메뉴 건너뛰기




Volumn , Issue , 2015, Pages 1-240

Sparse coding and its applications in computer vision

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85125144870     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1142/9815     Document Type: Book
Times cited : (26)

References (270)
  • 1
    • 36948999941 scopus 로고    scopus 로고
    • UCI machine learning repository
    • A. Asuncion, D. N. (2007). UCI machine learning repository.
    • (2007)
    • Asuncion, D.N.1
  • 2
    • 80051768384 scopus 로고    scopus 로고
    • A shrinkage learning approach for single image super-resolution with overcomplete representations
    • Adler, A., Hel-Or, Y., and Elad, M. (2010). A shrinkage learning approach for single image super-resolution with overcomplete representations, in The 11th European Conference on Computer Vision.
    • (2010) The 11th European Conference on Computer Vision
    • Adler, A.1    Hel-Or, Y.2    Elad, M.3
  • 3
    • 33750383209 scopus 로고    scopus 로고
    • K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation, IEEE Trans
    • Aharon, M., Elad, M., and Bruckstein, A. (2006). K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation, IEEE Trans. Sig. Proc. 54, 11, pp. 4311-4322.
    • (2006) Sig. Proc. , vol.54 , Issue.11 , pp. 4311-4322
    • Aharon, M.1    Elad, M.2    Bruckstein, A.3
  • 4
    • 84858766876 scopus 로고    scopus 로고
    • Exploring large feature spaces with hierarchical multiple kernel learning
    • Bach, F. R. (2009). Exploring large feature spaces with hierarchical multiple kernel learning, in Advances in neural information processing systems, pp. 105-112.
    • (2009) Advances in neural information processing systems , pp. 105-112
    • Bach, F.R.1
  • 9
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • Belkin, M., Niyogi, P. (2002). Laplacian eigenmaps for dimensionality reduction and data representation, Neural Computation 15, 6, pp. 1373-1396.
    • (2002) Neural Computation , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 10
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
    • Belkin, M., Niyogi, P., and Sindhwani, V. (2006). Manifold regularization: A geometric framework for learning from labeled and unlabeled examples, The Journal of Machine Learning Research 7, pp. 2399-2434.
    • (2006) The Journal of Machine Learning Research , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 12
    • 77951546345 scopus 로고    scopus 로고
    • Theoretical and empirical results for recovery from multiple measurements, IEEE Trans
    • Berg, E. V. D., Friedlander, M. P. (2010). Theoretical and empirical results for recovery from multiple measurements, IEEE Trans. on Information Theory 56, 5, pp. 2516-2527.
    • (2010) on Information Theory , vol.56 , Issue.5 , pp. 2516-2527
    • Berg, E.V.D.1    Friedlander, M.P.2
  • 14
    • 84898409537 scopus 로고    scopus 로고
    • Low- complexity single-image super-resolution based on nonnegative neighbor embedding
    • Bevilacqua, M., Roumy, A., Guillemot, C., and Morel, M.-L. A. (2012). Low- complexity single-image super-resolution based on nonnegative neighbor embedding, in BMVC.
    • (2012) BMVC
    • Bevilacqua, M.1    Roumy, A.2    Guillemot, C.3    Morel, M.-L.A.4
  • 15
    • 57849146071 scopus 로고    scopus 로고
    • Material classification of hyperspectral images using unsupervised fuzzy clustering methods
    • SITIS07. Third International IEEE Conference on (IEEE)
    • Bidhendi, S. K., Shirazi, A. S., Fotoohi, N., and Ebadzadeh, M. M. (2007). Material classification of hyperspectral images using unsupervised fuzzy clustering methods, in Signal-Image Technologies and Internet-Based System, 2007. SITIS07. Third International IEEE Conference on (IEEE), pp. 619-623.
    • (2007) Signal-Image Technologies and Internet-Based System, 2007 , pp. 619-623
    • Bidhendi, S.K.1    Shirazi, A.S.2    Fotoohi, N.3    Ebadzadeh, M.M.4
  • 19
    • 0033400675 scopus 로고    scopus 로고
    • Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from cartographic variables
    • Blackard, J. A., Dean, D. J. (1999). Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from cartographic variables, Computers and electronics in agriculture 24, 3, pp. 131-151, https://kdd.ics.uci.edu/databases/covertype/covertype.html.
    • (1999) Computers and electronics in agriculture , vol.24 , Issue.3 , pp. 131-151
    • Blackard, J.A.1    Dean, D.J.2
  • 20
    • 0013309537 scopus 로고    scopus 로고
    • Online algorithms and stochastic approximations,
    • in D. Saad (ed.), (Cambridge University Press, Cambridge, UK), revised, oct 2012
    • Bottou, L. (1998). Online algorithms and stochastic approximations, in D. Saad (ed.), Online Learning and Neural Networks (Cambridge University Press, Cambridge, UK), revised, oct 2012.
    • (1998) Online Learning and Neural Networks
    • Bottou, L.1
  • 22
    • 80051762104 scopus 로고    scopus 로고
    • Distributed optimization and statistical learning via the alternating direction method of multipliers
    • Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. (2011). Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends Mach. Learn. 3, 1, pp. 1-122.
    • (2011) Found. Trends Mach. Learn. , vol.3 , Issue.1 , pp. 1-122
    • Boyd, S.1    Parikh, N.2    Chu, E.3    Peleato, B.4    Eckstein, J.5
  • 23
    • 76749123278 scopus 로고    scopus 로고
    • Differential sparse coding
    • Bradley, D. M., Bagnell, J. A. (2008). Differential sparse coding, in Adv. NIPS, pp. 113-120.
    • (2008) Adv. NIPS , pp. 113-120
    • Bradley, D.M.1    Bagnell, J.A.2
  • 24
    • 0001667583 scopus 로고
    • Rank analysis of incomplete block designs: I. the method of paired comparisons
    • Bradley, R. A., Terry, M. E. (1952). Rank analysis of incomplete block designs: I. the method of paired comparisons, Biometrika, pp. 324-345.
    • (1952) Biometrika , pp. 324-345
    • Bradley, R.A.1    Terry, M.E.2
  • 26
    • 33750819329 scopus 로고    scopus 로고
    • A novel transductive svm for semisupervised classification of remote-sensing images
    • Bruzzone, L., Chi, M., and Marconcini, M. (2006). A novel transductive svm for semisupervised classification of remote-sensing images, IEEE Transactions on Geoscience and Remote Sensing, 44, 11, pp. 3363-3373.
    • (2006) IEEE Transactions on Geoscience and Remote Sensing, , vol.44 , Issue.11 , pp. 3363-3373
    • Bruzzone, L.1    Chi, M.2    Marconcini, M.3
  • 27
    • 24644478715 scopus 로고    scopus 로고
    • A non-local algorithm for image denoising
    • 2005. CVPR 2005. IEEE Computer Society Conference on (IEEE)
    • Buades, A., Coll, B., and Morel, J.-M. (2005). A non-local algorithm for image denoising, in Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, Vol. 2 (IEEE), pp. 60-65.
    • (2005) Computer Vision and Pattern Recognition, , vol.2 , pp. 60-65
    • Buades, A.1    Coll, B.2    Morel, J.-M.3
  • 28
    • 84886419765 scopus 로고    scopus 로고
    • Learning how to combine internal and external denoising methods
    • (Springer)
    • Burger, H. C., Schuler, C., and Harmeling, S. (2013). Learning how to combine internal and external denoising methods, in Pattern Recognition (Springer), pp. 121-130.
