메뉴 건너뛰기




Volumn 36, Issue 1, 1998, Pages 337-341

Finding optimal neural networks for land use classification

Author keywords

Gaussian maximum likelihood classifier; Land use classification; Minimum description length (mdl); Multilayer perceptron; Optimizing neural networks

Indexed keywords

ALGORITHMS; LAND USE; MULTISPECTRAL SCANNERS; NEURAL NETWORKS; OPTIMIZATION; STATISTICAL METHODS;

EID: 0031673762     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/36.655348     Document Type: Article
Times cited : (56)

References (16)
  • 1
    • 0026868031 scopus 로고    scopus 로고
    • Multispectral classification of Landsat-images using neural networks
    • vol. 30, pp. 482-490, Mar. 1992.
    • H. Bischof, W. Schneider, and A. Pinz, Multispectral classification of Landsat-images using neural networks IEEE Trans. Geosci. Remote Sensing, vol. 30, pp. 482-490, Mar. 1992.
    • IEEE Trans. Geosci. Remote Sensing
    • Bischof, H.1    Schneider, W.2    Pinz, A.3
  • 2
    • 84883443733 scopus 로고    scopus 로고
    • Remote sensing image analysis via a texture classification neural network in
    • 5, S. J. Hanson, J. D. Cowan, and C. L. Giles, Eds. San Mateo, CA: Morgan Kaufmann, 1993, pp. 425-432.
    • H. K. Greenspan and R. Goodman, Remote sensing image analysis via a texture classification neural network in Advances in Neural Information Processing Systems 5, S. J. Hanson, J. D. Cowan, and C. L. Giles, Eds. San Mateo, CA: Morgan Kaufmann, 1993, pp. 425-432.
    • Advances in Neural Information Processing Systems
    • Greenspan, H.K.1    Goodman, R.2
  • 4
    • 0028463641 scopus 로고    scopus 로고
    • Multisource classification of remotely sensed data: Fusion of Landsat TM and SAR images
    • vol. 32, pp. 768-778, Apr. 1994.
    • A. S. Solberg, A. Jain, and T. Taxt, Multisource classification of remotely sensed data: Fusion of Landsat TM and SAR images IEEE Trans. Geosci. Remote Sensing, vol. 32, pp. 768-778, Apr. 1994.
    • IEEE Trans. Geosci. Remote Sensing
    • Solberg, A.S.1    Jain, A.2    Taxt, T.3
  • 5
    • 0001205879 scopus 로고    scopus 로고
    • Measuring the VC-dimension of a learning machine
    • vol. 6, no. 5, pp. 851-876, 1994.
    • V. Vapnik, E. Levin, and Y. LeCun, Measuring the VC-dimension of a learning machine Neural Comput., vol. 6, no. 5, pp. 851-876, 1994.
    • Neural Comput.
    • Vapnik, V.1    Levin, E.2    Lecun, Y.3
  • 7
    • 0001234705 scopus 로고    scopus 로고
    • Second order derivatives for network pruning: Optimal brain surgeon in
    • 5. San Mateo, CA: Morgan Kaufmann, 1993, pp. 164-172.
    • B. Hassibi and D. Stork, Second order derivatives for network pruning: Optimal brain surgeon in NIPS 5. San Mateo, CA: Morgan Kaufmann, 1993, pp. 164-172.
    • NIPS
    • Hassibi, B.1    Stork, D.2
  • 8
    • 0021466584 scopus 로고    scopus 로고
    • Universal coding, information, prediction, and estimation
    • 30, pp. 629-636, July 1984.
    • J. Rissanen, Universal coding, information, prediction, and estimation IEEE Trans. Inform. Theory, vol. IT-30, pp. 629-636, July 1984.
    • IEEE Trans. Inform. Theory, Vol. IT
    • Rissanen, J.1
  • 9
    • 0029292002 scopus 로고    scopus 로고
    • Segmentation of range images as the search for geometric parametric models
    • vol. 14, no. 3, pp. 253-277, 1995.
    • A. Leonardis, A. Gupta, and R. Bajcsy, Segmentation of range images as the search for geometric parametric models Int. J. Comput. Vis., vol. 14, no. 3, pp. 253-277, 1995.
    • Int. J. Comput. Vis.
    • Leonardis, A.1    Gupta, A.2    Bajcsy, R.3
  • 16
    • 0346489329 scopus 로고    scopus 로고
    • Complexity optimization of adaptive RBF networks in
    • 13th Int. Conf. Pattern Recogn., IEEE Comput. Soc., 1996, vol. IV, pp. 654-658.
    • A. Leonardis and H. Bischof, Complexity optimization of adaptive RBF networks in Proc. 13th Int. Conf. Pattern Recogn., IEEE Comput. Soc., 1996, vol. IV, pp. 654-658.
    • Proc.
    • Leonardis, A.1    Bischof, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.