메뉴 건너뛰기




Volumn , Issue , 2010, Pages 3501-3508

Classification and clustering via dictionary learning with structured incoherence and shared features

Author keywords

[No Author keywords available]

Indexed keywords

AS DISTRIBUTION; BEST FIT; CLASSIFICATION AND CLUSTERING; DATA POINTS; DATA SETS; DICTIONARY LEARNING; DISCRETE POINTS; EIGEN DECOMPOSITION; EXCELLENT PERFORMANCE; K-MEANS; LARGE DATASETS; LOW DIMENSIONAL; LOW-DIMENSIONAL SUBSPACE; SIMPLE APPROACH; SPARSE CODING; SPARSE REPRESENTATION; SPECTRAL CLUSTERING; STANDARD IMAGES; SUPERVISED CLASSIFICATION; TEXTURE IMAGE; UNSUPERVISED CLASSIFICATION; UNSUPERVISED CLUSTERING;

EID: 77955994663     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2010.5539964     Document Type: Conference Paper
Times cited : (740)

References (34)
  • 2
    • 59749104367 scopus 로고    scopus 로고
    • From sparse solutions of systems of equations to sparse modeling of signals and images
    • A. M. Bruckstein, D. L. Donoho, and M. Elad. From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev., 51(1):34-81, 2009.
    • (2009) SIAM Rev. , vol.51 , Issue.1 , pp. 34-81
    • Bruckstein, A.M.1    Donoho, D.L.2    Elad, M.3
  • 3
    • 77955992582 scopus 로고    scopus 로고
    • Motion segmentation via robust subspace separation in the presence of outlying, incomplete, or corrupted trajectories
    • H. Cheng, Z. Liu, and J. Yang. Motion segmentation via robust subspace separation in the presence of outlying, incomplete, or corrupted trajectories. In ICCV, 2009.
    • (2009) ICCV
    • Cheng, H.1    Liu, Z.2    Yang, J.3
  • 4
    • 7044231546 scopus 로고    scopus 로고
    • An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
    • I. Daubechies, M. Defrise, and C. D. Mol. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Comm. on Pure and Applied Mathematics, 57:1413-1457, 2004.
    • (2004) Comm. on Pure and Applied Mathematics , vol.57 , pp. 1413-1457
    • Daubechies, I.1    Defrise, M.2    Mol, C.D.3
  • 6
    • 36749022762 scopus 로고    scopus 로고
    • Optimized projections for compressed-sensing
    • Dec.
    • M. Elad. Optimized projections for compressed-sensing. IEEE Trans. SP, 55(12):5695-5702, Dec. 2007.
    • (2007) IEEE Trans. SP , vol.55 , Issue.12 , pp. 5695-5702
    • Elad, M.1
  • 7
    • 70350743173 scopus 로고    scopus 로고
    • Robust recovery of signals from a structured union of subspaces
    • Y. C. Eldar and M. Mishali. Robust recovery of signals from a structured union of subspaces. IEEE Trans. IT., 2009.
    • (2009) IEEE Trans. IT
    • Eldar, Y.C.1    Mishali, M.2
  • 8
    • 70450184118 scopus 로고    scopus 로고
    • Sparse subspace clustering
    • E. Elhamifar and R. Vidal. Sparse subspace clustering. In CVPR, 2009.
    • (2009) CVPR
    • Elhamifar, E.1    Vidal, R.2
  • 9
    • 0032188344 scopus 로고    scopus 로고
    • Separability-based multiscale basis selection and feature extraction for signal and image classification
    • K. Etemad and R. Chellappa. Separability-based multiscale basis selection and feature extraction for signal and image classification. IEEE Transactions on Image Processing, 7:1453-1465, 1998.
    • (1998) IEEE Transactions on Image Processing , vol.7 , pp. 1453-1465
    • Etemad, K.1    Chellappa, R.2
  • 10
    • 70349216425 scopus 로고    scopus 로고
    • Separation of a subspacesparse signal: Algorithms and conditions
    • april
    • A. Ganesh, Z. Zhou, and Y. Ma. Separation of a subspacesparse signal: Algorithms and conditions. In ICASSP, volume 14, april 2009.
    • (2009) ICASSP , vol.14
    • Ganesh, A.1    Zhou, Z.2    Ma, Y.3
  • 12
    • 84946077141 scopus 로고    scopus 로고
    • Sparse representation for signal classification
    • K. Huang and S. Aviyente. Sparse representation for signal classification. In NIPS, 2006.
    • (2006) NIPS
    • Huang, K.1    Aviyente, S.2
  • 13
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
    • Washington, DC, USA, IEEE Computer Society
