
    • Eichler J, Wickner W. 1997. Both an N-terminal 65-kDa domain and a C-terminal 30-kDa domain of SecA cycle into the membrane at SecYEG during translocation. Proc. Natl. Acad. Sci. USA 94:5574-81
    • (1997) Proc. Natl. Acad. Sci. USA , vol.94 , pp. 5574-5581
    • Eichler, J.1    Wickner, W.2
  • 24
    • 0029881380 scopus 로고    scopus 로고
    • A second trimeric complex containing homologs of the Sec61p complex functions in protein transport across the ER membrane of S. cerevisiae
    • Finke K, Plath K, Panzner S, Prehn S, Rapoport TA, et al. 1996. A second trimeric complex containing homologs of the Sec61p complex functions in protein transport across the ER membrane of S. cerevisiae. EMBO J. 15:1482-94
    • (1996) EMBO J , vol.15 , pp. 1482-1494
    • Finke, K.1    Plath, K.2    Panzner, S.3    Prehn, S.4    Rapoport, T.A.5
  • 25
    • 0028175016 scopus 로고
    • Topological "frustration" in multi-spanning E. coli inner membrane proteins
    • Gafvelin G, von Heijne G. 1994. Topological "frustration" in multi-spanning E. coli inner membrane proteins. Cell 77:401-12
    • (1994) Cell , vol.77 , pp. 401-412
    • Gafvelin, G.1    Von Heijne, G.2
  • 26
    • 0032727707 scopus 로고    scopus 로고
    • Glycosylation can influence topogenesis of membrane proteins and reveals dynamic reorientation of nascent polypeptides within the translocon
    • Goder V, Bieri C, Spiess M. 1999. Glycosylation can influence topogenesis of membrane proteins and reveals dynamic reorientation of nascent polypeptides within the translocon. J. Cell Biol. 147:257-66
    • (1999) J. Cell Biol. , vol.147 , pp. 257-266
    • Goder, V.1    Bieri, C.2    Spiess, M.3
  • 27
    • 0026504192 scopus 로고
    • A protein of the endoplasmic reticulum involved early in polypeptide translocation
    • Görlich D, Hartmann E, Prehn S, Rapoport TA. 1992. A protein of the endoplasmic reticulum involved early in polypeptide translocation. Nature 357:47-52
    • (1992) Nature , vol.357 , pp. 47-52
    • Görlich, D.1    Hartmann, E.2    Prehn, S.3    Rapoport, T.A.4
  • 28
    • 0027424601 scopus 로고
    • Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane
    • Gorlich D, Rapoport TA. 1993. Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane. Cell 75:615-30
    • (1993) Cell , vol.75 , pp. 615-630
    • Gorlich, D.1    Rapoport, T.A.2
  • 29
    • 13844266603 scopus 로고    scopus 로고
    • The signal recognition particle and its interactions during protein targeting
    • Halic M, Beckmann R. 2005. The signal recognition particle and its interactions during protein targeting. Curr. Opin. Struct. Biol. 15:116-25
    • (2005) Curr. Opin. Struct. Biol. , vol.15 , pp. 116-125
    • Halic, M.1    Beckmann, R.2
  • 30
    • 0030611388 scopus 로고    scopus 로고
    • The aqueous pore through the translocon has a diameter of 40-60 Å during cotranslational protein translocation at the ER membrane
    • Hamman BD, Chen JC, Johnson EE, Johnson AE. 1997. The aqueous pore through the translocon has a diameter of 40-60 Å during cotranslational protein translocation at the ER membrane. Cell 89:535-44
    • (1997) Cell , vol.89 , pp. 535-544
    • Hamman, B.D.1    Chen, J.C.2    Johnson, E.E.3    Johnson, A.E.4
  • 31
    • 0032549767 scopus 로고    scopus 로고
    • BiP maintains the permeability barrier of the ER membrane by sealing the lumenal end of the translocon pore before and early in translocation
    • Hamman BD, Hendershot LM, Johnson AE. 1998. BiP maintains the permeability barrier of the ER membrane by sealing the lumenal end of the translocon pore before and early in translocation. Cell 92:747-58
    • (1998) Cell , vol.92 , pp. 747-758
    • Hamman, B.D.1    Hendershot, L.M.2    Johnson, A.E.3
  • 32
    • 0033032483 scopus 로고    scopus 로고
    • Mapping an interface of SecY (PrlA) and SecE (PrlG) by using synthetic phenotypes and in vivo cross-linking
    • Harris CR, Silhavy TJ. 1999. Mapping an interface of SecY (PrlA) and SecE (PrlG) by using synthetic phenotypes and in vivo cross-linking. J. Bacteriol. 181:3438-44
