메뉴 건너뛰기




Volumn 11, Issue 7, 2014, Pages 1235-1239

Structured priors for sparse-representation-based hyperspectral image classification

Author keywords

Classification; hyperspectral image (HSI); sparse representation; structured priors

Indexed keywords

CLASSIFICATION (OF INFORMATION); IMAGE CLASSIFICATION; SPECTROSCOPY;

EID: 84897025270     PISSN: 1545598X     EISSN: None     Source Type: Journal    
DOI: 10.1109/LGRS.2013.2290531     Document Type: Article
Times cited : (131)

References (21)
  • 4
  • 6
    • 77952717202 scopus 로고    scopus 로고
    • Sparse representation for computer vision and pattern recognition
    • Jun.
    • J. Wright, J.Mairal, G. Sapiro, T. S. Huang, and S. Yan, Sparse representation for computer vision and pattern recognition, Proc. IEEE, vol. 98, no. 6, pp. 1031-1044, Jun. 2010
    • (2010) Proc IEEE , vol.98 , Issue.6 , pp. 1031-1044
    • Wright, J.1    Mairal, J.2    Sapiro, G.3    Huang, T.S.4    Yan, S.5
  • 7
    • 80053571096 scopus 로고    scopus 로고
    • Hyperspectral image classification using dictionary-based sparse representation
    • Oct.
    • Y. Chen, M. Nasrabadi, and T. Tran, Hyperspectral image classification using dictionary-based sparse representation, IEEE Trans. Geosci. Remote Sens., vol. 49, no. 10, pp. 3973-3985, Oct. 2011
    • (2011) IEEE Trans. Geosci. Remote Sens , vol.49 , Issue.10 , pp. 3973-3985
    • Chen, Y.1    Nasrabadi, M.2    Tran, T.3
  • 8
    • 84861338885 scopus 로고    scopus 로고
    • A fast and robust sparse approach for hyperspectral data classification using a few labeled samples
    • Jun.
    • Q. Haq, L. Tao, F. Sun, and S. Yang, A fast and robust sparse approach for hyperspectral data classification using a few labeled samples, IEEE Trans. Geosci. Remote Sens., vol. 50, no. 6, pp. 2287-2302, Jun. 2012
    • (2012) IEEE Trans. Geosci. Remote Sens , vol.50 , Issue.6 , pp. 2287-2302
    • Haq, Q.1    Tao, L.2    Sun, F.3    Yang, S.4
  • 9
    • 84891559599 scopus 로고    scopus 로고
    • Spectral-spatial constraint hyperspectral image classification
    • Mar.
    • R. Ji, Y. Gao, R. Hong, Q. Liu, D. Tao, and X. Li, Spectral-spatial constraint hyperspectral image classification, IEEE Trans. Geosci. Remote Sens., vol. 52, no. 3, pp. 1811-1824, Mar. 2014
    • (2014) IEEE Trans. Geosci. Remote Sens , vol.52 , Issue.3 , pp. 1811-1824
    • Ji, R.1    Gao, Y.2    Hong, R.3    Liu, Q.4    Tao, D.5    Li, X.6
  • 10
    • 79957667304 scopus 로고    scopus 로고
    • Sparse unmixing of hyperspectral data
    • Jun.
    • M. Iordache, J. Bioucas-Dias, and A. Plaza, Sparse unmixing of hyperspectral data, IEEE Geosci. Remote Sens., vol. 49, no. 6, pp. 2014-2039, Jun. 2011
    • (2011) IEEE Geosci. Remote Sens , vol.49 , Issue.6 , pp. 2014-2039
    • Iordache, M.1    Bioucas-Dias, J.2    Plaza, A.3
  • 11
    • 68249145546 scopus 로고    scopus 로고
    • Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit
    • Dec
    • J. Tropp, A. Gilbert, and M. Strauss, Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit, Signal Process., vol. 54, no. 12, pp. 4634-4643, Dec. 2006
    • (2006) Signal Process , vol.54 , Issue.12 , pp. 4634-4643
    • Tropp, J.1    Gilbert, A.2    Strauss, M.3
  • 12
    • 77951546345 scopus 로고    scopus 로고
    • Joint-sparse recovery from multiple measurements
    • Apr.
    • E. Berg and M. Friedlander, Joint-sparse recovery from multiple measurements, IEEE Trans. Inf. Theory, vol. 56, no. 5, pp. 2516-2527, Apr. 2010
    • (2010) IEEE Trans. Inf. Theory , vol.56 , Issue.5 , pp. 2516-2527
    • Berg, E.1    Friedlander, M.2
  • 13
    • 84870191664 scopus 로고    scopus 로고
    • Laplacian sparse coding, hypergraph Laplacian sparse coding, and applications
    • Jan.