    • S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In CVPR, pages 2169-2178, Washington, DC, USA, 2006. IEEE Computer Society.
    • (2006) CVPR , pp. 2169-2178
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 14
    • 84864036295 scopus 로고    scopus 로고
    • Efficient sparse coding algorithms
    • H. Lee, A. Battle, R. Raina, and A. Y. Ng. Efficient sparse coding algorithms. In NIPS, volume 19. 2007.
    • (2007) NIPS , vol.19
    • Lee, H.1    Battle, A.2    Raina, R.3    Ng, A.Y.4
  • 16
    • 71149119964 scopus 로고    scopus 로고
    • Online dictionary learning for sparse coding
    • J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online dictionary learning for sparse coding. In ICML, 2009.
    • (2009) ICML
    • Mairal, J.1    Bach, F.2    Ponce, J.3    Sapiro, G.4
  • 17
    • 51949103923 scopus 로고    scopus 로고
    • Discriminative learned dictionaries for local image analysis
    • J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Discriminative learned dictionaries for local image analysis. In CVPR, 2008.
    • (2008) CVPR
    • Mairal, J.1    Bach, F.2    Ponce, J.3    Sapiro, G.4    Zisserman, A.5
  • 19
    • 84899013108 scopus 로고    scopus 로고
    • On spectral clustering: Analysis and an algorithm
    • A. Y. Ng, M. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In NIPS, volume 14. 2002.
    • (2002) NIPS , vol.14
    • Ng, A.Y.1    Jordan, M.2    Weiss, Y.3
  • 24
    • 51949116658 scopus 로고    scopus 로고
    • Motion segmentation via robust subspace separation in the presence of outlying, incomplete, or corrupted trajectories
    • S. R. Rao, R.Tron, R. Vidal, and Y. Ma. Motion segmentation via robust subspace separation in the presence of outlying, incomplete, or corrupted trajectories. In CVPR, 2008.
    • (2008) CVPR
    • Rao, S.R.1    Tron, R.2    Vidal, R.3    Ma, Y.4
  • 26
    • 78049403636 scopus 로고    scopus 로고
    • Dictionary learning and sparse coding for unsupervised clustering
    • P. Sprechmann and G. Sapiro. Dictionary learning and sparse coding for unsupervised clustering. In Proc. ICASSP, Mach 2010.
    • Proc. ICASSP, Mach 2010
    • Sprechmann, P.1    Sapiro, G.2
  • 27
    • 70449467348 scopus 로고    scopus 로고
    • Discriminative k-metrics
    • A. Szlam and G. Sapiro. Discriminative k-metrics. In ICML, 2009.
    • (2009) ICML
    • Szlam, A.1    Sapiro, G.2
  • 28
    • 34047200109 scopus 로고    scopus 로고
    • Sharing visual features for multiclass and multiview object detection
    • A. Torralba, K. Murphy, and W. Freeman. Sharing visual features for multiclass and multiview object detection. IEEE Trans. PAMI, 29(5):854-869, 2007.
    • (2007) IEEE Trans. PAMI , vol.29 , Issue.5 , pp. 854-869
    • Torralba, A.1    Murphy, K.2    Freeman, W.3
  • 29
    • 5444237123 scopus 로고    scopus 로고
    • Greed is good: Algorithmic results for sparse approximation
    • J. A. Tropp. Greed is good: Algorithmic results for sparse approximation. IEEE Trans. IP, 50:2231-2242, 2004.
    • (2004) IEEE Trans. IP , vol.50 , pp. 2231-2242
    • Tropp, J.A.1
  • 30
    • 0034349278 scopus 로고    scopus 로고
    • Nearest q-flat to m points
    • P. Tseng. Nearest q-flat to m points. J. Optim. Theory Appl., 105(1):249-252, 2000.
    • (2000) J. Optim. Theory Appl. , vol.105 , Issue.1 , pp. 249-252
    • Tseng, P.1
  • 32
    • 70450165594 scopus 로고    scopus 로고
    • A tutorial on spectral clustering
    • abs/0711.0189
    • U. von Luxburg. A tutorial on spectral clustering. CoRR, abs/0711.0189, 2007.
    • (2007) CoRR
    • Von Luxburg, U.1
  • 34
    • 70450209196 scopus 로고    scopus 로고
    • Linear spatial pyramid matching using sparse coding for image classification
    • J. Yang, K. Yu, Y. Gong, and T. Huang. Linear spatial pyramid matching using sparse coding for image classification. In CVPR, 2009.
    • (2009) CVPR
    • Yang, J.1    Yu, K.2    Gong, Y.3    Huang, T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.