    • (1999) J. Bacteriol. , vol.181 , pp. 3438-3444
    • Harris, C.R.1    Silhavy, T.J.2
  • 33
    • 0030782178 scopus 로고    scopus 로고
    • Membrane protein biogenesis: Regulated complexity at the endoplasmic reticulum
    • Hegde RS, Lingappa VR. 1997. Membrane protein biogenesis: regulated complexity at the endoplasmic reticulum. Cell 91:575-82
    • (1997) Cell , vol.91 , pp. 575-582
    • Hegde, R.S.1    Lingappa, V.R.2
  • 34
    • 0034697967 scopus 로고    scopus 로고
    • The Sec61p complex mediates the integration of a membrane protein by allowing lipid partitioning of the transmembrane domain
    • Heinrich SU, Mothes W, Brunner J, Rapoport TA. 2000. The Sec61p complex mediates the integration of a membrane protein by allowing lipid partitioning of the transmembrane domain. Cell 102:233-44
    • (2000) Cell , vol.102 , pp. 233-244
    • Heinrich, S.U.1    Mothes, W.2    Brunner, J.3    Rapoport, T.A.4
  • 35
    • 13444262028 scopus 로고    scopus 로고
    • Recognition of transmembrane helices by the endoplasmic reticulum translocon
    • Hessa T, Kim H, Bihlmaier K, Lundin C, Boekel J, et al. 2005. Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature 433:377-81
    • (2005) Nature , vol.433 , pp. 377-381
    • Hessa, T.1    Kim, H.2    Bihlmaier, K.3    Lundin, C.4    Boekel, J.5
  • 36
    • 0037144467 scopus 로고    scopus 로고
    • Nucleotide control of interdomain interactions in the conformational reaction cycle of SecA
    • Hunt JF, Weinkauf S, Henry L, Fak JJ, McNicholas P, et al. 2002. Nucleotide control of interdomain interactions in the conformational reaction cycle of SecA. Science 297:2018-26
    • (2002) Science , vol.297 , pp. 2018-2026
    • Hunt, J.F.1    Weinkauf, S.2    Henry, L.3    Fak, J.J.4    McNicholas, P.5
  • 37
    • 0038305947 scopus 로고    scopus 로고
    • Post-translational secretion of fusion proteins in the halophilic archaea Haloferax volcanii
    • Irihimovitch V, Eichler J. 2003. Post-translational secretion of fusion proteins in the halophilic archaea Haloferax volcanii. J. Biol. Chem. 278:12881-87
    • (2003) J. Biol. Chem. , vol.278 , pp. 12881-12887
    • Irihimovitch, V.1    Eichler, J.2
  • 39
    • 0033281074 scopus 로고    scopus 로고
    • The translocon: A dynamic gateway at the ER membrane
    • Johnson AE, van Waes MA. 1999. The translocon: a dynamic gateway at the ER membrane. Annu. Rev. Cell Dev. Biol. 15:799-842
    • (1999) Annu. Rev. Cell Dev. Biol. , vol.15 , pp. 799-842
    • Johnson, A.E.1    Van Waes, M.A.2
  • 40
    • 0027393014 scopus 로고
    • The SecA and SecY subunits of translocase are the nearest neighbors of a translocating preprotein, shielding it from phospholipids
    • Joly JC, Wickner W. 1993. The SecA and SecY subunits of translocase are the nearest neighbors of a translocating preprotein, shielding it from phospholipids. EMBO J. 12:255-63
    • (1993) EMBO J , vol.12 , pp. 255-263
    • Joly, J.C.1    Wickner, W.2
  • 41
    • 0033551435 scopus 로고    scopus 로고
    • Cysteine-directed cross-linking demonstrates that helix 3 of SecE is close to helix 2 of SecY and helix 3 of a neighboring SecE
    • Kaufmann A, Manting EH, Veenendaal AK, Driessen AJ, van der Does C. 1999. Cysteine-directed cross-linking demonstrates that helix 3 of SecE is close to helix 2 of SecY and helix 3 of a neighboring SecE. Biochemistry 38:9115-25
    • (1999) Biochemistry , vol.38 , pp. 9115-9125
    • Kaufmann, A.1    Manting, E.H.2    Veenendaal, A.K.3    Driessen, A.J.4    Van Der Does, C.5
  • 42
    • 0027956170 scopus 로고
    • SecA protein is exposed to the periplasmic surface of the Ecoli inner membrane in its active state
    • Kim YJ, Rajapandi T, Oliver D. 1994. SecA protein is exposed to the periplasmic surface of the Ecoli inner membrane in its active state. Cell 78:845-53
    • (1994) Cell , vol.78 , pp. 845-853
    • Kim, Y.J.1    Rajapandi, T.2    Oliver, D.3
  • 43
    • 0025847517 scopus 로고
    • Determination of a region in SecA that interacts with presecretory proteins in Escherichia coli