    • (2013) Pattern Recognition , pp. 121-130
    • Burger, H.C.1    Schuler, C.2    Harmeling, S.3
  • 30
    • 35148813570 scopus 로고    scopus 로고
    • Learning a spatially smooth subspace for face recognition
    • Cai, D., He, X., Hu, Y., Han, J., and Huang., T. (2007). Learning a spatially smooth subspace for face recognition, in CVPR.
    • (2007) CVPR.
    • Cai, D.1    He, X.2    Hu, Y.3    Han, J.4    Huang, T.5
  • 31
    • 70450203952 scopus 로고    scopus 로고
    • Blind motion deblurring from a single image using sparse approximation
    • Cai, J.-F., Ji, H., Liu, C., and Shen, Z. (2009). Blind motion deblurring from a single image using sparse approximation, in CVPR.
    • (2009) CVPR
    • Cai, J.-F.1    Ji, H.2    Liu, C.3    Shen, Z.4
  • 36
    • 31744440684 scopus 로고    scopus 로고
    • Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information
    • Candes, E. J., Romberg, J., and Tao, T. (2006). Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Trans. on Information Theory 52, 2, pp. 489-509.
    • (2006) IEEE Trans. on Information Theory , vol.52 , Issue.2 , pp. 489-509
    • Candes, E.J.1    Romberg, J.2    Tao, T.3
  • 40
    • 80053571096 scopus 로고    scopus 로고
    • Hyperspectral image classification using dictionary-based sparse representation
    • Chen, Y., Nasrabadi, N. M., and Tran, T. D. (2011). Hyperspectral image classification using dictionary-based sparse representation, IEEE Transactions on Geoscience and Remote Sensing, 49, 10, pp. 3973-3985.
    • (2011) IEEE Transactions on Geoscience and Remote Sensing, , vol.49 , Issue.10 , pp. 3973-3985
    • Chen, Y.1    Nasrabadi, N.M.2    Tran, T.D.3
  • 44
  • 51
    • 23844477225 scopus 로고    scopus 로고
    • Sparse solutions to linear inverse problems with multiple measurement vectors
    • Cotter, S. F., Rao, B., Engan, K., and Kreutz-Delgado, K. (2005). Sparse solutions to linear inverse problems with multiple measurement vectors, IEEE Trans. on Signal Processing 53, 7, pp. 2477-2488.
    • (2005) IEEE Trans. on Signal Processing , vol.53 , Issue.7 , pp. 2477-2488
    • Cotter, S.F.1    Rao, B.2    Engan, K.3    Kreutz-Delgado, K.4
  • 52
    • 0010442827 scopus 로고    scopus 로고
    • On the algorithmic implementation of multiclass kernel-based vector machines
    • Crammer, K., Singer, Y. (2002). On the algorithmic implementation of multiclass kernel-based vector machines, The Journal of Machine Learning Research 2, pp. 265-292.
    • (2002) The Journal of Machine Learning Research , vol.2 , pp. 265-292
    • Crammer, K.1    Singer, Y.2
  • 54
    • 84906509108 scopus 로고    scopus 로고
    • Deep network cascade for image super-resolution
    • Cui, Z., Chang, H., Shan, S., Zhong, B., and Chen, X. (2014). Deep network cascade for image super-resolution, in ECCV, pp. 49-64.
    • (2014) ECCV , pp. 49-64
    • Cui, Z.1    Chang, H.2    Shan, S.3    Zhong, B.4    Chen, X.5
  • 55
    • 84871947275 scopus 로고    scopus 로고
    • Minimum conditional entropy clustering: A discriminative framework for clustering
    • 47-62
    • Dai, B., Hu, B. (2010). Minimum conditional entropy clustering: A discriminative framework for clustering. in ACML, pp. 47-62.
    • (2010) ACML
    • Dai, B.1    Hu, B.2
  • 57
    • 2142829198 scopus 로고    scopus 로고
    • An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
    • arXiv preprint math/0307152
    • Daubechies, I., Defrise, M., and De Mol, C. (2003). An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, arXiv preprint math/0307152.
    • (2003)
    • Daubechies, I.1    Defrise, M.2    De Mol, C.3
  • 58
    • 7044231546 scopus 로고    scopus 로고
    • An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
    • Daubechies, I., Defrise, M., and De Mol, C. (2004). An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Communicatiovs on Pure and Applied Mathematics 57, 11, pp. 1413-1457.
    • (2004) Communicatiovs on Pure and Applied Mathematics , vol.57 , Issue.11 , pp. 1413-1457
    • Daubechies, I.1    Defrise, M.2    De Mol, C.3
  • 60
    • 0036709369 scopus 로고    scopus 로고
    • Locally adaptive metric nearest-neighbor classification, IEEE Trans
    • Domeniconi, C., Peng, J., and Gunopulos, D. (2002). Locally adaptive metric nearest-neighbor classification, IEEE Trans. PAMI 24, 9, pp. 1281-1285.
    • (2002) PAMI , vol.24 , Issue.9 , pp. 1281-1285
    • Domeniconi, C.1    Peng, J.2    Gunopulos, D.3
  • 61
    • 84906484697 scopus 로고    scopus 로고
    • Learning a deep convolutional network for image super-resolution
    • Dong, C., Loy, C. C., He, K., and Tang, X. (2014). Learning a deep convolutional network for image super-resolution, in ECCV, pp. 184-199.
    • (2014) ECCV , pp. 184-199
    • Dong, C.1    Loy, C.C.2    He, K.3    Tang, X.4
  • 62
    • 84873906242 scopus 로고    scopus 로고
    • Nonlocally centralized sparse representation for image restoration
    • Dong, W., Zhang, L., Shi, G., and Li, X. (2013). Nonlocally centralized sparse representation for image restoration, IEEE Transactions on Image Processing, 22, 4, pp. 1620-1630.
    • (2013) IEEE Transactions on Image Processing, , vol.22 , Issue.4 , pp. 1620-1630
    • Dong, W.1    Zhang, L.2    Shi, G.3    Li, X.4
  • 63
    • 79959594311 scopus 로고    scopus 로고
    • Image deblurring and superresolution by adaptive sparse domain selection and adaptive regularization
    • Dong, W., Zhang, L., Shi, G., and Wu, X. (2011). Image deblurring and superresolution by adaptive sparse domain selection and adaptive regularization, IEEE Transactions on Image Processing, 20, 7, pp. 1838-1857.
    • (2011) IEEE Transactions on Image Processing, , vol.20 , Issue.7 , pp. 1838-1857
    • Dong, W.1    Zhang, L.2    Shi, G.3    Wu, X.4
  • 65
    • 33646365077 scopus 로고    scopus 로고
    • For most large underdetermined systems of linear equations, the minimal ?i-nomr solution is also the sparest solution
    • Donoho, D. L. (2006b). For most large underdetermined systems of linear equations, the minimal ?i-nomr solution is also the sparest solution, Comm. on Pure and Applied Math.
    • (2006) Comm. on Pure and Applied Math
    • Donoho, D.L.1
  • 66
  • 67
    • 35248866563 scopus 로고    scopus 로고
    • Multi-category classification by soft-max combination of binary classifiers
    • (Springer)
    • Duan, K., Keerthi, S. S., Chu, W., Shevade, S. K., and Poo, A. N. (2003). Multi-category classification by soft-max combination of binary classifiers, in Multiple Classifier Systems (Springer), pp. 125-134.
