메뉴 건너뛰기




Volumn 2, Issue , 2015, Pages

Succinate Overproduction: A Case Study of Computational Strain Design Using a Comprehensive Escherichia coli Kinetic Model

Author keywords

bilevel optimization; computational strain design; kinetic model; model parameterization; succinate overproduction

Indexed keywords

ESCHERICHIA COLI; FORECASTING; KINETIC THEORY; METABOLISM; PARAMETERIZATION; PHYSIOLOGY;

EID: 85117273619     PISSN: None     EISSN: 22964185     Source Type: Journal    
DOI: 10.3389/fbioe.2014.00076     Document Type: Article
Times cited : (45)

References (73)
  • 1
    • 84900827538 scopus 로고    scopus 로고
    • Kinetic models in industrial biotechnology – improving cell factory performance
    • Almquist J. Cvijovic M. Hatzimanikatis V. Nielsen J. Jirstrand M. (2014). Kinetic models in industrial biotechnology – improving cell factory performance. Metab. Eng. 24, 38–60.10.1016/j.ymben.2014.03.007
    • (2014) Metab. Eng , vol.24 , pp. 38-60
    • Almquist, J.1    Cvijovic, M.2    Hatzimanikatis, V.3    Nielsen, J.4    Jirstrand, M.5
  • 2
    • 84884923719 scopus 로고    scopus 로고
    • On the use of metabolic control analysis in the optimization of cyanobacterial biosolar cell factories
    • Angermayr S. A. Hellingwerf K. J. (2013). On the use of metabolic control analysis in the optimization of cyanobacterial biosolar cell factories. J. Phys. Chem. B 117, 11169–11175.10.1021/jp4013152
    • (2013) J. Phys. Chem. B , vol.117 , pp. 11169-11175
    • Angermayr, S.A.1    Hellingwerf, K.J.2
  • 3
    • 36448987133 scopus 로고    scopus 로고
    • Metabolic transcription analysis of engineered Escherichia coli strains that overproduce L-phenylalanine
    • Baez-Viveros J. L. Flores N. Juarez K. Castillo-Espana P. Bolivar F. Gosset G. (2007). Metabolic transcription analysis of engineered Escherichia coli strains that overproduce L-phenylalanine. Microb. Cell Fact. 6, 30.10.1186/1475-2859-6-30
    • (2007) Microb. Cell Fact , vol.6 , pp. 30
    • Baez-Viveros, J.L.1    Flores, N.2    Juarez, K.3    Castillo-Espana, P.4    Bolivar, F.5    Gosset, G.6
  • 4
    • 0242487787 scopus 로고    scopus 로고
    • Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization
    • Burgard A. P. Pharkya P. Maranas C. D. (2003). Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng. 84, 647–657.10.1002/bit.10803
    • (2003) Biotechnol. Bioeng , vol.84 , pp. 647-657
    • Burgard, A.P.1    Pharkya, P.2    Maranas, C.D.3
  • 5
    • 80051664276 scopus 로고    scopus 로고
    • Metabolically engineered Escherichia coli for biotechnological production of four-carbon 1,4-dicarboxylic acids
    • Cao Y. Cao Y. Lin X. (2011). Metabolically engineered Escherichia coli for biotechnological production of four-carbon 1,4-dicarboxylic acids. J. Ind. Microbiol. Biotechnol. 38, 649–656.10.1007/s10295-010-0913-4
    • (2011) J. Ind. Microbiol. Biotechnol , vol.38 , pp. 649-656
    • Cao, Y.1    Cao, Y.2    Lin, X.3
  • 6
    • 84893719710 scopus 로고    scopus 로고
    • Fermentative succinate production: an emerging technology to replace the traditional petrochemical processes
    • Cao Y. Zhang R. Sun C. Cheng T. Liu Y. Xian M. (2013). Fermentative succinate production: an emerging technology to replace the traditional petrochemical processes. Biomed Res. Int. 2013, 723412.10.1155/2013/723412
