-
2
-
-
0030731108
-
-
F. Kunst et al., Nature 390, 249 (1997).
-
(1997)
Nature
, vol.390
, pp. 249
-
-
Kunst, F.1
-
3
-
-
0002986983
-
-
A. L. Sonenshein, J. A. Hoch, R. Losick, Eds. American Society for Microbiology, Washington, DC
-
H. Yoshikawa and R. G. Wake, in Bacillus subtilis and Other Gram-Positive Bacteria, A. L. Sonenshein, J. A. Hoch, R. Losick, Eds. (American Society for Microbiology, Washington, DC, 1993), pp. 507-528.
-
(1993)
Bacillus Subtilis and Other Gram-Positive Bacteria
, pp. 507-528
-
-
Yoshikawa, H.1
Wake, R.G.2
-
4
-
-
0032489041
-
-
T. A. Baker and S. P. Bell, Cell 92, 295 (1998); Z. Kelman and M. O'Donnell, Annu. Rev. Biochem. 64, 171 (1995); A. Kornberg and T. A. Baker, DNA Replication (Freeman, New York, ed. 2, 1992).
-
(1998)
Cell
, vol.92
, pp. 295
-
-
Baker, T.A.1
Bell, S.P.2
-
5
-
-
0029026635
-
-
T. A. Baker and S. P. Bell, Cell 92, 295 (1998); Z. Kelman and M. O'Donnell, Annu. Rev. Biochem. 64, 171 (1995); A. Kornberg and T. A. Baker, DNA Replication (Freeman, New York, ed. 2, 1992).
-
(1995)
Annu. Rev. Biochem.
, vol.64
, pp. 171
-
-
Kelman, Z.1
O'Donnell, M.2
-
6
-
-
0032489041
-
-
Freeman, New York, ed. 2
-
T. A. Baker and S. P. Bell, Cell 92, 295 (1998); Z. Kelman and M. O'Donnell, Annu. Rev. Biochem. 64, 171 (1995); A. Kornberg and T. A. Baker, DNA Replication (Freeman, New York, ed. 2, 1992).
-
(1992)
DNA Replication
-
-
Kornberg, A.1
Baker, T.A.2
-
7
-
-
0002587779
-
-
F. Ausubel et al., Eds. Wiley, New York
-
163 mutations in gfp [J. A. Kahana and P. A. Silver, in Current Protocols in Molecular Biology, F. Ausubel et al., Eds. (Wiley, New York, 1996), pp. 9.7.22-9.7.28] and amino acids Leu and Glu between the last residue of PolC and the start of GFP.
-
(1996)
Current Protocols in Molecular Biology
, pp. 9722-9728
-
-
Kahana, J.A.1
Silver, P.A.2
-
8
-
-
3643056749
-
-
note
-
The GFP fusion proteins were visualized in living cells as in (16) and (20). About 2 μl of agarose (0.5 to 1%, in medium) was applied to a microscope slide, allowed to cool for ∼30 s, and then ∼10 μl of culture was added. After 2 to 5 min, excess liquid was aspirated, and a glass coverslip was placed on the slide. Cell membranes were stained by growing the cells for at least one doubling in the red membrane dye FM4-64 (50 to 70 ng/ml) (Molecular Probes, Eugene, OR). The cell outlines were visualized simultaneously with the GFP signal using Chroma filter set no. 41012. Microscopy was performed with a Zeiss Axioplan II. Images were captured with a cooled charge-coupled device (CCD) camera (Optronics Engineering, Goleta, CA) and a CG-7 frame grabber (Scion, Frederick, MD) with Scion Image 1.62 software.