    • (2003) Multiple Classifier Systems , pp. 125-134
    • Duan, K.1    Keerthi, S.S.2    Chu, W.3    Shevade, S.K.4    Poo, A.N.5
  • 69
    • 79251601570 scopus 로고    scopus 로고
    • Joint sparsity models for distributed compressed sensing
    • in Workshop on Signal Processing with Adaptative Sparse Structured Representations
    • Duarte, M. F., Sarvotham, S., Wakin, M. B., Baron, D., and Baraniuk, R. G. (2005). Joint sparsity models for distributed compressed sensing, in Workshop on Signal Processing with Adaptative Sparse Structured Representations.
    • (2005)
    • Duarte, M.F.1    Sarvotham, S.2    Wakin, M.B.3    Baron, D.4    Baraniuk, R.G.5
  • 72
    • 33751379736 scopus 로고    scopus 로고
    • Image denoising via sparse and redundant representations over learned dictionaries
    • Elad, M., Aharon, M. (2006). Image denoising via sparse and redundant representations over learned dictionaries, IEEE Transactions on Image Processing, 15, 12, pp. 3736-3745.
    • (2006) IEEE Transactions on Image Processing, , vol.15 , Issue.12 , pp. 3736-3745
    • Elad, M.1    Aharon, M.2
  • 73
    • 77952740831 scopus 로고    scopus 로고
    • On the role of sparse and redundant representations in image processing
    • Elad, M., Figueiredo, M. A. T., and Ma, Y. (2010). On the role of sparse and redundant representations in image processing, Proc. of IEEE 98, 6, pp. 972-982.
    • (2010) Proc. of IEEE , vol.98 , Issue.6 , pp. 972-982
    • Elad, M.1    Figueiredo, M.A.T.2    Ma, Y.3
  • 76
    • 85162319688 scopus 로고    scopus 로고
    • Sparse manifold clustering and embedding
    • Elhamifar, E., Vidal, R. (2011). Sparse manifold clustering and embedding, in NIPS, pp. 55-63.
    • (2011) NIPS , pp. 55-63
    • Elhamifar, E.1    Vidal, R.2
  • 77
    • 0032627073 scopus 로고    scopus 로고
    • Method of optimal directions for frame design
    • Engan, K., Aase, S. O., and HakonHusoy, J. (1999). Method of optimal directions for frame design, in Proc. ICASSP, pp. 2443-2446.
    • (1999) Proc. ICASSP , pp. 2443-2446
    • Engan, K.1    Aase, S.O.2    HakonHusoy, J.3
  • 78
    • 55349099909 scopus 로고    scopus 로고
    • Recovery of edges from spectral data with noise-a new perspective
    • Engelberg, S., Tadmor, E. (2008). Recovery of edges from spectral data with noise-a new perspective, SIAM Journal on Numerical Analysis 46, 5, pp. 2620-2635.
    • (2008) SIAM Journal on Numerical Analysis , vol.46 , Issue.5 , pp. 2620-2635
    • Engelberg, S.1    Tadmor, E.2
  • 79
    • 84860009365 scopus 로고    scopus 로고
    • Exploiting statistical dependencies in sparse representations for signal recovery
    • Faktor, T., Eldar, Y. C., and Elad, M. (2012). Exploiting statistical dependencies in sparse representations for signal recovery, IEEE Trans. on Signal Processing 60, 5, pp. 2286-2303.
    • (2012) IEEE Trans. on Signal Processing , vol.60 , Issue.5 , pp. 2286-2303
    • Faktor, T.1    Eldar, Y.C.2    Elad, M.3
  • 83
    • 79955668981 scopus 로고    scopus 로고
    • Image and video upscaling from local selfexamples
    • Freedman, G., Fattal, R. (2011). Image and video upscaling from local selfexamples, ACM Transactions on Graphics (TOG) 30, 2, p. 12.
    • (2011) ACM Transactions on Graphics (TOG) , vol.30 , Issue.2 , pp. 12
    • Freedman, G.1    Fattal, R.2
  • 86
    • 62549130467 scopus 로고    scopus 로고
    • Regularized paths for generalized linear models via coordinate descent.
    • Friedman, J., Hastie, T., and Tibshirani, R. (2008). Regularized paths for generalized linear models via coordinate descent.
    • (2008)
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 87
    • 0032361278 scopus 로고    scopus 로고
    • Penalized regressions: the bridge versus the lasso
    • Fu, W. J. (1998). Penalized regressions: the bridge versus the lasso, Journal of computational and graphical statistics 7, 3, pp. 397-416.
    • (1998) Journal of computational and graphical statistics , vol.7 , Issue.3 , pp. 397-416
    • Fu, W.J.1
  • 88
    • 84885036719 scopus 로고    scopus 로고
    • Face recognition using multi-viewpoint patterns for robot vision
    • Fukui, K., Yamaguchi, O. (2005). Face recognition using multi-viewpoint patterns for robot vision, Springer Tracts in Advanced Robotics 15, pp. 192-201.
    • (2005) Springer Tracts in Advanced Robotics , vol.15 , pp. 192-201
    • Fukui, K.1    Yamaguchi, O.2
  • 89
    • 84870191664 scopus 로고    scopus 로고
    • Laplacian sparse coding, hypergraph laplacian sparse coding, and applications, IEEE Trans
    • Gao, S., Tsang, I. W.-H., and Chia, L.-T. (2013). Laplacian sparse coding, hypergraph laplacian sparse coding, and applications, IEEE Trans. Pattern Anal. Mach. Intell. 35, 1, pp. 92-104.
    • (2013) Pattern Anal. Mach. Intell. , vol.35 , Issue.1 , pp. 92-104
    • Gao, S.1    Tsang, I.W.-H.2    Chia, L.-T.3
  • 90
    • 70349196731 scopus 로고    scopus 로고
    • Using sparse representations for missing data imputation in noise robust speech recognition
    • Gemmeke, J., Cranen, B. (2008). Using sparse representations for missing data imputation in noise robust speech recognition, in Proc. EUSIPCO.
    • (2008) Proc EUSIPCO.
    • Gemmeke, J.1    Cranen, B.2
  • 91
    • 0035363672 scopus 로고    scopus 로고
    • From few to many: illumination cone models for face recognition under variable lighting and pose, IEEE Trans
    • Georghiades, A., Belhumeur, P., and Kriegman, D. (2001). From few to many: illumination cone models for face recognition under variable lighting and pose, IEEE Trans. PAMI 23, 6, pp. 643-660.
    • (2001) PAMI , vol.23 , Issue.6 , pp. 643-660
    • Georghiades, A.1    Belhumeur, P.2    Kriegman, D.3
  • 94
    • 77956515664 scopus 로고    scopus 로고
    • Learning fast approximations of sparse coding
    • Gregor, K., LeCun, Y. (2010). Learning fast approximations of sparse coding, in ICML.
    • (2010) ICML
    • Gregor, K.1    LeCun, Y.2
  • 98
    • 85162032860 scopus 로고    scopus 로고
    • Space-variant single-image blind deconvolution for removing camera shake
    • Harmeling, S., Hirsch, M., and Scholkopf, B. (2010). Space-variant single-image blind deconvolution for removing camera shake, in NIPS.
    • (2010) NIPS
    • Harmeling, S.1    Hirsch, M.2    Scholkopf, B.3
  • 100
    • 78149237605 scopus 로고    scopus 로고
    • Tree-structured compressive sensing with variational bayesian analysis
    • He, L., Chen, H., and Carin, L. (2010). Tree-structured compressive sensing with variational bayesian analysis, Signal Processing Letters, IEEE 17, 3, pp. 233-236.