    • (2013) Biomed Res. Int , vol.2013 , pp. 723412
    • Cao, Y.1    Zhang, R.2    Sun, C.3    Cheng, T.4    Liu, Y.5    Xian, M.6
  • 7
    • 33747148392 scopus 로고    scopus 로고
    • Transcriptional regulation of the fad regulon genes of Escherichia coli by ArcA
    • Cho B. K. Knight E. M. Palsson B. O. (2006). Transcriptional regulation of the fad regulon genes of Escherichia coli by ArcA. Microbiology 152, 2207–2219.10.1099/mic.0.28912-0
    • (2006) Microbiology , vol.152 , pp. 2207-2219
    • Cho, B.K.1    Knight, E.M.2    Palsson, B.O.3
  • 8
    • 80052441741 scopus 로고    scopus 로고
    • Re-examination of metabolic fluxes in Escherichia coli during anaerobic fermentation of glucose using C-13 labeling experiments and 2-dimensional nuclear magnetic resonance (NMR) spectroscopy
    • Choudhary M. K. Yoon J. M. Gonzalez R. Shanks J. V. (2011). Re-examination of metabolic fluxes in Escherichia coli during anaerobic fermentation of glucose using C-13 labeling experiments and 2-dimensional nuclear magnetic resonance (NMR) spectroscopy. Biotechnol. Bioprocess Eng. 16, 419–437.10.1007/s12257-010-0449-5
    • (2011) Biotechnol. Bioprocess Eng , vol.16 , pp. 419-437
    • Choudhary, M.K.1    Yoon, J.M.2    Gonzalez, R.3    Shanks, J.V.4
  • 9
    • 84895756673 scopus 로고    scopus 로고
    • k-OptForce: integrating kinetics with flux balance analysis for strain design
    • Chowdhury A. Zomorrodi A. R. Maranas C. D. (2014). k-OptForce: integrating kinetics with flux balance analysis for strain design. PLoS Comput. Biol. 10:e1003487.10.1371/journal.pcbi.1003487
    • (2014) PLoS Comput. Biol , vol.10 , pp. e1003487
    • Chowdhury, A.1    Zomorrodi, A.R.2    Maranas, C.D.3
  • 10
    • 84877118199 scopus 로고    scopus 로고
    • Constraint-based strain design using continuous modifications (CosMos) of flux bounds finds new strategies for metabolic engineering
    • a
    • Cotten C. Reed J. L. (2013a). Constraint-based strain design using continuous modifications (CosMos) of flux bounds finds new strategies for metabolic engineering. Biotechnol. J. 8, 595–604.10.1002/biot.201200316
    • (2013) Biotechnol. J , vol.8 , pp. 595-604
    • Cotten, C.1    Reed, J.L.2
  • 11
    • 84873053978 scopus 로고    scopus 로고
    • Mechanistic analysis of multi-omics datasets to generate kinetic parameters for constraint-based metabolic models
    • b
    • Cotten C. Reed J. L. (2013b). Mechanistic analysis of multi-omics datasets to generate kinetic parameters for constraint-based metabolic models. BMC Bioinformatics 14:32.10.1186/1471-2105-14-32
    • (2013) BMC Bioinformatics , vol.14 , pp. 32
    • Cotten, C.1    Reed, J.L.2
  • 12
    • 84862207929 scopus 로고    scopus 로고
    • Expanding the chemical palate of cells by combining systems biology and metabolic engineering
    • Curran K. A. Alper H. S. (2012). Expanding the chemical palate of cells by combining systems biology and metabolic engineering. Metab. Eng. 14, 289–297.10.1016/j.ymben.2012.04.006
    • (2012) Metab. Eng , vol.14 , pp. 289-297
    • Curran, K.A.1    Alper, H.S.2
  • 13
    • 0015935290 scopus 로고
    • The interaction of phosphoglucomutase with nucleotide inhibitors
    • Duckworth H. W. Barber B. H. Sanwal B. D. (1973). The interaction of phosphoglucomutase with nucleotide inhibitors. J. Biol. Chem. 248, 1431–1435.