-
-
-
-
9
-
-
0022335642
-
-
Pspac-dnaA was constructed by cloning a 5′ fragment of dnaA [N. Ogasawara, S. Moriya, K. von Meyenburg, F. Hansen, H. Yoshikawa, EMBO J. 4, 3345 (1985)], including the ribosome binding site, into pDH88 downstream from Pspac [D. G. Yansura and D. J. Henner, Proc. Natl. Acad. Sci. U.S.A. 81, 439 (1984); D. J. Henner, Methods Enzymol. 185, 223 (1990)]. The Pspac-dnaA plasmid pKL98 was integrated into the B. subtilis chromosome by a single crossover at dnaA to produce strain KPL213. KPL311 contains polC-gfp and Pspac-dnaA and was constructed by transforming KPL304 (polC-gfp) with chromosomal DNA from KPL213. KPL311 was grown to midexponential phase at 30°C in defined minimal medium with glucose (1%), glutamate (0.1%), required amino acids (40 μg/ml), spectinomycin (40 μg/ml), chloramphenicol (2.5 μg/ml), and IPTG (1 mM). Cells were then centrifuged, washed, and resuspended at an optical density (600 nm) of 0.05 to 0.1 in the above medium in the presence or absence of IPTG. Live cells were stained with 4′,6′-diamidino-2-phenylindole (DAPI) at ∼0.5 μg/ml in 0.5-ml aliquots just before placement on agarose.
-
(1985)
EMBO J.
, vol.4
, pp. 3345
-
-
Ogasawara, N.1
Moriya, S.2
Von Meyenburg, K.3
Hansen, F.4
Yoshikawa, H.5
-
10
-
-
0002412951
-
-
Pspac-dnaA was constructed by cloning a 5′ fragment of dnaA [N. Ogasawara, S. Moriya, K. von Meyenburg, F. Hansen, H. Yoshikawa, EMBO J. 4, 3345 (1985)], including the ribosome binding site, into pDH88 downstream from Pspac [D. G. Yansura and D. J. Henner, Proc. Natl. Acad. Sci. U.S.A. 81, 439 (1984); D. J. Henner, Methods Enzymol. 185, 223 (1990)]. The Pspac-dnaA plasmid pKL98 was integrated into the B. subtilis chromosome by a single crossover at dnaA to produce strain KPL213. KPL311 contains polC-gfp and Pspac-dnaA and was constructed by transforming KPL304 (polC-gfp) with chromosomal DNA from KPL213. KPL311 was grown to midexponential phase at 30°C in defined minimal medium with glucose (1%), glutamate (0.1%), required amino acids (40 μg/ml), spectinomycin (40 μg/ml), chloramphenicol (2.5 μg/ml), and IPTG (1 mM). Cells were then centrifuged, washed, and resuspended at an optical density (600 nm) of 0.05 to 0.1 in the above medium in the presence or absence of IPTG. Live cells were stained with 4′,6′-diamidino-2-phenylindole (DAPI) at ∼0.5 μg/ml in 0.5-ml aliquots just before placement on agarose.
-
(1984)
Proc. Natl. Acad. Sci. U.S.A.
, vol.81
, pp. 439
-
-
Yansura, D.G.1
Henner, D.J.2
-
11
-
-
0025285066
-
-
Pspac-dnaA was constructed by cloning a 5′ fragment of dnaA [N. Ogasawara, S. Moriya, K. von Meyenburg, F. Hansen, H. Yoshikawa, EMBO J. 4, 3345 (1985)], including the ribosome binding site, into pDH88 downstream from Pspac [D. G. Yansura and D. J. Henner, Proc. Natl. Acad. Sci. U.S.A. 81, 439 (1984); D. J. Henner, Methods Enzymol. 185, 223 (1990)]. The Pspac-dnaA plasmid pKL98 was integrated into the B. subtilis chromosome by a single crossover at dnaA to produce strain KPL213. KPL311 contains polC-gfp and Pspac-dnaA and was constructed by transforming KPL304 (polC-gfp) with chromosomal DNA from KPL213. KPL311 was grown to midexponential phase at 30°C in defined minimal medium with glucose (1%), glutamate (0.1%), required amino acids (40 μg/ml), spectinomycin (40 μg/ml), chloramphenicol (2.5 μg/ml), and IPTG (1 mM). Cells were then centrifuged, washed, and resuspended at an optical density (600 nm) of 0.05 to 0.1 in the above medium in the presence or absence of IPTG. Live cells were stained with 4′,6′-diamidino-2-phenylindole (DAPI) at ∼0.5 μg/ml in 0.5-ml aliquots just before placement on agarose.