    • (2010) Signal Processing Letters, IEEE , vol.17 , Issue.3 , pp. 233-236
    • He, L.1    Chen, H.2    Carin, L.3
  • 104
    • 51949116030 scopus 로고    scopus 로고
    • Simultaneous super-resolution and feature extraction for recognition of low-resolution faces
    • Hennings-Yeomans, P. H., Baker, S., and Kumar, B. V. (2008). Simultaneous super-resolution and feature extraction for recognition of low-resolution faces, in CVPR.
    • (2008) CVPR
    • Hennings-Yeomans, P.H.1    Baker, S.2    Kumar, B.V.3
  • 105
    • 78651106513 scopus 로고    scopus 로고
    • Single image deblurring with adaptive dictionary learning
    • Hu, Z., Huang, J.-B., and Yang, M.-H. (2010). Single image deblurring with adaptive dictionary learning, in ICIP.
    • (2010) ICIP
    • Hu, Z.1    Huang, J.-B.2    Yang, M.-H.3
  • 113
    • 68349091200 scopus 로고
    • Principal component analysis
    • Joliffe, I. (1986). Principal component analysis, Springer-Verlag, pp. 1580-1584.
    • (1986) Springer-Verlag , pp. 1580-1584
    • Joliffe, I.1
  • 114
    • 85117429193 scopus 로고    scopus 로고
    • Learning invariant features through topographic filter maps
    • in IEEE Conference on Computer Vision and Pattern Recognition
    • Kavukcuoglu, K., Ranzato, M. A., Fergus, R., and LeCun, Y. (2009). Learning invariant features through topographic filter maps, in IEEE Conference on Computer Vision and Pattern Recognition.
    • (2009)
    • Kavukcuoglu, K.1    Ranzato, M.A.2    Fergus, R.3    LeCun, Y.4
  • 115
    • 77951623771 scopus 로고    scopus 로고
    • Single-image super-resolution using sparse regression and natural image prior
    • Kim, K. I., Kwon, Y. (2010). Single-image super-resolution using sparse regression and natural image prior, IEEE Transactions on Pattern Analysis and Machine Intelligence, 32, 6, pp. 1127-1133.
    • (2010) IEEE Transactions on Pattern Analysis and Machine Intelligence, , vol.32 , Issue.6 , pp. 1127-1133
    • Kim, K.I.1    Kwon, Y.2
  • 116
    • 77957019075 scopus 로고    scopus 로고
    • Graph-based classification of multiple observation sets
    • Kokiopoulou, E., Frossard, P. (2010). Graph-based classification of multiple observation sets, Pattern Recognition 43, 12, pp. 3988-3997.
    • (2010) Pattern Recognition , vol.43 , Issue.12 , pp. 3988-3997
    • Kokiopoulou, E.1    Frossard, P.2
  • 118
    • 84858712496 scopus 로고    scopus 로고
    • Fast image deconvolution using hyper- laplacian priors
    • Krishnan, D., Fergus, R. (2009). Fast image deconvolution using hyper- laplacian priors, in NIPS.
    • (2009) NIPS
    • Krishnan, D.1    Fergus, R.2
  • 119
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks, in NIPS, pp. 1097-1105.
    • (2012) NIPS , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 120
    • 9944258743 scopus 로고    scopus 로고
    • Stochastic approximation and recursive algorithms and applications
    • (Springer Science & Business Media)
    • Kushner, H. J., Yin, G. (2003). Stochastic approximation and recursive algorithms and applications, Vol. 35 (Springer Science & Business Media).
    • (2003) , vol.35
    • Kushner, H.J.1    Yin, G.2
  • 121
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to document recognition, in Proceedings of IEEE, vol.86, no.11, pp.2278-2324.
    • (1998) Proceedings of IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 122
    • 84877801427 scopus 로고    scopus 로고
    • A study on 12-loss (squared hinge-loss) multiclass svm
    • Lee, C.-P., Lin, C.-J. (2013). A study on 12-loss (squared hinge-loss) multiclass svm, Neural computation 25, 5, pp. 1302-1323.
    • (2013) Neural computation , vol.25 , Issue.5 , pp. 1302-1323
    • Lee, C.-P.1    Lin, C.-J.2
  • 123
    • 85009928594 scopus 로고    scopus 로고
    • Deeply-supervised nets
    • arXiv preprint arXiv:14?95185
    • Lee, C.-Y., Xie, S., Gallagher, P., Zhang, Z., and Tu, Z. (2014). Deeply-supervised nets, arXiv preprint arXiv:14?9.5185.
    • (2014)
    • Lee, C.-Y.1    Xie, S.2    Gallagher, P.3    Zhang, Z.4    Tu, Z.5
  • 125
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • Lee, H., Grosse, R., Ranganath, R., and Ng, A. Y. (2009). Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations, in International Conference on Machine Learning.
    • (2009) International Conference on Machine Learning
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 128
    • 70450174344 scopus 로고    scopus 로고
    • Understanding and evaluating blind deconvolution algorithms
    • Levin, A., Weiss, Y., Durand, F., and Freeman, W. (2009). Understanding and evaluating blind deconvolution algorithms, in CVPR.
    • (2009) CVPR
    • Levin, A.1    Weiss, Y.2    Durand, F.3    Freeman, W.4
  • 129
    • 78049282844 scopus 로고    scopus 로고
    • Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning
    • Li, J., Bioucas-Dias, J. M., and Plaza, A. (2010). Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning, IEEE Transactions on Geoscience and Remote Sensing, 48, 11, pp. 4085-4098.
    • (2010) IEEE Transactions on Geoscience and Remote Sensing, , vol.48 , Issue.11 , pp. 4085-4098
    • Li, J.1    Bioucas-Dias, J.M.2    Plaza, A.3
  • 130
    • 80052087931 scopus 로고    scopus 로고
    • Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and markov random fields
    • Li, J., Bioucas-Dias, J. M., and Plaza, A. (2012). Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and markov random fields, IEEE Transactions on Geoscience and Remote Sensing, 50, 3, pp. 809-823.
    • (2012) IEEE Transactions on Geoscience and Remote Sensing, , vol.50 , Issue.3 , pp. 809-823
    • Li, J.1    Bioucas-Dias, J.M.2    Plaza, A.3
  • 131
    • 78651068003 scopus 로고    scopus 로고
    • An efficient learned dictionary and its application to non-local denoising
    • Li, S., Fang, L. (2010). An efficient learned dictionary and its application to non-local denoising, in Proc. International Conf. on Image Processing.
    • (2010) Proc International Conf. on Image Processing.
    • Li, S.1    Fang, L.2
  • 132
    • 84871508789 scopus 로고    scopus 로고
    • Minimum entropy clustering and applications to gene expression analysis
    • Proceedings. 2004 IEEE (IEEE)
    • Li, X., Zhang, K., and Jiang, T. (2004). Minimum entropy clustering and applications to gene expression analysis, in Computational Systems Bioinformatics Conference, 2004. CSB 2004. Proceedings. 2004 IEEE (IEEE), pp.142-151.
    • (2004) Computational Systems Bioinformatics Conference, 2004 CSB 2004 , pp. 142-151
    • Li, X.1    Zhang, K.2    Jiang, T.3
  • 134
    • 84873904601 scopus 로고    scopus 로고
    • Decentralized jointly sparse optimization by reweighted minimization
    • Ling, Q., Wen, Z., and Yin, W. (2013). Decentralized jointly sparse optimization by reweighted minimization, IEEE Transactions on Signal Processing, 61, 5, pp. 1165-1170.