    • S. Gao, I. Tsang, and L. Chia, Laplacian sparse coding, hypergraph Laplacian sparse coding, and applications, IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 1, pp. 92-104, Jan. 2013
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell , vol.35 , Issue.1 , pp. 92-104
    • Gao, S.1    Tsang, I.2    Chia, L.3
  • 14
    • 84870197517 scopus 로고    scopus 로고
    • Robust recovery of subspace structures by low-rank representation
    • Jan.
    • G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma, Robust recovery of subspace structures by low-rank representation, IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 1, pp. 171-184, Jan. 2013
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell , vol.35 , Issue.1 , pp. 171-184
    • Liu, G.1    Lin, Z.2    Yan, S.3    Sun, J.4    Yu, Y.5    Ma, Y.6
  • 15
    • 79952039898 scopus 로고    scopus 로고
    • Surveying and comparing simultaneous sparse approximation (or group-Lasso) algorithms
    • Jul.
    • A. Rakotomamonjy, Surveying and comparing simultaneous sparse approximation (or group-Lasso) algorithms, Signal Process., vol. 91, no. 7, pp. 1505-1526, Jul. 2011
    • (2011) Signal Process , vol.91 , Issue.7 , pp. 1505-1526
    • Rakotomamonjy, A.1
  • 16
    • 77956548668 scopus 로고    scopus 로고
    • Tree-guided group lasso for multi-task regression with structured sparsity
    • S. Kim and E. Xing, Tree-guided group lasso for multi-task regression with structured sparsity, in Proc. ICML, 2010, pp. 543-550
    • (2010) Proc ICML , pp. 543-550
    • Kim, S.1    Xing, E.2
  • 17
    • 80051715215 scopus 로고    scopus 로고
    • C-HiLasso: A collaborative hierarchical sparse modeling framework
    • Sep.
    • P. Sprechmann, I. Ramirez, G. Sapiro, and Y. Eldar, C-HiLasso: A collaborative hierarchical sparse modeling framework, IEEE Trans. Signal Process., vol. 59, no. 9, pp. 4183-4198, Sep. 2011
    • (2011) IEEE Trans. Signal Process , vol.59 , Issue.9 , pp. 4183-4198
    • Sprechmann, P.1    Ramirez, I.2    Sapiro, G.3    Eldar, Y.4
  • 18
    • 84875713130 scopus 로고    scopus 로고
    • Hyperspectral image classification based on structured sparse logistic regression and three-dimensional wavelet texture features
    • Apr.
    • Y. Qian, M. Ye, and J. Zhou, Hyperspectral image classification based on structured sparse logistic regression and three-dimensional wavelet texture features, IEEE Trans. Geosci. Remote Sens., vol. 51, no. 4, pp. 2276-2291, Apr. 2013
    • (2013) IEEE Trans. Geosci. Remote Sens , vol.51 , Issue.4 , pp. 2276-2291
    • Qian, Y.1    Ye, M.2    Zhou, J.3
  • 19
    • 70450184118 scopus 로고    scopus 로고
    • Sparse subspace clustering
    • Jun
    • E. Elhamifar and R. Vidal, Sparse subspace clustering, in Proc. IEEE CVPR, Jun. 2009, pp. 2790-2797
    • (2009) Proc IEEE CVPR , pp. 2790-2797
    • Elhamifar, E.1    Vidal, R.2
  • 20
    • 80051762104 scopus 로고    scopus 로고
    • Distributed optimization and statistical learning via the alternating direction method of multipliers
    • Jan.
    • S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1-122, Jan. 2010
    • (2010) Found. Trends Mach. Learn , vol.3 , Issue.1 , pp. 1-122
    • Boyd, S.1    Parikh, N.2    Chu, E.3    Peleato, B.4    Eckstein, J.5
  • 21
    • 67650178787 scopus 로고    scopus 로고
    • Sparse reconstruction by separable approximation
    • Jul
    • S. Wright, R. Nowak, and M. Figueiredo, Sparse reconstruction by separable approximation, IEEE Trans. Signal Process., vol. 57, no. 7, pp. 2479-2493, Jul. 2009.
    • (2009) IEEE Trans. Signal Process , vol.57 , Issue.7 , pp. 2479-2493
    • Wright, S.1    Nowak, R.2    Figueiredo, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.