    • (1973) J. Biol. Chem , vol.248 , pp. 1431-1435
    • Duckworth, H.W.1    Barber, B.H.2    Sanwal, B.D.3
  • 14
    • 34347332311 scopus 로고    scopus 로고
    • A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information
    • Feist A. M. Henry C. S. Reed J. L. Krummenacker M. Joyce A. R. Karp P. D. et al. (2007). A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol. Syst. Biol. 3, 121.10.1038/msb4100155
    • (2007) Mol. Syst. Biol , vol.3 , pp. 121
    • Feist, A.M.1    Henry, C.S.2    Reed, J.L.3    Krummenacker, M.4    Joyce, A.R.5    Karp, P.D.6
  • 15
    • 84861149640 scopus 로고    scopus 로고
    • Integrating flux balance analysis into kinetic models to decipher the dynamic metabolism of Shewanella oneidensis MR-1
    • Feng X. Xu Y. Chen Y. Tang Y. J. (2012). Integrating flux balance analysis into kinetic models to decipher the dynamic metabolism of Shewanella oneidensis MR-1. PLoS Comput. Biol. 8:e1002376.10.1371/journal.pcbi.1002376
    • (2012) PLoS Comput. Biol , vol.8 , pp. e1002376
    • Feng, X.1    Xu, Y.2    Chen, Y.3    Tang, Y.J.4
  • 16
    • 77952643400 scopus 로고    scopus 로고
    • Integrated stoichiometric, thermodynamic and kinetic modelling of steady state metabolism
    • Fleming R. M. Thiele I. Provan G. Nasheuer H. P. (2010). Integrated stoichiometric, thermodynamic and kinetic modelling of steady state metabolism. J. Theor. Biol. 264, 683–692.10.1016/j.jtbi.2010.02.044
    • (2010) J. Theor. Biol , vol.264 , pp. 683-692
    • Fleming, R.M.1    Thiele, I.2    Provan, G.3    Nasheuer, H.P.4
  • 17
    • 84877149255 scopus 로고    scopus 로고
    • SMET: systematic multiple enzyme targeting – a method to rationally design optimal strains for target chemical overproduction
    • Flowers D. Thompson R. A. Birdwell D. Wang T. Trinh C. T. (2013). SMET: systematic multiple enzyme targeting – a method to rationally design optimal strains for target chemical overproduction. Biotechnol. J. 8, 605–618.10.1002/biot.201200233
    • (2013) Biotechnol. J , vol.8 , pp. 605-618
    • Flowers, D.1    Thompson, R.A.2    Birdwell, D.3    Wang, T.4    Trinh, C.T.5
  • 18
    • 84857881099 scopus 로고    scopus 로고
    • Contrasting catalytic and allosteric mechanisms for phosphoglycerate dehydrogenases
    • Grant G. A. (2012). Contrasting catalytic and allosteric mechanisms for phosphoglycerate dehydrogenases. Arch. Biochem. Biophys. 519, 175–185.10.1016/j.abb.2011.10.005
    • (2012) Arch. Biochem. Biophys , vol.519 , pp. 175-185
    • Grant, G.A.1
  • 20
    • 0026740596 scopus 로고
    • Substrate synergism and the steady-state kinetic reaction mechanism for EPSP synthase from Escherichia coli
    • Gruys K. J. Walker M. C. Sikorski J. A. (1992). Substrate synergism and the steady-state kinetic reaction mechanism for EPSP synthase from Escherichia coli. Biochemistry 31, 5534–5544.10.1021/bi00139a016
    • (1992) Biochemistry , vol.31 , pp. 5534-5544
    • Gruys, K.J.1    Walker, M.C.2    Sikorski, J.A.3
  • 21
    • 84879770168 scopus 로고    scopus 로고
    • Parameter identification of in vivo kinetic models: limitations and challenges
    • Heijnen J. J. Verheijen P. J. (2013). Parameter identification of in vivo kinetic models: limitations and challenges. Biotechnol. J. 8, 768–775.10.1002/biot.201300105