-
(1990)
Methods Enzymol.
, vol.185
, pp. 223
-
-
Henner, D.J.1
-
12
-
-
0000549939
-
-
F. C. Neidhardt et al., Eds. American Society for Microbiology, Washington, DC
-
C. E. Helmstetter, in Escherichia coli and Salmonella: Cellular and Molecular Biology, F. C. Neidhardt et al., Eds. (American Society for Microbiology, Washington, DC, 1996), vol. 2, pp. 1627-1639.
-
(1996)
Escherichia Coli and Salmonella: Cellular and Molecular Biology
, vol.2
, pp. 1627-1639
-
-
Helmstetter, C.E.1
-
13
-
-
0029998531
-
-
E. Boye, T. Stokke, N. Kleckner, K. Skarstad, Proc. Natl. Acad. Sci. U.S.A. 93, 12206 (1996).
-
(1996)
Proc. Natl. Acad. Sci. U.S.A.
, vol.93
, pp. 12206
-
-
Boye, E.1
Stokke, T.2
Kleckner, N.3
Skarstad, K.4
-
14
-
-
3643119396
-
-
note
-
This estimate is based on the view that cells with a single focus (742 cells) and cells with two foci close together (192 cells) represented DNA initiation events that occurred at midcell and were part of the same replication cycle. Thus, the two replication forks are resolved for ∼20% (192 out of 934 cells) of the replication cycle.
-
-
-
-
15
-
-
0029973636
-
-
72) [B. P. Cormack, R. H. Valdivia, S. Falkow, Gene 173, 33 (1996)] was used. gfpmut2 was amplified by PCR so that the product had a 5′ in-frame Xho I site before the first codon and an Sph I site downstream of the stop codon. pKL147 and pKL148 contain, respectively, the 3′ end of dnaX (τ) and the 3′ end of holB (δ′), fused in-frame to gfpmut2, with a five-amino acid linker (Leu-Glu-Cly-Ser-Gly), and inserted into the integrative vector pUS19 [A. K. Benson and W. G. Haldenwang, J. Bacteriol. 175, 2347 (1993)]. The 3′ ends of dnaX and holB were amplified by PCR so that the stop codons were changed to Xho I restriction sites. Sequences of all primers are available upon request.
-
(1996)
Gene
, vol.173
, pp. 33
-
-
Cormack, B.P.1
Valdivia, R.H.2
Falkow, S.3
-
16
-
-
0027153932
-
-
72) [B. P. Cormack, R. H. Valdivia, S. Falkow, Gene 173, 33 (1996)] was used. gfpmut2 was amplified by PCR so that the product had a 5′ in-frame Xho I site before the first codon and an Sph I site downstream of the stop codon. pKL147 and pKL148 contain, respectively, the 3′ end of dnaX (τ) and the 3′ end of holB (δ′), fused in-frame to gfpmut2, with a five-amino acid linker (Leu-Glu-Cly-Ser-Gly), and inserted into the integrative vector pUS19 [A. K. Benson and W. G. Haldenwang, J. Bacteriol. 175, 2347 (1993)]. The 3′ ends of dnaX and holB were amplified by PCR so that the stop codons were changed to Xho I restriction sites. Sequences of all primers are available upon request.