    • (2013) IEEE Transactions on Signal Processing, , vol.61 , Issue.5 , pp. 1165-1170
    • Ling, Q.1    Wen, Z.2    Yin, W.3
  • 135
    • 84910052414 scopus 로고    scopus 로고
    • Gaussian mixture model with local consistency
    • Liu, J., Cai, D., and He, X. (2010). Gaussian mixture model with local consistency, in AAAI.
    • (2010) AAAI
    • Liu, J.1    Cai, D.2    He, X.3
  • 138
    • 80055046120 scopus 로고    scopus 로고
    • Sparse coding for machine learning
    • PhD. thesis, Ecole Normale Superieure de Cachan.
    • Mairal, J. (2010). Sparse coding for machine learning, image processing and computer vision, Ph.D. thesis, Ecole Normale Superieure de Cachan.
    • (2010) image processing and computer vision
    • Mairal, J.1
  • 141
    • 71149119964 scopus 로고    scopus 로고
    • Online dictionary learning for sparse coding
    • Mairal, J., Bach, F., Ponce, J., and Sapiro, G. (2009a). Online dictionary learning for sparse coding, in Proc. ICML, pp. 689-696.
    • (2009) Proc. ICML , pp. 689-696
    • Mairal, J.1    Bach, F.2    Ponce, J.3    Sapiro, G.4
  • 142
    • 51949103923 scopus 로고    scopus 로고
    • Discriminative learned dictionaries for local image analysis
    • Mairal, J., Bach, F., Ponce, J., Sapiro, G., and Zisserman, A. (2008b). Discriminative learned dictionaries for local image analysis, in Proc. CVPR, pp. 1-8.
    • (2008) Proc. CVPR , pp. 1-8
    • Mairal, J.1    Bach, F.2    Ponce, J.3    Sapiro, G.4    Zisserman, A.5
  • 144
    • 39149089704 scopus 로고    scopus 로고
    • Sparse representation for color image restoration, IEEE Trains
    • Mairal, J., Elad, M., and Sapiro, G. (2008c). Sparse representation for color image restoration, IEEE Trains. on Image Processing 17, 1, pp. 53-69.
    • (2008) on Image Processing , vol.17 , Issue.1 , pp. 53-69
    • Mairal, J.1    Elad, M.2    Sapiro, G.3
  • 145
    • 77956768546 scopus 로고    scopus 로고
    • Robust classifiers for data reduced via random projections,
    • Majumdar, A., Ward, R. K. (2010). Robust classifiers for data reduced via random projections, IEEE Trans. Sys. Man Cyber. Part B 40, pp. 1359-1371.
    • (2010) IEEE Trans. Sys. Man Cyber. Part B , vol.40 , pp. 1359-1371
    • Majumdar, A.1    Ward, R.K.2
  • 146
    • 25444450079 scopus 로고    scopus 로고
    • Sparse signal reconstruction perspective for source localization with sensor arrays, IEEE Trans
    • Malioutov, D., Cetin, M., and Willsky, A. (2005). Sparse signal reconstruction perspective for source localization with sensor arrays, IEEE Trans. on Signal Processing 53, 8, pp. 3010-3022.
    • (2005) on Signal Processing , vol.53 , Issue.8 , pp. 3010-3022
    • Malioutov, D.1    Cetin, M.2    Willsky, A.3
  • 148
    • 0027842081 scopus 로고
    • Matching pursuits with time-frequency dictionaries
    • Mallat, S. G., Zhang, Z. (1993). Matching pursuits with time-frequency dictionaries, IEEE Transactions on Signal Processing 41, 12, pp. 3397-3415.
    • (1993) IEEE Transactions on Signal Processing , vol.41 , Issue.12 , pp. 3397-3415
    • Mallat, S.G.1    Zhang, Z.2
  • 150
    • 57649140412 scopus 로고    scopus 로고
    • Multiclass and binary svm classification: Implications for training and classification users
    • Mathur, A., Foody, G. (2008). Multiclass and binary svm classification: Implications for training and classification users, Geoscience and Remote Sensing Letters, IEEE 5, 2, pp. 241-245.
    • (2008) Geoscience and Remote Sensing Letters, IEEE , vol.5 , Issue.2 , pp. 241-245
    • Mathur, A.1    Foody, G.2
  • 151
    • 84897475454 scopus 로고    scopus 로고
    • Sparsity-based generalization bounds for predictive sparse coding
    • Mehta, N., Gray, A. (2013). Sparsity-based generalization bounds for predictive sparse coding, in Proc. ICML, accepted.
    • (2013) Proc ICML, accepted
    • Mehta, N.1    Gray, A.2
  • 152
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the lasso
    • Meinshausen, N., Buhlmann, P. (2006). High-dimensional graphs and variable selection with the lasso, Annals of Statistics 34, 3, pp. 1436-1462.
    • (2006) Annals of Statistics , vol.34 , Issue.3 , pp. 1436-1462
    • Meinshausen, N.1    Buhlmann, P.2
  • 154
    • 53149111169 scopus 로고    scopus 로고
    • Reduce and boost: Recovering arbitrary sets of jointly sparse vectors, IEEE Trans
    • Mishali, M., Eldar, Y. C. (2008). Reduce and boost: Recovering arbitrary sets of jointly sparse vectors, IEEE Trans. on Signal Processing 56, 10, pp. 4692-4702.
    • (2008) on Signal Processing , vol.56 , Issue.10 , pp. 4692-4702
    • Mishali, M.1    Eldar, Y.C.2
  • 155
    • 61549103040 scopus 로고    scopus 로고
    • Blind multiband signal reconstruction: Compressed sensing for analog signals, IEEE Trans
    • Mishali, M., Eldar, Y. C. (2009). Blind multiband signal reconstruction: Compressed sensing for analog signals, IEEE Trans. on Signal Processing 57, 3, pp. 993-1009.
    • (2009) on Signal Processing , vol.57 , Issue.3 , pp. 993-1009
    • Mishali, M.1    Eldar, Y.C.2
  • 158
    • 62749175137 scopus 로고    scopus 로고
    • CoSaMP: Iterative signal recovery from incomplete and inaccurate samples
    • Needell, D., Tropp, J. A. (2009). CoSaMP: Iterative signal recovery from incomplete and inaccurate samples, Applied and Computational Harmonic Analysis 26, 3, pp. 301-321.
    • (2009) Applied and Computational Harmonic Analysis , vol.26 , Issue.3 , pp. 301-321
    • Needell, D.1    Tropp, J.A.2
  • 163
    • 0030779611 scopus 로고    scopus 로고
    • Sparse coding with an overcomplete basis set: A strategy employed by v1?
    • Olshausen, B., Field, D. (1998). Sparse coding with an overcomplete basis set: A strategy employed by v1? Vision Research 37, 23, pp. 3311-3325.
    • (1998) Vision Research , vol.37 , Issue.23 , pp. 3311-3325
    • Olshausen, B.1    Field, D.2
  • 172
    • 84856660881 scopus 로고    scopus 로고
    • Sparse dictionary-based representation and recognition of action attributes
    • Qiu, Q., Jiang, Z., and Chellappa, R. (2011). Sparse dictionary-based representation and recognition of action attributes, in Proc. ICCV, pp. 707-714.
    • (2011) Proc. ICCV , pp. 707-714
    • Qiu, Q.1    Jiang, Z.2    Chellappa, R.3
  • 173
    • 51949106645 scopus 로고    scopus 로고
    • Self-taught learning: Transfer learning from unlabeled data
    • Raina, R., Battle, A., Lee, H., Packer, B., and Ng, A. Y. (2007). Self-taught learning: Transfer learning from unlabeled data. in ICML.