    • (2013) Biotechnol. J , vol.8 , pp. 768-775
    • Heijnen, J.J.1    Verheijen, P.J.2
  • 22
    • 84864186953 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries
    • Hong K. K. Nielsen J. (2012). Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell. Mol. Life Sci. 69, 2671–2690.10.1007/s00018-012-0945-1
    • (2012) Cell. Mol. Life Sci , vol.69 , pp. 2671-2690
    • Hong, K.K.1    Nielsen, J.2
  • 23
    • 0023895911 scopus 로고
    • Escherichia coli isocitrate lyase: properties and comparisons
    • Hoyt J. C. Robertson E. F. Berlyn K. A. Reeves H. C. (1988). Escherichia coli isocitrate lyase: properties and comparisons. Biochim. Biophys. Acta 966, 30–35.10.1016/0304-4165(88)90125-0
    • (1988) Biochim. Biophys. Acta , vol.966 , pp. 30-35
    • Hoyt, J.C.1    Robertson, E.F.2    Berlyn, K.A.3    Reeves, H.C.4
  • 24
    • 0032514651 scopus 로고    scopus 로고
    • Evolution of enzymatic activities in the enolase superfamily: characterization of the (D)-glucarate/galactarate catabolic pathway in Escherichia coli
    • Hubbard B. K. Koch M. Palmer D. R. Babbitt P. C. Gerlt J. A. (1998). Evolution of enzymatic activities in the enolase superfamily: characterization of the (D)-glucarate/galactarate catabolic pathway in Escherichia coli. Biochemistry 37, 14369–14375.10.1021/bi981124f
    • (1998) Biochemistry , vol.37 , pp. 14369-14375
    • Hubbard, B.K.1    Koch, M.2    Palmer, D.R.3    Babbitt, P.C.4    Gerlt, J.A.5
  • 25
    • 34247612307 scopus 로고    scopus 로고
    • Multiple high-throughput analyses monitor the response of E. coli to perturbations
    • Ishii N. Nakahigashi K. Baba T. Robert M. Soga T. Kanai A. et al. (2007). Multiple high-throughput analyses monitor the response of E. coli to perturbations. Science 316, 593–597.10.1126/science.1132067
    • (2007) Science , vol.316 , pp. 593-597
    • Ishii, N.1    Nakahigashi, K.2    Baba, T.3    Robert, M.4    Soga, T.5    Kanai, A.6
  • 26
    • 77049084742 scopus 로고    scopus 로고
    • Mass action stoichiometric simulation models: incorporating kinetics and regulation into stoichiometric models
    • Jamshidi N. Palsson B. O. (2010). Mass action stoichiometric simulation models: incorporating kinetics and regulation into stoichiometric models. Biophys. J. 98, 175–185.10.1016/j.bpj.2009.09.064
    • (2010) Biophys. J , vol.98 , pp. 175-185
    • Jamshidi, N.1    Palsson, B.O.2
  • 27
    • 84902133886 scopus 로고    scopus 로고
    • Metabolic modelling in the development of cell factories by synthetic biology
    • Jouhten P. (2012). Metabolic modelling in the development of cell factories by synthetic biology. Comput. Struct. Biotechnol. J. 3, 9.10.5936/csbj.201210009
    • (2012) Comput. Struct. Biotechnol. J , vol.3 , pp. 9
    • Jouhten, P.1
  • 28
    • 84904317199 scopus 로고    scopus 로고
    • A kinetic model of Escherichia coli core metabolism satisfying multiple sets of mutant flux data
    • Khodayari A. Zomorrodi A. R. Liao J. C. Maranas C. D. (2014). A kinetic model of Escherichia coli core metabolism satisfying multiple sets of mutant flux data. Metab. Eng. 25C, 50–62.10.1016/j.ymben.2014.05.014
    • (2014) Metab. Eng , vol.25C , pp. 50-62
    • Khodayari, A.1    Zomorrodi, A.R.2    Liao, J.C.3    Maranas, C.D.4
  • 29