-
(1993)
J. Bacteriol.
, vol.175
, pp. 2347
-
-
Benson, A.K.1
Haldenwang, W.G.2
-
17
-
-
0029147297
-
-
S. Slater et al., Cell 82, 927 (1995).
-
(1995)
Cell
, vol.82
, pp. 927
-
-
Slater, S.1
-
18
-
-
0031991771
-
-
S. Hiraga, C. Ichinose, H. Niki, M. Yamazoe, Mol. Cell 1, 381 (1998).
-
(1998)
Mol. Cell
, vol.1
, pp. 381
-
-
Hiraga, S.1
Ichinose, C.2
Niki, H.3
Yamazoe, M.4
-
20
-
-
0030927986
-
-
P. J. Lewis and J. Errington, Mol. Microbiol. 25, 945 (1997); D. C.-H. Lin, P. A. Levin, A. D. Grossman, Proc. Natl. Acad. Sci. U.S.A. 94, 4721 (1997); G. S. Gordon et al., Cell 90, 1113 (1997); C. D. Webb et al., ibid. 88, 667 (1997); H. Niki and S. Hiraga, Genes Dev. 12, 1036 (1998); C. D. Webb et al., Mol. Microbiol. 28, 883 (1998).
-
(1997)
Mol. Microbiol.
, vol.25
, pp. 945
-
-
Lewis, P.J.1
Errington, J.2
-
21
-
-
0031001565
-
-
P. J. Lewis and J. Errington, Mol. Microbiol. 25, 945 (1997); D. C.-H. Lin, P. A. Levin, A. D. Grossman, Proc. Natl. Acad. Sci. U.S.A. 94, 4721 (1997); G. S. Gordon et al., Cell 90, 1113 (1997); C. D. Webb et al., ibid. 88, 667 (1997); H. Niki and S. Hiraga, Genes Dev. 12, 1036 (1998); C. D. Webb et al., Mol. Microbiol. 28, 883 (1998).
-
(1997)
Proc. Natl. Acad. Sci. U.S.A.
, vol.94
, pp. 4721
-
-
Lin, D.C.-H.1
Levin, P.A.2
Grossman, A.D.3
-
22
-
-
0030928717
-
-
P. J. Lewis and J. Errington, Mol. Microbiol. 25, 945 (1997); D. C.-H. Lin, P. A. Levin, A. D. Grossman, Proc. Natl. Acad. Sci. U.S.A. 94, 4721 (1997); G. S. Gordon et al., Cell 90, 1113 (1997); C. D. Webb et al., ibid. 88, 667 (1997); H. Niki and S. Hiraga, Genes Dev. 12, 1036 (1998); C. D. Webb et al., Mol. Microbiol. 28, 883 (1998).
-
(1997)
Cell
, vol.90
, pp. 1113
-
-
Gordon, G.S.1
-
23
-
-
0030901736
-
-
P. J. Lewis and J. Errington, Mol. Microbiol. 25, 945 (1997); D. C.-H. Lin, P. A. Levin, A. D. Grossman, Proc. Natl. Acad. Sci. U.S.A. 94, 4721 (1997); G. S. Gordon et al., Cell 90, 1113 (1997); C. D. Webb et al., ibid. 88, 667 (1997); H. Niki and S. Hiraga, Genes Dev. 12, 1036 (1998); C. D. Webb et al., Mol. Microbiol. 28, 883 (1998).
-
(1997)
Cell
, vol.88
, pp. 667
-
-
Webb, C.D.1
-
24
-
-
0032053854
-
-
P. J. Lewis and J. Errington, Mol. Microbiol. 25, 945 (1997); D. C.-H. Lin, P. A. Levin, A. D. Grossman, Proc. Natl. Acad. Sci. U.S.A. 94, 4721 (1997); G. S. Gordon et al., Cell 90, 1113 (1997); C. D. Webb et al., ibid. 88, 667 (1997); H. Niki and S. Hiraga, Genes Dev. 12, 1036 (1998); C. D. Webb et al., Mol. Microbiol. 28, 883 (1998).
-
(1998)
Genes Dev.