    • Kimura E, Akita M, Matsuyama S, Mizushima S. 1991. Determination of a region in SecA that interacts with presecretory proteins in Escherichia coli. J. Biol. Chem. 266:6600-6
    • (1991) J. Biol. Chem. , vol.266 , pp. 6600-6606
    • Kimura, E.1    Akita, M.2    Matsuyama, S.3    Mizushima, S.4
  • 44
    • 0033774991 scopus 로고    scopus 로고
    • Tyr-326 plays a critical role in controlling SecA-preprotein interaction
    • Kourtz L, Oliver D. 2000. Tyr-326 plays a critical role in controlling SecA-preprotein interaction. Mol. Microbiol. 37:1342-56
    • (2000) Mol. Microbiol. , vol.37 , pp. 1342-1356
    • Kourtz, L.1    Oliver, D.2
  • 45
    • 0036810271 scopus 로고    scopus 로고
    • Protein folding during cotranslational translocation in the endoplasmic reticulum
    • Kowarik M, Kung S, Martoglio B, Helenius A. 2002. Protein folding during cotranslational translocation in the endoplasmic reticulum. Mol. Cell 10:769-78
    • (2002) Mol. Cell , vol.10 , pp. 769-778
    • Kowarik, M.1    Kung, S.2    Martoglio, B.3    Helenius, A.4
  • 46
    • 0023857532 scopus 로고
    • tRNA-mediated labelling of proteins with biotin a nonradioactive method for the detection of cell-free translation products
    • Kurzchalia TV, Wiedmann M, Breter H, Zimmermann W, Bauschke E, Rapoport TA. 1988. tRNA-mediated labelling of proteins with biotin A nonradioactive method for the detection of cell-free translation products. Eur. J. Biochem. 172:663-68
    • (1988) Eur. J. Biochem. , vol.172 , pp. 663-668
    • Kurzchalia, T.V.1    Wiedmann, M.2    Breter, H.3    Zimmermann, W.4    Bauschke, E.5    Rapoport, T.A.6
  • 47
    • 0035910285 scopus 로고    scopus 로고
    • Ratcheting in post-translational protein translocation: A mathematical model
    • Liebermeister W, Rapoport TA, Heinrich R. 2001. Ratcheting in post-translational protein translocation: a mathematical model. J. Mol. Biol. 305:643-56
    • (2001) J. Mol. Biol. , vol.305 , pp. 643-656
    • Liebermeister, W.1    Rapoport, T.A.2    Heinrich, R.3
  • 48
    • 0026801535 scopus 로고
    • Membrane assembly of the triple-spanning coronavirus M-protein. Individual transmembrane domains show preferred orientation
    • Locker JK, Rose JK, Horzinek MC, Rottier PJM. 1992. Membrane assembly of the triple-spanning coronavirus M-protein. Individual transmembrane domains show preferred orientation. J. Biol. Chem. 267:21911-18
    • (1992) J. Biol. Chem. , vol.267 , pp. 21911-21918
    • Locker, J.K.1    Rose, J.K.2    Horzinek, M.C.3    Rottier, P.J.M.4
  • 49
    • 8844239874 scopus 로고    scopus 로고
    • SRP-mediated protein targeting: Structure and function revisited
    • Luirink J, Sinning I. 2004. SRP-mediated protein targeting: structure and function revisited. Biochim. Biophys. Acta 1694:17-35
    • (2004) Biochim. Biophys. Acta , vol.1694 , pp. 17-35
    • Luirink, J.1    Sinning, I.2
  • 50
    • 2942511249 scopus 로고    scopus 로고
    • Structure of the multidrug resistance efflux transporter EmrE from Escherichia coli
    • Ma C, Chang G. 2004. Structure of the multidrug resistance efflux transporter EmrE from Escherichia coli. Proc. Natl. Acad. Sci. USA 101:2852-57
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , pp. 2852-2857
    • Ma, C.1    Chang, G.2
  • 51
    • 0034161573 scopus 로고    scopus 로고
    • SecYEG assembles into a tetramer to form the active protein translocation channel
    • Manting EH, van Der Does C, Remigy H, Engel A, Driessen AJ. 2000. SecYEG assembles into a tetramer to form the active protein translocation channel. EMBO J. 19:852-61
    • (2000) EMBO J , vol.19 , pp. 852-861
    • Manting, E.H.1    Van Der Does, C.2    Remigy, H.3    Engel, A.4    Driessen, A.J.5
  • 52
    • 0033612302 scopus 로고    scopus 로고
    • BiP acts as a molecular ratchet during posttranslational transport of prepro-α factor across the ER membrane
    • Matlack KE, Misselwitz B, Plath K, Rapoport TA. 1999. BiP acts as a molecular ratchet during posttranslational transport of prepro-α factor across the ER membrane. Cell 97:553-64