    • 77951552860 scopus 로고    scopus 로고
    • OptORF: optimal metabolic and regulatory perturbations for metabolic engineering of microbial strains
    • Kim J. Reed J. L. (2010). OptORF: optimal metabolic and regulatory perturbations for metabolic engineering of microbial strains. BMC Syst. Biol. 4:53.10.1186/1752-0509-4-53
    • (2010) BMC Syst. Biol , vol.4 , pp. 53
    • Kim, J.1    Reed, J.L.2
  • 30
    • 80052573483 scopus 로고    scopus 로고
    • Large-scale bi-level strain design approaches and mixed-integer programming solution techniques
    • Kim J. Reed J. L. Maravelias C. T. (2011). Large-scale bi-level strain design approaches and mixed-integer programming solution techniques. PLoS ONE 6:e24162.10.1371/journal.pone.0024162
    • (2011) PLoS ONE , vol.6 , pp. e24162
    • Kim, J.1    Reed, J.L.2    Maravelias, C.T.3
  • 31
    • 84887626141 scopus 로고    scopus 로고
    • Somewhat in control – the role of transcription in regulating microbial metabolic fluxes
    • Kochanowski K. Sauer U. Chubukov V. (2013). Somewhat in control – the role of transcription in regulating microbial metabolic fluxes. Curr. Opin. Biotechnol. 24, 987–993.10.1016/j.copbio.2013.03.014
    • (2013) Curr. Opin. Biotechnol , vol.24 , pp. 987-993
    • Kochanowski, K.1    Sauer, U.2    Chubukov, V.3
  • 32
    • 84860728385 scopus 로고    scopus 로고
    • Metabolic engineering and flux analysis of Corynebacterium glutamicum for L-serine production
    • Lai S. Zhang Y. Liu S. Liang Y. Shang X. Chai X. et al. (2012). Metabolic engineering and flux analysis of Corynebacterium glutamicum for L-serine production. Sci. China Life Sci. 55, 283–290.10.1007/s11427-012-4304-0
    • (2012) Sci. China Life Sci , vol.55 , pp. 283-290
    • Lai, S.1    Zhang, Y.2    Liu, S.3    Liang, Y.4    Shang, X.5    Chai, X.6
  • 33
    • 84861440312 scopus 로고    scopus 로고
    • Systems metabolic engineering of microorganisms for natural and non-natural chemicals
    • Lee J. W. Na D. Park J. M. Lee J. Choi S. Lee S. Y. (2012). Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat. Chem. Biol. 8, 536–546.10.1038/nchembio.970
    • (2012) Nat. Chem. Biol , vol.8 , pp. 536-546
    • Lee, J.W.1    Na, D.2    Park, J.M.3    Lee, J.4    Choi, S.5    Lee, S.Y.6
  • 34
    • 36849002434 scopus 로고    scopus 로고
    • Systems metabolic engineering of Escherichia coli for L-threonine production
    • Lee K. H. Park J. H. Kim T. Y. Kim H. U. Lee S. Y. (2007). Systems metabolic engineering of Escherichia coli for L-threonine production. Mol. Syst. Biol. 3, 149.10.1038/msb4100196
    • (2007) Mol. Syst. Biol , vol.3 , pp. 149
    • Lee, K.H.1    Park, J.H.2    Kim, T.Y.3    Kim, H.U.4    Lee, S.Y.5
  • 35
    • 29144484729 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for enhanced production of succinic acid, based on genome comparison and in silico gene knockout simulation
    • Lee S. J. Lee D. Y. Kim T. Y. Kim B. H. Lee J. Lee S. Y. (2005). Metabolic engineering of Escherichia coli for enhanced production of succinic acid, based on genome comparison and in silico gene knockout simulation. Appl. Environ. Microbiol. 71, 7880–7887.10.1128/AEM.71.12.7880-7887.2005
    • (2005) Appl. Environ. Microbiol , vol.71 , pp. 7880-7887
    • Lee, S.J.1    Lee, D.Y.2    Kim, T.Y.3    Kim, B.H.4    Lee, J.5    Lee, S.Y.6