    • (2007) ICML.
    • Raina, R.1    Battle, A.2    Lee, H.3    Packer, B.4    Ng, A.Y.5
  • 174
    • 79959547887 scopus 로고    scopus 로고
    • Surveying and comparing simultaneous sparse approximation (or group lasso) algorithms
    • Rakotomamonjy, A. (2010). Surveying and comparing simultaneous sparse approximation (or group lasso) algorithms, Tech. rep., Dept. of Physics, University of Rouen.
    • (2010) Tech rep., Dept. of Physics, University of Rouen.
    • Rakotomamonjy, A.1
  • 175
    • 77955994663 scopus 로고    scopus 로고
    • Classification and clustering via dictionary learning with structured incoherence and shared features
    • Ramirez, I., Sprechmann, P., and Sapiro, G. (2010). Classification and clustering via dictionary learning with structured incoherence and shared features, in Proc. CVPR, pp. 3501-3508.
    • (2010) Proc. CVPR , pp. 3501-3508
    • Ramirez, I.1    Sprechmann, P.2    Sapiro, G.3
  • 176
    • 34948870900 scopus 로고    scopus 로고
    • Unsupervised learning of invariant feature hierarchies with applications to object recognition
    • Ranzato, M., Huang, F., Boureau, Y., and Le Cun, Y. (2007a). Unsupervised learning of invariant feature hierarchies with applications to object recognition, in CVPR.
    • (2007) CVPR
    • Ranzato, M.1    Huang, F.2    Boureau, Y.3    Le Cun, Y.4
  • 177
    • 70049094447 scopus 로고    scopus 로고
    • Sparse feature learning for deep belief networks
    • Ranzato, M. A., Boureau, Y.-L., and Le Cun, Y. (2007b). Sparse feature learning for deep belief networks, in NIPS.
    • (2007) NIPS.
    • Ranzato, M.A.1    Boureau, Y.-L.2    Le Cun, Y.3
  • 178
  • 180
    • 24644467818 scopus 로고    scopus 로고
    • Fields of experts: A framework for learning image priors
    • Roth, S., Black, M. J. (2005). Fields of experts: A framework for learning image priors, in CVPR.
    • (2005) CVPR
    • Roth, S.1    Black, M.J.2
  • 183
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis, S., Saul, L. (2000). Nonlinear dimensionality reduction by locally linear embedding, Science 290, 5500, pp. 2323-2326.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.1    Saul, L.2
  • 184
    • 51849128608 scopus 로고    scopus 로고
    • Sparse coding via thresholding and local competition in neural circuits
    • Rozell, C. J., Johnson, D. H., Baraniuk, R. G., and Olshausen, B. A. (2008). Sparse coding via thresholding and local competition in neural circuits, Neural Computation 20, 10, pp. 2526-2563.
    • (2008) Neural Computation , vol.20 , Issue.10 , pp. 2526-2563
    • Rozell, C.J.1    Johnson, D.H.2    Baraniuk, R.G.3    Olshausen, B.A.4
  • 186
    • 84996774871 scopus 로고
    • Total variation based image restoration with free local constraints
    • (IEEE)
    • Rudin, L. I., Osher, S. (1994). Total variation based image restoration with free local constraints, in IEEE International Conference Image Processing, Vol. 1 (IEEE), pp. 31-35.
    • (1994) IEEE International Conference Image Processing , vol.1 , pp. 31-35
    • Rudin, L.I.1    Osher, S.2
  • 187
    • 33745885491 scopus 로고    scopus 로고
    • machines regularization, optimization, and beyond (MIT press)
    • Scholkopf, B., Smola, A. J. (2002). machines, regularization, optimization, and beyond (MIT press).
    • (2002)
    • Scholkopf, B.1    Smola, A.J.2
  • 188
    • 84906347546 scopus 로고    scopus 로고
    • Overfeat: integrated recognition localization and detection using convolutional networks
    • arXiv preprint arXiv:13126229
    • Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., and LeCun, Y. (2013). Overfeat: integrated recognition, localization and detection using convolutional networks, arXiv preprint arXiv:1312.6229.
    • (2013)
    • Sermanet, P.1    Eigen, D.2    Zhang, X.3    Mathieu, M.4    Fergus, R.5    LeCun, Y.6
  • 189
    • 49249099286 scopus 로고    scopus 로고
    • High-quality motion deblurring from a single image
    • Shan, Q., Jia, J., and Agarwala, A. (2008). High-quality motion deblurring from a single image, in SIGGRAPH.
    • (2008) SIGGRAPH
    • Shan, Q.1    Jia, J.2    Agarwala, A.3
  • 192
    • 0003875234 scopus 로고    scopus 로고
    • The cmu pose, illumination, and expression (pie) database of human faces
    • Pittsburgh, PA
    • Sim, T., Baker, S., and Bsat, M. (2001). The cmu pose, illumination, and expression (pie) database of human faces, Tech. Rep. CMU-RI-TR-01-02, Robotics Institute, Pittsburgh, PA.
    • (2001) Tech. Rep. CMU-RI-TR-01-02, Robotics Institute
    • Sim, T.1    Baker, S.2    Bsat, M.3
  • 194
    • 0000329993 scopus 로고
    • Information processing in dynamical systems: Foundations of harmony theory,
    • in D.E. Rumelhart, J. L. McClelland, and C. PDP Research Group (eds.), (MIT Press, Cambridge, MA, USA), ISBN 0-262-68053-X
    • Smolensky, P. (1986). Information processing in dynamical systems: Foundations of harmony theory, in D.E. Rumelhart, J. L. McClelland, and C. PDP Research Group (eds.), Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1 (MIT Press, Cambridge, MA, USA), ISBN 0-262-68053-X, pp. 194-281.
    • (1986) Parallel Distributed Processing: Explorations in the Microstructure of Cognition , vol.1 , pp. 194-281
    • Smolensky, P.1
  • 196
    • 84859087283 scopus 로고    scopus 로고
    • Robust multichannel blind deconvolution via fast alternating minimization, IEEE Trans
    • Sroubek, F., Milanfar, P. (2012). Robust multichannel blind deconvolution via fast alternating minimization, IEEE Trans. on Image Process. 21, 4, pp. 1687-1700.
    • (2012) on Image Process. , vol.21 , Issue.4 , pp. 1687-1700
    • Sroubek, F.1    Milanfar, P.2
  • 197
    • 84897025270 scopus 로고    scopus 로고
    • Structured priors for sparse-representation-based hyperspectral image classification
    • Sun, X., Qu, Q., Nasrabadi, N. M., and Tran, T. D. (2014). Structured priors for sparse-representation-based hyperspectral image classification, Geoscience and Remote Sensing Letters, IEEE 11, 7, pp. 1235-1239.
    • (2014) Geoscience and Remote Sensing Letters, IEEE , vol.11 , Issue.7 , pp. 1235-1239
    • Sun, X.1    Qu, Q.2    Nasrabadi, N.M.3    Tran, T.D.4
  • 198
    • 0018203420 scopus 로고
    • Fundamentals of pattern recognition in remote sensing
    • Swain, P. H. (1978). Fundamentals of pattern recognition in remote sensing, Remote sensing: The quantitative approach, pp. 136-187.
    • (1978) Remote sensing: The quantitative approach , pp. 136-187
    • Swain, P.H.1
  • 199
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Tenenbaum, J., Silva, V., and Langford, J. (2000). A global geometric framework for nonlinear dimensionality reduction, Science 290, 5500, pp. 2319-2323.