    • (1999) Cell , vol.97 , pp. 553-564
    • Matlack, K.E.1    Misselwitz, B.2    Plath, K.3    Rapoport, T.A.4
  • 53
    • 0032488845 scopus 로고    scopus 로고
    • Protein translocation: Tunnel vision
    • Matlack KES, Mothes W, Rapoport TA. 1998. Protein translocation: tunnel vision. Cell 92:381-90
    • (1998) Cell , vol.92 , pp. 381-390
    • Matlack, K.E.S.1    Mothes, W.2    Rapoport, T.A.3
  • 54
    • 0141992130 scopus 로고    scopus 로고
    • Cotranslational protein integration into the ER membrane is mediated by the binding of nascent chains to translocon proteins
    • McCormick PJ, Miao Y, Shao Y, Lin J, Johnson AE. 2003. Cotranslational protein integration into the ER membrane is mediated by the binding of nascent chains to translocon proteins. Mol. Cells 12:329-41
    • (2003) Mol. Cells , vol.12 , pp. 329-341
    • McCormick, P.J.1    Miao, Y.2    Shao, Y.3    Lin, J.4    Johnson, A.E.5
  • 55
    • 0025899560 scopus 로고
    • Decoding signals for membrane protein assembly using alkaline phosphatase fusions
    • McGovern K, Ehrmann M, Beckwith J. 1991. Decoding signals for membrane protein assembly using alkaline phosphatase fusions. EMBO J. 10:2773-82
    • (1991) EMBO J , vol.10 , pp. 2773-2782
    • McGovern, K.1    Ehrmann, M.2    Beckwith, J.3
  • 56
    • 0036906637 scopus 로고    scopus 로고
    • Different transmembrane domains associate with distinct endoplasmic reticulum components during membrane integration of a polytopic protein
    • Meacock SL, Lecomte FJ, Crawshaw SG, High S. 2002. Different transmembrane domains associate with distinct endoplasmic reticulum components during membrane integration of a polytopic protein. Mol. Biol. Cell 13:4114-29
    • (2002) Mol. Biol. Cell , vol.13 , pp. 4114-4129
    • Meacock, S.L.1    Lecomte, F.J.2    Crawshaw, S.G.3    High, S.4
  • 58
    • 0033638455 scopus 로고    scopus 로고
    • The structure of ribosome-channel complexes engaged in protein translocation
    • Menetret J, Neuhof A, Morgan DG, Plath K, Radermacher M, et al. 2000. The structure of ribosome-channel complexes engaged in protein translocation. Mol. Cell 6:1219-32
    • (2000) Mol. Cell , vol.6 , pp. 1219-1232
    • Menetret, J.1    Neuhof, A.2    Morgan, D.G.3    Plath, K.4    Radermacher, M.5
  • 60
    • 0032214832 scopus 로고    scopus 로고
    • J proteins catalytically activate Hsp70 molecules to trap a wide range of peptide sequences
    • Misselwitz B, Staeck O, Rapoport TA. 1998. J proteins catalytically activate Hsp70 molecules to trap a wide range of peptide sequences. Mol. Cell 2:593-603
    • (1998) Mol. Cell , vol.2 , pp. 593-603
    • Misselwitz, B.1    Staeck, O.2    Rapoport, T.A.3
  • 61
    • 0027488666 scopus 로고
    • Two distinct ATP-binding domains are needed to promote protein export by Escherichia coli SecA ATPase
    • Mitchell C, Oliver D. 1993. Two distinct ATP-binding domains are needed to promote protein export by Escherichia coli SecA ATPase. Mol. Microbiol. 10:483-97
    • (1993) Mol. Microbiol. , vol.10 , pp. 483-497
    • Mitchell, C.1    Oliver, D.2
  • 63
    • 0035477117 scopus 로고    scopus 로고
    • The Sec protein-translocation pathway
    • Mori H, Ito K. 2001. The Sec protein-translocation pathway. Trends Microbiol. 9:494-500
    • (2001) Trends Microbiol , vol.9 , pp. 494-500
    • Mori, H.1    Ito, K.2
  • 64
    • 0030825974 scopus 로고    scopus 로고
    • Molecular mechanism of membrane protein integration into the endoplasmic reticulum
    • Mothes W, Heinrich SU, Graf R, Nilsson I, von Heijne G, et al. 1997. Molecular mechanism of membrane protein integration into the endoplasmic reticulum. Cell 89:523-33
    • (1997) Cell , vol.89 , pp. 523-533
    • Mothes, W.1    Heinrich, S.U.2    Graf, R.3    Nilsson, I.4    Von Heijne, G.5
  • 65
    • 0032572529 scopus 로고    scopus 로고
    • Signal sequence recognition in cotranslational translocation by protein components of the ER membrane
    • Mothes W, Jungnickel B, Brunner J, Rapoport TA. 1998. Signal sequence recognition in cotranslational translocation by protein components of the ER membrane. J. Cell Biol. 142:355-64