, vol.12
, pp. 1036
-
-
Niki, H.1
Hiraga, S.2
-
25
-
-
0031834480
-
-
P. J. Lewis and J. Errington, Mol. Microbiol. 25, 945 (1997); D. C.-H. Lin, P. A. Levin, A. D. Grossman, Proc. Natl. Acad. Sci. U.S.A. 94, 4721 (1997); G. S. Gordon et al., Cell 90, 1113 (1997); C. D. Webb et al., ibid. 88, 667 (1997); H. Niki and S. Hiraga, Genes Dev. 12, 1036 (1998); C. D. Webb et al., Mol. Microbiol. 28, 883 (1998).
-
(1998)
Mol. Microbiol.
, vol.28
, pp. 883
-
-
Webb, C.D.1
-
26
-
-
0030910954
-
-
P. Glaser et al., Genes Dev. 11, 1160 (1997).
-
(1997)
Genes Dev.
, vol.11
, pp. 1160
-
-
Glaser, P.1
-
30
-
-
0028785819
-
-
C. D. Webb, A. Decatur, A. Teleman, R. Losick, J. Bacteriol. 177, 5906 (1995).
-
(1995)
J. Bacteriol.
, vol.177
, pp. 5906
-
-
Webb, C.D.1
Decatur, A.2
Teleman, A.3
Losick, R.4
-
31
-
-
0019168132
-
-
N. Vasantha and E. Freese, ibid. 144, 1119 (1980); K. J. Jaacks, H. Healy, R. Losick, A. D. Grossman, ibid. 171, 4121 (1989).
-
(1980)
J. Bacteriol.
, vol.144
, pp. 1119
-
-
Vasantha, N.1
Freese, E.2
-
32
-
-
0024720167
-
-
N. Vasantha and E. Freese, ibid. 144, 1119 (1980); K. J. Jaacks, H. Healy, R. Losick, A. D. Grossman, ibid. 171, 4121 (1989).
-
(1989)
J. Bacteriol.
, vol.171
, pp. 4121
-
-
Jaacks, K.J.1
Healy, H.2
Losick, R.3
Grossman, A.D.4
-
33
-
-
0029017527
-
-
Rabbit antibodies to GFP were from Clontech (Palo Alto, CA). Immunofluorescence microscopy (IFM) was done essentially as described [E. J. Harry, K. Pogliano, R. Losick, ibid. 177, 3386 (1995); K. Pogliano, E. Harry, R. Losick, Mol. Microbiol. 18, 459 (1995)], except that centrifugation steps were replaced by filtration. Centrifugation of cells (even after fixation) caused PolC-GFP foci to appear at or near the cell poles.
-
(1995)
J. Bacteriol.
, vol.177
, pp. 3386
-
-
Harry, E.J.1
Pogliano, K.2
Losick, R.3
-
34
-
-
0029610802
-
-
Rabbit antibodies to GFP were from Clontech (Palo Alto, CA). Immunofluorescence microscopy (IFM) was done essentially as described [E. J. Harry, K. Pogliano, R. Losick, ibid. 177, 3386 (1995); K. Pogliano, E. Harry, R. Losick, Mol. Microbiol. 18, 459 (1995)], except that centrifugation steps were replaced by filtration. Centrifugation of cells (even after fixation) caused PolC-GFP foci to appear at or near the cell poles.
-
(1995)
Mol. Microbiol.
, vol.18
, pp. 459
-
-
Pogliano, K.1
Harry, E.2
Losick, R.3
-
35
-
-
3643059939
-
-
note
-
We thank S. Sanders, P. Levin, K. Pogliano, and J. Roberts for advice; B. Cormack for gfpmut2; R. Losick, A.L. Sonenshein, and S. Bell for comments on the manuscript; and members of our lab for discussions and comments on the manuscript. Supported in part by PHS grant GM41934 (A.D.G.).
-
-
-
|