    • (2000) Science 290 , vol.5500 , pp. 2319-2323
    • Tenenbaum, J.1    Silva, V.2    Langford, J.3
  • 201
    • 84983684720 scopus 로고    scopus 로고
    • A+: Adjusted anchored neighborhood regression for fast super-resolution
    • (Springer)
    • Timofte, R., De Smet, V., and Van Gool, L. (2014). A+: Adjusted anchored neighborhood regression for fast super-resolution, in Computer Vision- ACCV 2014 (Springer), pp. 111-126.
    • (2014) Computer Vision- ACCV 2014 , pp. 111-126
    • Timofte, R.1    De Smet, V.2    Van Gool, L.3
  • 204
    • 5444237123 scopus 로고    scopus 로고
    • Greed is good: Algorithmic results for sparse approximation
    • Tropp, J. A. (2004). Greed is good: Algorithmic results for sparse approximation, IEEE Transactions on Information Theory 50, 10, pp. 2231-2242.
    • (2004) IEEE Transactions on Information Theory , vol.50 , Issue.10 , pp. 2231-2242
    • Tropp, J.A.1
  • 205
    • 64649083745 scopus 로고    scopus 로고
    • Signal recovery from random measurements via orthogonal matching pursuit, IEEE Trans
    • Tropp, J. A., Anna, and Gilbert, C. (2007). Signal recovery from random measurements via orthogonal matching pursuit, IEEE Trans. on Information Theory 53, 12, pp. 4655-4666.
    • (2007) on Information Theory , vol.53 , Issue.12 , pp. 4655-4666
    • Tropp, J.A.1    Anna.2    Gilbert, C.3
  • 209
    • 56449089103 scopus 로고    scopus 로고
    • Extracting and composing robust features with denoising autoencoders
    • Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.-A. (2008). Extracting and composing robust features with denoising autoencoders, in ICML, pp. 1096-1103.
    • (2008) ICML , pp. 1096-1103
    • Vincent, P.1    Larochelle, H.2    Bengio, Y.3    Manzagol, P.-A.4
  • 210
    • 70450162109 scopus 로고    scopus 로고
    • Towards a practical face recognition system: Robust registration and illumination by sparse representation
    • Wagner, A., Wright, J., Ganesh, A., Zhou, Z., and Ma, Y. (2009). Towards a practical face recognition system: Robust registration and illumination by sparse representation, in CVPR.
    • (2009) CVPR
    • Wagner, A.1    Wright, J.2    Ganesh, A.3    Zhou, Z.4    Ma, Y.5
  • 212
    • 85012251675 scopus 로고    scopus 로고
    • A new alternating minimization algorithm for total variation image reconstruction,
    • Wang, Y., Yang, J., Yin, W., and Zhang, Y. (2008). A new alternating minimization algorithm for total variation image reconstruction, SIAM J. Img. Sci. 1, 3, pp. 248-272, doi:http://dx.doi.org/10.1137/080724265.
    • (2008) SIAM J. Img. Sci. , vol.1 , Issue.3 , pp. 248-272
    • Wang, Y.1    Yang, J.2    Yin, W.3    Zhang, Y.4
  • 214
    • 84896391507 scopus 로고    scopus 로고
    • Spatial-spectral classification of hyperspectral images using discriminative dictionary designed by learning vector quantization
    • Wang, Z., Nasrabadi, N. M., and Huang, T. S. (2014a). Spatial-spectral classification of hyperspectral images using discriminative dictionary designed by learning vector quantization, IEEE Transactions on Geoscience and Remote Sensing, 52, 8, pp. 4808-4822.
    • (2014) IEEE Transactions on Geoscience and Remote Sensing , vol.52 , Issue.8 , pp. 4808-4822
    • Wang, Z.1    Nasrabadi, N.M.2    Huang, T.S.3
  • 215
    • 84907474375 scopus 로고    scopus 로고
    • Semisupervised hyperspectral classification using task-driven dictionary learning with laplacian regularization
    • Wang, Z., Nasrabadi, N. M., and Huang, T. S. (2015a). Semisupervised hyperspectral classification using task-driven dictionary learning with laplacian regularization, IEEE Transactions on Geoscience and Remote Sensing.
    • (2015) IEEE Transactions on Geoscience and Remote Sensing.
    • Wang, Z.1    Nasrabadi, N.M.2    Huang, T.S.3
  • 216
    • 84904645410 scopus 로고    scopus 로고
    • A joint perspective towards image super-resolution: Unifying external-and self-examples
    • 2014 IEEE Winter Conference on (IEEE)
    • Wang, Z., Wang, Z., Chang, S., Yang, J., and Huang, T. (2014b). A joint perspective towards image super-resolution: Unifying external-and self-examples, in Applications of Computer Vision (WACV), 2014 IEEE Winter Conference on (IEEE), pp. 596-603.
    • (2014) Applications of Computer Vision (WACV) , pp. 596-603
    • Wang, Z.1    Wang, Z.2    Chang, S.3    Yang, J.4    Huang, T.5
  • 220
    • 70349962981 scopus 로고    scopus 로고
    • Robust bayesian estimation of the location orientation, and timecourse of multiple correlated neural sources using MEG
    • Wipf, D., Owen, J., Attias, H., Sekihara, K., and Nagarajan, S. (2010). Robust bayesian estimation of the location, orientation, and timecourse of multiple correlated neural sources using MEG, NeuroImage 49, 1.
    • (2010) NeuroImage , vol.49 , Issue.1
    • Wipf, D.1    Owen, J.2    Attias, H.3    Sekihara, K.4    Nagarajan, S.5
  • 224
    • 56449089515 scopus 로고    scopus 로고
    • Unsupervised and semi-supervised multi-class support vector machines
    • Xu, L., Schuurmans, D. (2005). Unsupervised and semi-supervised multi-class support vector machines, in AAAI, Vol. 5.
    • (2005) AAAI , vol.5
    • Xu, L.1    Schuurmans, D.2
  • 225
    • 77249095854 scopus 로고    scopus 로고
    • Semi-supervised learning by sparse representation
    • Yan, S., Wang, H. (2009). Semi-supervised learning by sparse representation, in SDM, pp. 792-801.
    • (2009) SDM , pp. 792-801
    • Yan, S.1    Wang, H.2
  • 229
    • 79952529859 scopus 로고    scopus 로고
    • Exploiting self-similarities for single frame super-resolution,
    • (Springer)
    • Yang, C.-Y., Huang, J.-B., and Yang, M.-H. (2011a). Exploiting self-similarities for single frame super-resolution, in Computer Vision-ACCV 2010 (Springer), pp. 497-510.
    • (2011) Computer Vision-ACCV 2010 , pp. 497-510
    • Yang, C.-Y.1    Huang, J.-B.2    Yang, M.-H.3
  • 230
    • 0033540293 scopus 로고    scopus 로고
    • A back-propagation neural network for mineralogical mapping from aviris data
    • Yang, H. (1999). A back-propagation neural network for mineralogical mapping from aviris data, International Journal of Remote Sensing 20, 1, pp. 971-10.
    • (1999) International Journal of Remote Sensing , vol.20 , Issue.1 , pp. 97-110
    • Yang, H.1
  • 232
    • 80155182249 scopus 로고    scopus 로고
    • Learning the sparse representation for classification
    • Yang, J., Wang, J., and Huang, T. S. (2011b). Learning the sparse representation for classification, in Proc. ICME, pp. 1-6.