  • 36
    • 33745282141 scopus 로고    scopus 로고
    • Effect of sucA or sucC gene knockout on the metabolism in Escherichia coli based on gene expressions, enzyme activities, intracellular metabolite concentrations and metabolic fluxes by 13C-labeling experiments
    • Li M. Ho P. Y. Yao S. Shimizu K. (2006). Effect of sucA or sucC gene knockout on the metabolism in Escherichia coli based on gene expressions, enzyme activities, intracellular metabolite concentrations and metabolic fluxes by 13C-labeling experiments. Biochem. Eng. J. 30, 289–296.10.1016/j.bej.2006.05.011
    • (2006) Biochem. Eng. J , vol.30 , pp. 289-296
    • Li, M.1    Ho, P.Y.2    Yao, S.3    Shimizu, K.4
  • 37
    • 84864389492 scopus 로고    scopus 로고
    • Construction of Escherichia coli strains producing L-serine from glucose
    • Li Y. Chen G. K. Tong X. W. Zhang H. T. Liu X. G. Liu Y. H. et al. (2012). Construction of Escherichia coli strains producing L-serine from glucose. Biotechnol. Lett. 34, 1525–1530.10.1007/s10529-012-0937-0
    • (2012) Biotechnol. Lett , vol.34 , pp. 1525-1530
    • Li, Y.1    Chen, G.K.2    Tong, X.W.3    Zhang, H.T.4    Liu, X.G.5    Liu, Y.H.6
  • 38
    • 29144444584 scopus 로고    scopus 로고
    • Chemostat culture characterization of Escherichia coli mutant strains metabolically engineered for aerobic succinate production: a study of the modified metabolic network based on metabolite profile, enzyme activity, and gene expression profile
    • a
    • Lin H. Bennett G. N. San K. Y. (2005a). Chemostat culture characterization of Escherichia coli mutant strains metabolically engineered for aerobic succinate production: a study of the modified metabolic network based on metabolite profile, enzyme activity, and gene expression profile. Metab. Eng. 7, 337–352.10.1016/j.ymben.2005.06.002
    • (2005) Metab. Eng , vol.7 , pp. 337-352
    • Lin, H.1    Bennett, G.N.2    San, K.Y.3
  • 39
    • 19744367895 scopus 로고    scopus 로고
    • Fed-batch culture of a metabolically engineered Escherichia coli strain designed for high-level succinate production and yield under aerobic conditions
    • b
    • Lin H. Bennett G. N. San K. Y. (2005b). Fed-batch culture of a metabolically engineered Escherichia coli strain designed for high-level succinate production and yield under aerobic conditions. Biotechnol. Bioeng. 90, 775–779.10.1002/bit.20458
    • (2005) Biotechnol. Bioeng , vol.90 , pp. 775-779
    • Lin, H.1    Bennett, G.N.2    San, K.Y.3
  • 40
    • 83655197763 scopus 로고    scopus 로고
    • Efficient aerobic succinate production from glucose in minimal medium with Corynebacterium glutamicum
    • Litsanov B. Kabus A. Brocker M. Bott M. (2012). Efficient aerobic succinate production from glucose in minimal medium with Corynebacterium glutamicum. Microb. Biotechnol. 5, 116–128.10.1111/j.1751-7915.2011.00310.x
    • (2012) Microb. Biotechnol , vol.5 , pp. 116-128
    • Litsanov, B.1    Kabus, A.2    Brocker, M.3    Bott, M.4
  • 41
    • 0024286929 scopus 로고
    • Purification and regulatory properties of isocitrate lyase from Escherichia coli ML308
    • MacKintosh C. Nimmo H. G. (1988). Purification and regulatory properties of isocitrate lyase from Escherichia coli ML308. Biochem. J. 250, 25–31.