    • (1998) J. Cell Biol. , vol.142 , pp. 355-364
    • Mothes, W.1    Jungnickel, B.2    Brunner, J.3    Rapoport, T.A.4
  • 66
    • 0027936633 scopus 로고
    • Systematic probing of the environment of a translocating secretory protein during translocation through the ER membrane
    • Mothes W, Prehn S, Rapoport TA. 1994. Systematic probing of the environment of a translocating secretory protein during translocation through the ER membrane. EMBO J. 13:3937-82
    • (1994) EMBO J , vol.13 , pp. 3937-3982
    • Mothes, W.1    Prehn, S.2    Rapoport, T.A.3
  • 67
    • 0034387983 scopus 로고    scopus 로고
    • SRP-dependent co-translational targeting and SecA-dependent translocation analyzed as individual steps in the export of a bacterial protein
    • Neumann-Haefelin C, Schafer U, Muller M, Koch HG. 2000. SRP-dependent co-translational targeting and SecA-dependent translocation analyzed as individual steps in the export of a bacterial protein. EMBO J. 19:6419-26
    • (2000) EMBO J , vol.19 , pp. 6419-6426
    • Neumann-Haefelin, C.1    Schafer, U.2    Muller, M.3    Koch, H.G.4
  • 68
    • 0029952547 scopus 로고    scopus 로고
    • Signal sequences specify the targeting route to the endoplasmic reticulum membrane
    • Ng DT, Brown JD, Walter P. 1996. Signal sequences specify the targeting route to the endoplasmic reticulum membrane. J. Cell Biol. 134:269-78
    • (1996) J. Cell Biol. , vol.134 , pp. 269-278
    • Ng, D.T.1    Brown, J.D.2    Walter, P.3
  • 69
    • 0034053280 scopus 로고    scopus 로고
    • Distant downstream sequence determinants can control N-tail translocation during protein insertion into the endoplasmic reticulum membrane
    • Nilsson I, Witt S, Kiefer H, Mingarro I, von Heijne G. 2000. Distant downstream sequence determinants can control N-tail translocation during protein insertion into the endoplasmic reticulum membrane. J. Biol. Chem. 275:6207-13
    • (2000) J. Biol. Chem. , vol.275 , pp. 6207-6213
    • Nilsson, I.1    Witt, S.2    Kiefer, H.3    Mingarro, I.4    Von Heijne, G.5
  • 70
    • 15744404686 scopus 로고    scopus 로고
    • The bacterial ATPase SecA functions as a monomer in protein translocation
    • Or E, Boyd D, Gon S, Beckwith J, Rapoport T. 2005. The bacterial ATPase SecA functions as a monomer in protein translocation. J. Biol. Chem. 280:9097-105
    • (2005) J. Biol. Chem. , vol.280 , pp. 9097-9105
    • Or, E.1    Boyd, D.2    Gon, S.3    Beckwith, J.4    Rapoport, T.5
  • 71
    • 0037009514 scopus 로고    scopus 로고
    • Dissociation of the dimeric SecA ATPase during protein translocation across the bacterial membrane
    • Or E, Navon A, Rapoport T. 2002. Dissociation of the dimeric SecA ATPase during protein translocation across the bacterial membrane. EMBO J. 21:4470-79
    • (2002) EMBO J , vol.21 , pp. 4470-4479
    • Or, E.1    Navon, A.2    Rapoport, T.3
  • 72
    • 0034725568 scopus 로고    scopus 로고
    • Evidence for post-translational membrane insertion of the integral membrane protein bacterioopsin expressed in the heterologous halophilic archaeon Haloferax volcanii
    • Ortenberg R, Mevarech M. 2000. Evidence for post-translational membrane insertion of the integral membrane protein bacterioopsin expressed in the heterologous halophilic archaeon Haloferax volcanii. J. Biol. Chem. 275:22839-46
    • (2000) J. Biol. Chem. , vol.275 , pp. 22839-22846
    • Ortenberg, R.1    Mevarech, M.2
  • 74
    • 0028997459 scopus 로고
    • Posttranslational protein transport in yeast reconstituted with a purified complex of Sec proteins and Kar2p
    • Panzner S, Dreier L, Hartmann E, Kostka S, Rapoport TA. 1995. Posttranslational protein transport in yeast reconstituted with a purified complex of Sec proteins and Kar2p. Cell 81:561-70
    • (1995) Cell , vol.81 , pp. 561-570
    • Panzner, S.1    Dreier, L.2    Hartmann, E.3    Kostka, S.4    Rapoport, T.A.5
  • 75
    • 4444316122 scopus 로고    scopus 로고
    • Helicase motif III in SecA is essential for coupling preprotein binding to translocation ATPase