    • (2011) Proc. ICME , pp. 1-6
    • Yang, J.1    Wang, J.2    Huang, T.S.3
  • 239
    • 77955995785 scopus 로고    scopus 로고
    • Supervised translation-invariant sparse coding
    • 2010 IEEE Conference on (IEEE)
    • Yang, J., Yu, K., and Huang, T. (2010b). Supervised translation-invariant sparse coding, in Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on (IEEE), pp. 3517-3524.
    • (2010) Computer Vision and Pattern Recognition (CVPR) , pp. 3517-3524
    • Yang, J.1    Yu, K.2    Huang, T.3
  • 240
    • 84863011935 scopus 로고    scopus 로고
    • Fisher discrimination dictionary learning for sparse representation
    • Yang, M., Zhang, L., Feng, X., and Zhang, D. (2011c). Fisher discrimination dictionary learning for sparse representation, in Proc. ICCV, pp. 543-550.
    • (2011) Proc. ICCV , pp. 543-550
    • Yang, M.1    Zhang, L.2    Feng, X.3    Zhang, D.4
  • 242
    • 84937926318 scopus 로고    scopus 로고
    • On a theory of nonparametric pairwise similarity for clustering: Connecting clustering to classification
    • Yang, Y., Liang, F., Yan, S., Wang, Z., and Huang, T. S. (2014b). On a theory of nonparametric pairwise similarity for clustering: Connecting clustering to classification, in Advances in Neural Information Processing Systems, pp. 145-153.
    • (2014) Advances in Neural Information Processing Systems , pp. 145-153
    • Yang, Y.1    Liang, F.2    Yan, S.3    Wang, Z.4    Huang, T.S.5
  • 247
    • 50649091535 scopus 로고    scopus 로고
    • Blurred/non-blurred image alignment using sparseness prior
    • Yuan, L., Sun, J., Quan, L., and Shum, H.-Y. (2007). Blurred/non-blurred image alignment using sparseness prior, in ICCV.
    • (2007) ICCV
    • Yuan, L.1    Sun, J.2    Quan, L.3    Shum, H.-Y.4
  • 248
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • Yuan, M., Lin, Y. (2006). Model selection and estimation in regression with grouped variables, Journal of the Royal Statistical Society, Series B 68, pp. 49-67.
    • (2006) Journal of the Royal Statistical Society, Series B , vol.68 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 249
    • 77955986472 scopus 로고    scopus 로고
    • Visual classification with multi-task joint sparse representation
    • Yuan, X.-T., Yan, S. (2010). Visual classification with multi-task joint sparse representation, in CVPR.
    • (2010) CVPR
    • Yuan, X.-T.1    Yan, S.2
  • 250
    • 84855655878 scopus 로고    scopus 로고
    • On single image scale-up using sparse-representations
    • (Springer)
    • Zeyde, R., Elad, M., and Protter, M. (2012). On single image scale-up using sparse-representations, in Curves and Surfaces (Springer), pp. 711-730.
    • (2012) Curves and Surfaces , pp. 711-730
    • Zeyde, R.1    Elad, M.2    Protter, M.3
  • 251
    • 84875886368 scopus 로고    scopus 로고
    • Online semi-supervised discriminative dictionary learning for sparse representation
    • Zhang, G., Jiang, Z., and Davis, L. S. (2013a). Online semi-supervised discriminative dictionary learning for sparse representation, in Computer Vision- ACCV 2012 (Springer), pp. 259-273.
    • (2013) Computer Vision- ACCV 2012 (Springer) , pp. 259-273
    • Zhang, G.1    Jiang, Z.2    Davis, L.S.3
  • 253
    • 84863045699 scopus 로고    scopus 로고
    • iMultiobservation visual recognition via joint dynamic sparse representation,
    • ICCV 2011, Barcelona, Spain, November 6-13 2011
    • Zhang, H., Nasrabadi, N. M., Zhang, Y., and Huang, T. S. (2011b). Multiobservation visual recognition via joint dynamic sparse representation, in IEEE International Conference on Computer Vision, ICCV 2011, Barcelona, Spain, November 6-13, 2011, pp. 595-602.
    • (2011) IEEE International Conference on Computer Vision , pp. 595-602
    • Zhang, H.1    Nasrabadi, N.M.2    Zhang, Y.3    Huang, T.S.4
  • 254
    • 83655167265 scopus 로고    scopus 로고
    • Joint dynamic sparse representation for multi-view face recognition
    • Zhang, H., Nasrabadi, N. M., Zhang, Y., and Huang, T. S. (2012a). Joint dynamic sparse representation for multi-view face recognition, Pattern Recognition 45, 4, pp. 1290-1298.Zhang, H., Nasrabadi, N. M., Zhang, Y., and Huang, T. S. (2012a). Joint dynamic sparse representation for multi-view face recognition, Pattern Recognition 45, 4, pp. 1290-1298.
    • (2012) Pattern Recognition , vol.45 , Issue.4 , pp. 1290-1298
    • Zhang, H.1    Nasrabadi, N.M.2    Zhang, Y.3    Huang, T.S.4
  • 256
    • 84898999329 scopus 로고    scopus 로고
    • Non-uniform camera shake removal using a spatially adaptive sparse penalty
    • Zhang, H., Wipf, D. (2013). Non-uniform camera shake removal using a spatially adaptive sparse penalty, in NIPS.
    • (2013) NIPS
    • Zhang, H.1    Wipf, D.2
  • 257
    • 84887357805 scopus 로고    scopus 로고
    • Multi-image blind deblurring using a coupled adaptive sparse prior
    • Zhang, H., Wipf, D. P., and Zhang, Y. (2013b). Multi-image blind deblurring using a coupled adaptive sparse prior, in CVPR.
    • (2013) CVPR.
    • Zhang, H.1    Wipf, D.P.2    Zhang, Y.3
  • 260
    • 77951966910 scopus 로고    scopus 로고
    • Sparse representation based iterative incremental image deblurring
    • Zhang, H., Zhang, Y. (2009). Sparse representation based iterative incremental image deblurring, in Proc. IEEE Int. Conf. on Image Processing, pp. 1293-1296.
    • (2009) Proc. IEEE Int. Conf. on Image Processing , pp. 1293-1296
    • Zhang, H.1    Zhang, Y.2
  • 262
    • 52649138409 scopus 로고    scopus 로고
    • Efficient maximum margin clustering via cutting plane algorithm
    • Zhao, B., Wang, F., and Zhang, C. (2008). Efficient maximum margin clustering via cutting plane algorithm. in SDM (SIAM), pp. 751-762.
    • (2008) SDM (SIAM) , pp. 751-762
    • Zhao, B.1    Wang, F.2    Zhang, C.3
  • 266
    • 77953214508 scopus 로고    scopus 로고
    • Hierarchical gaussianization for image classification
    • Zhou, X., Cui, N., Li, Z., Liang, F., and Huang, T. S. (2009b). Hierarchical gaussianization for image classification, in ICCV, pp. 1971-1977.
    • (2009) ICCV , pp. 1971-1977
    • Zhou, X.1    Cui, N.2    Li, Z.3    Liang, F.4    Huang, T.S.5
  • 270
    • 34548536008 scopus 로고    scopus 로고
    • On the "degrees of freedom" of the LASSO
    • Zou, H., Hastie, T., and Tibshirani, R. (2007). On the "degrees of freedom" of the LASSO, The Annuals of Statistics 35, 5, pp. 2173-2192.
    • (2007) The Annuals of Statistics , vol.35 , Issue.5 , pp. 2173-2192
    • Zou, H.1    Hastie, T.2    Tibshirani, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.