    • (1988) Biochem. J , vol.250 , pp. 25-31
    • MacKintosh, C.1    Nimmo, H.G.2
  • 42
    • 0036708443 scopus 로고    scopus 로고
    • Dynamic flux balance analysis of diauxic growth in Escherichia coli
    • Mahadevan R. Edwards J. S. Doyle F. J. III (2002). Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys. J. 83, 1331–1340.10.1016/S0006-3495(02)73903-9
    • (2002) Biophys. J , vol.83 , pp. 1331-1340
    • Mahadevan, R.1    Edwards, J.S.2    Doyle, F.J.3
  • 43
    • 84867003199 scopus 로고    scopus 로고
    • An integrated computational environment for elementary modes analysis of biochemical networks
    • Maia P. Vilaca P. Rocha I. Pont M. Tomb J. F. Rocha M. (2012). An integrated computational environment for elementary modes analysis of biochemical networks. Int. J. Data Min. Bioinform. 6, 382–395.10.1504/IJDMB.2012.049292
    • (2012) Int. J. Data Min. Bioinform , vol.6 , pp. 382-395
    • Maia, P.1    Vilaca, P.2    Rocha, I.3    Pont, M.4    Tomb, J.F.5    Rocha, M.6
  • 44
    • 0029930612 scopus 로고    scopus 로고
    • Enhanced production of succinic acid by overexpression of phosphoenolpyruvate carboxylase in Escherichia coli
    • Millard C. S. Chao Y. P. Liao J. C. Donnelly M. I. (1996). Enhanced production of succinic acid by overexpression of phosphoenolpyruvate carboxylase in Escherichia coli. Appl. Environ. Microbiol. 62, 1808–1810.
    • (1996) Appl. Environ. Microbiol , vol.62 , pp. 1808-1810
    • Millard, C.S.1    Chao, Y.P.2    Liao, J.C.3    Donnelly, M.I.4
  • 45
    • 70449581223 scopus 로고    scopus 로고
    • The elucidation of metabolic pathways and their improvements using stable optimization of large-scale kinetic models of cellular systems
    • Nikolaev E. V. (2010). The elucidation of metabolic pathways and their improvements using stable optimization of large-scale kinetic models of cellular systems. Metab. Eng. 12, 26–38.10.1016/j.ymben.2009.08.010
    • (2010) Metab. Eng , vol.12 , pp. 26-38
    • Nikolaev, E.V.1
  • 46
    • 33846621634 scopus 로고    scopus 로고
    • Role of phosphoenolpyruvate in the NADP-isocitrate dehydrogenase and isocitrate lyase reaction in Escherichia coli
    • Ogawa T. Murakami K. Mori H. Ishii N. Tomita M. Yoshin M. (2007). Role of phosphoenolpyruvate in the NADP-isocitrate dehydrogenase and isocitrate lyase reaction in Escherichia coli. J. Bacteriol. 189, 1176–1178.10.1128/JB.01628-06
    • (2007) J. Bacteriol , vol.189 , pp. 1176-1178
    • Ogawa, T.1    Murakami, K.2    Mori, H.3    Ishii, N.4    Tomita, M.5    Yoshin, M.6
  • 47
    • 85117299974 scopus 로고    scopus 로고
    • Microorganisms and methods for the production of ethylene glycol. US 13/086,295
    • Osterhout R. E. Pharkya P. Burgard A. P. (2011). Microorganisms and methods for the production of ethylene glycol. US 13/086,295.