    • Papanikou E, Karamanou S, Baud C, Sianidis G, Frank M, Economou A. 2004. Helicase motif III in SecA is essential for coupling preprotein binding to translocation ATPase. EMBO Rep. 5:807-11
    • (2004) EMBO Rep , vol.5 , pp. 807-811
    • Papanikou, E.1    Karamanou, S.2    Baud, C.3    Sianidis, G.4    Frank, M.5    Economou, A.6
  • 76
    • 0032544614 scopus 로고    scopus 로고
    • Signal sequence recognition in posttranslational protein transport across the yeast ER membrane
    • Plath K, Mothes W, Wilkinson BM, Stirling CJ, Rapoport TA. 1998. Signal sequence recognition in posttranslational protein transport across the yeast ER membrane. Cell 94:795-807
    • (1998) Cell , vol.94 , pp. 795-807
    • Plath, K.1    Mothes, W.2    Wilkinson, B.M.3    Stirling, C.J.4    Rapoport, T.A.5
  • 77
    • 0034597099 scopus 로고    scopus 로고
    • Spontaneous release of cytosolic proteins from posttranslational substrates before their transport into the endoplasmic reticulum
    • Plath K, Rapoport TA. 2000. Spontaneous release of cytosolic proteins from posttranslational substrates before their transport into the endoplasmic reticulum. J. Cell Biol. 151:167-78
    • (2000) J. Cell Biol. , vol.151 , pp. 167-178
    • Plath, K.1    Rapoport, T.A.2
  • 78
    • 0034678632 scopus 로고    scopus 로고
    • Evolutionarily conserved binding of ribosomes to the translocation channel via the large ribosomal RNA
    • Prinz A, Behrens C, Rapoport TA, Hartmann E, Kalies KU. 2000. Evolutionarily conserved binding of ribosomes to the translocation channel via the large ribosomal RNA. EMBO J. 19:1900-6
    • (2000) EMBO J , vol.19 , pp. 1900-1906
    • Prinz, A.1    Behrens, C.2    Rapoport, T.A.3    Hartmann, E.4    Kalies, K.U.5
  • 79
    • 0034631835 scopus 로고    scopus 로고
    • Role of the cytoplasmic segments of Sec61α in the ribosome-binding and translocation-promoting activities of the Sec61 complex
    • Raden D, Song W, Gilmore R. 2000. Role of the cytoplasmic segments of Sec61α in the ribosome-binding and translocation-promoting activities of the Sec61 complex. J. Cell Biol. 150:53-64
    • (2000) J. Cell Biol. , vol.150 , pp. 53-64
    • Raden, D.1    Song, W.2    Gilmore, R.3
  • 80
    • 16244410498 scopus 로고    scopus 로고
    • Asymmetric binding between SecA and SecB two symmetric proteins: Implications for function in export
    • Randall LL, Crane JM, Lilly AA, Liu G, Mao C, et al. 2005. Asymmetric binding between SecA and SecB two symmetric proteins: implications for function in export. J. Mol. Biol. 348:479-89
    • (2005) J. Mol. Biol. , vol.348 , pp. 479-489
    • Randall, L.L.1    Crane, J.M.2    Lilly, A.A.3    Liu, G.4    Mao, C.5
  • 81
    • 0030752693 scopus 로고    scopus 로고
    • Topology of the integral membrane form of Escherichia coli SecA protein reveals multiple periplasmically exposed regions and modulation by ATP binding
    • Ramamurthy V, Oliver D. 1997. Topology of the integral membrane form of Escherichia coli SecA protein reveals multiple periplasmically exposed regions and modulation by ATP binding. J. Biol. Chem. 272:23239-46
    • (1997) J. Biol. Chem. , vol.272 , pp. 23239-23246
    • Ramamurthy, V.1    Oliver, D.2
  • 82
    • 4644356464 scopus 로고    scopus 로고
    • Membrane-protein integration and the role of the translocation channel
    • Rapoport TA, Goder V, Heinrich SU, Matlack KE. 2004. Membrane-protein integration and the role of the translocation channel. Trends Cell Biol. 14:568-75
    • (2004) Trends Cell Biol , vol.14 , pp. 568-575
    • Rapoport, T.A.1    Goder, V.2    Heinrich, S.U.3    Matlack, K.E.4
  • 83
    • 0029952518 scopus 로고    scopus 로고
    • Protein transport across the eukaryotic endoplasmic reticulum and bacterial inner membranes
    • Rapoport TA, Jungnickel B, Kutay U. 1996. Protein transport across the eukaryotic endoplasmic reticulum and bacterial inner membranes. Annu. Rev. Biochem. 65:271-303
    • (1996) Annu. Rev. Biochem. , vol.65 , pp. 271-303
    • Rapoport, T.A.1    Jungnickel, B.2    Kutay, U.3
  • 84
    • 0032566739 scopus 로고    scopus 로고
    • Testing the charge difference hypothesis for the assembly of a eucaryotic multispanning membrane protein
    • Sato M, Hresko R, Mueckler M. 1998. Testing the charge difference hypothesis for the assembly of a eucaryotic multispanning membrane protein. J. Biol. Chem. 273:25203-8
    • (1998) J. Biol. Chem. , vol.273 , pp. 25203-25208
    • Sato, M.1    Hresko, R.2    Mueckler, M.3
  • 85
    • 0026073817 scopus 로고
    • + and ATP function at different steps of the catalytic cycle of preprotein translocase
    • + and ATP function at different steps of the catalytic cycle of preprotein translocase. Cell 64:927-39
    • (1991) Cell , vol.64 , pp. 927-939
    • Schiebel, E.1    Driessen, A.J.M.2    Hartl, F.-U.3    Wickner, W.4
  • 86
    • 0035813158 scopus 로고    scopus 로고
    • Escherichia coli SecA helicase activity is not required in vivo for efficient protein translocation or autogenous regulation
    • Schmidt MO, Brosh RM Jr., Oliver DB. 2001. Escherichia coli SecA helicase activity is not required in vivo for efficient protein translocation or autogenous regulation. J. Biol. Chem. 276:37076-85
    • (2001) J. Biol. Chem. , vol.276 , pp. 37076-37085
    • Schmidt, M.O.1    Brosh Jr., R.M.2    Oliver, D.B.3
  • 88
    • 0035282958 scopus 로고    scopus 로고
    • Cross-talk between catalytic and regulatory elements in a DEAD motor domain is essential for SecA function
    • Sianidis G, Karamanou S, Vrontou E, Boulias K, Repanas K, et al. 2001. Cross-talk between catalytic and regulatory elements in a DEAD motor domain is essential for SecA function. EMBO J. 20:961-70
    • (2001) EMBO J , vol.20 , pp. 961-970
    • Sianidis, G.1    Karamanou, S.2    Vrontou, E.3    Boulias, K.4    Repanas, K.5
  • 89
    • 0025854858 scopus 로고
    • A protein-conducting channel in the endoplasmic reticulum
    • Simon SM, Blobel G. 1991. A protein-conducting channel in the endoplasmic reticulum. Cell 65:371-80
    • (1991) Cell , vol.65 , pp. 371-380
    • Simon, S.M.1    Blobel, G.2
  • 91
    • 0025005885 scopus 로고
    • Translocation of proOmpA possessing an intramolecular disulfide bridge into membrane vesicles of Escherichia coli Effect of membrane energization
    • Tani K, Tokuda H, Mizushima S. 1990. Translocation of proOmpA possessing an intramolecular disulfide bridge into membrane vesicles of Escherichia coli Effect of membrane energization. J. Biol. Chem. 265:17341-47
    • (1990) J. Biol. Chem. , vol.265 , pp. 17341-17347
    • Tani, K.1    Tokuda, H.2    Mizushima, S.3
  • 92
    • 12944254591 scopus 로고    scopus 로고
    • Homologs of the yeast Sec complex subunits Sec62p and Sec63p are abundant proteins in dog pancreas microsomes
    • Tyedmers J, Lerner M, Bies C, Dudek J, Skowronek MH, et al. 2000. Homologs of the yeast Sec complex subunits Sec62p and Sec63p are abundant proteins in dog pancreas microsomes. Proc. Natl. Acad. Sci. USA 97:7214-19
    • (2000) Proc. Natl. Acad. Sci. USA , vol.97 , pp. 7214-7219
    • Tyedmers, J.1    Lerner, M.2    Bies, C.3    Dudek, J.4    Skowronek, M.H.5
  • 93
    • 2942733422 scopus 로고    scopus 로고
    • The bacterial protein-translocation complex: SecYEG dimers associate with one or two SecA molecules
    • Tziatzios C, Schubert D, Lotz M, Gundogan D, Betz H, et al. 2004. The bacterial protein-translocation complex: SecYEG dimers associate with one or two SecA molecules. J. Mol. Biol. 340:513-24
    • (2004) J. Mol. Biol. , vol.340 , pp. 513-524
    • Tziatzios, C.1    Schubert, D.2    Lotz, M.3    Gundogan, D.4    Betz, H.5
  • 94
    • 0029566085 scopus 로고
    • Stepwise movement of preproteins in the process of translocation across the cytoplasmic membrane of Escherichia coli
    • Uchida K, Mori H, Mizushima S. 1995. Stepwise movement of preproteins in the process of translocation across the cytoplasmic membrane of Escherichia coli. J. Biol. Chem. 270:30862-68
    • (1995) J. Biol. Chem. , vol.270 , pp. 30862-30868
    • Uchida, K.1    Mori, H.2    Mizushima, S.3
  • 96
    • 0029837129 scopus 로고    scopus 로고
    • SecA is an intrinsic subunit of the Escherichia coli preprotein translocase and exposes its carboxyl terminus to the periplasm
    • van der Does C, den Blaauwen T, de Wit JG, Manting EH, Groot NA, et al. 1996. SecA is an intrinsic subunit of the Escherichia coli preprotein translocase and exposes its carboxyl terminus to the periplasm. Mol. Microbiol. 22:619-29
    • (1996) Mol. Microbiol. , vol.22 , pp. 619-629
    • Van Der Does, C.1    Den Blaauwen, T.2    De Wit, J.G.3    Manting, E.H.4    Groot, N.A.5
  • 97
    • 0032488590 scopus 로고    scopus 로고
    • Interaction between SecA and SecYEG in micellar solution and formation of the membrane-inserted state
    • van der Does C, Manting EH, Kaufmann A, Lutz M, Driessen AJ. 1998. Interaction between SecA and SecYEG in micellar solution and formation of the membrane-inserted state. Biochemistry 37:201-10
    • (1998) Biochemistry , vol.37 , pp. 201-210
    • Van Der Does, C.1    Manting, E.H.2    Kaufmann, A.3    Lutz, M.4    Driessen, A.J.5
  • 98
    • 0031435335 scopus 로고    scopus 로고
    • The catalytic cycle of the Escherichia coli SecA ATPase comprises two distinct preprotein translocation events
    • van der Wolk JP, de Wit JG, Driessen AJ. 1997. The catalytic cycle of the Escherichia coli SecA ATPase comprises two distinct preprotein translocation events. EMBO J. 16:7297-304
    • (1997) EMBO J , vol.16 , pp. 7297-7304
    • Wolk, J.P.1    De Wit, J.G.2    Driessen, A.J.3
  • 100
    • 0033515425 scopus 로고    scopus 로고
    • Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate an inchworm mechanism
    • Velankar SS, Soultanas P, Dillingham MS, Subramanya HS, Wigley DB. 1999. Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate an inchworm mechanism. Cell 97:75-84
    • (1999) Cell , vol.97 , pp. 75-84
    • Velankar, S.S.1    Soultanas, P.2    Dillingham, M.S.3    Subramanya, H.S.4    Wigley, D.B.5
  • 101
    • 0029951178 scopus 로고    scopus 로고
    • Signal sequence-dependent function of the TRAM protein during early phases of protein transport across the endoplasmic reticulum membrane
    • Voigt S, Jungnickel B, Hartmann E, Rapoport TA. 1996. Signal sequence-dependent function of the TRAM protein during early phases of protein transport across the endoplasmic reticulum membrane. J. Cell Biol. 134:25-35
    • (1996) J. Cell Biol. , vol.134 , pp. 25-35
    • Voigt, S.1    Jungnickel, B.2    Hartmann, E.3    Rapoport, T.A.4
  • 102
    • 0030919649 scopus 로고    scopus 로고
    • Multiple determinants direct the orientation of signal-anchor proteins: The topogenic role of the hydrophobic signal domain
    • Wahlberg JM, Spiess M. 1997. Multiple determinants direct the orientation of signal-anchor proteins: the topogenic role of the hydrophobic signal domain. J. Cell Biol. 137:555-62
    • (1997) J. Cell Biol. , vol.137 , pp. 555-562
    • Wahlberg, J.M.1    Spiess, M.2
  • 103
    • 0036129188 scopus 로고    scopus 로고
    • Complex behavior in solution of homodimeric SecA
    • Woodbury RL, Hardy SJ, Randall LL. 2002. Complex behavior in solution of homodimeric SecA. Protein Sci. 11:875-82
    • (2002) Protein Sci , vol.11 , pp. 875-882
    • Woodbury, R.L.1    Hardy, S.J.2    Randall, L.L.3
  • 104
    • 0033675260 scopus 로고    scopus 로고
    • Crystal structure of the bacterial protein export chaperone secB
    • Xu Z, Knafels JD, Yoshino K. 2000. Crystal structure of the bacterial protein export chaperone secB. Nat. Struct. Biol. 7:1172-77
    • (2000) Nat. Struct. Biol. , vol.7 , pp. 1172-1177
    • Xu, Z.1    Knafels, J.D.2    Yoshino, K.3
  • 105
    • 0029937037 scopus 로고    scopus 로고
    • Structural analysis of substrate binding by the molecular chaperone DnaK
    • Zhu X, Zhao X, Burkholder WF, Gragerov A, Ogata CM, et al. 1996. Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272:1606-14
    • (1996) Science , vol.272 , pp. 1606-1614
    • Zhu, X.1    Zhao, X.2    Burkholder, W.F.3    Gragerov, A.4    Ogata, C.M.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.