    • (2011)
    • Osterhout, R.E.1    Pharkya, P.2    Burgard, A.P.3
  • 48
    • 34249727710 scopus 로고    scopus 로고
    • Transition of Escherichia coli from aerobic to micro-aerobic conditions involves fast and slow reacting regulatory components
    • Partridge J. D. Sanguinetti G. Dibden D. P. Roberts R. E. Poole R. K. Green J. (2007). Transition of Escherichia coli from aerobic to micro-aerobic conditions involves fast and slow reacting regulatory components. J. Biol. Chem. 282, 11230–11237.10.1074/jbc.M700728200
    • (2007) J. Biol. Chem , vol.282 , pp. 11230-11237
    • Partridge, J.D.1    Sanguinetti, G.2    Dibden, D.P.3    Roberts, R.E.4    Poole, R.K.5    Green, J.6
  • 49
    • 33748769255 scopus 로고    scopus 로고
    • Escherichia coli transcriptome dynamics during the transition from anaerobic to aerobic conditions
    • Partridge J. D. Scott C. Tang Y. Poole R. K. Green J. (2006). Escherichia coli transcriptome dynamics during the transition from anaerobic to aerobic conditions. J. Biol. Chem. 281, 27806–27815.10.1074/jbc.M603450200
    • (2006) J. Biol. Chem , vol.281 , pp. 27806-27815
    • Partridge, J.D.1    Scott, C.2    Tang, Y.3    Poole, R.K.4    Green, J.5
  • 50
    • 17644369246 scopus 로고    scopus 로고
    • Impact of global transcriptional regulation by ArcA, ArcB, Cra, Crp, Cya, Fnr, and Mlc on glucose catabolism in Escherichia coli
    • Perrenoud A. Sauer U. (2005). Impact of global transcriptional regulation by ArcA, ArcB, Cra, Crp, Cya, Fnr, and Mlc on glucose catabolism in Escherichia coli. J. Bacteriol. 187, 3171–3179.10.1128/JB.187.9.3171-3179.2005
    • (2005) J. Bacteriol , vol.187 , pp. 3171-3179
    • Perrenoud, A.1    Sauer, U.2
  • 51
    • 8744224466 scopus 로고    scopus 로고
    • OptStrain: a computational framework for redesign of microbial production systems
    • Pharkya P. Burgard A. P. Maranas C. D. (2004). OptStrain: a computational framework for redesign of microbial production systems. Genome Res. 14, 2367–2376.10.1101/gr.2872004
    • (2004) Genome Res , vol.14 , pp. 2367-2376
    • Pharkya, P.1    Burgard, A.P.2    Maranas, C.D.3
  • 52
    • 77954590959 scopus 로고    scopus 로고
    • OptForce: an optimization procedure for identifying all genetic manipulations leading to targeted overproductions
    • Ranganathan S. Suthers P. F. Maranas C. D. (2010). OptForce: an optimization procedure for identifying all genetic manipulations leading to targeted overproductions. PLoS Comput. Biol. 6:e1000744.10.1371/journal.pcbi.1000744
    • (2010) PLoS Comput. Biol , vol.6 , pp. e1000744
    • Ranganathan, S.1    Suthers, P.F.2    Maranas, C.D.3
  • 53
    • 77950960250 scopus 로고    scopus 로고
    • OptFlux: an open-source software platform for in silico metabolic engineering
    • Rocha I. Maia P. Evangelista P. Vilaca P. Soares S. Pinto J. P. et al. (2010). OptFlux: an open-source software platform for in silico metabolic engineering. BMC Syst. Biol. 4:45.10.1186/1752-0509-4-45
    • (2010) BMC Syst. Biol , vol.4 , pp. 45
    • Rocha, I.1    Maia, P.2    Evangelista, P.3    Vilaca, P.4    Soares, S.5    Pinto, J.P.6
  • 54
    • 0000318768 scopus 로고    scopus 로고
    • BARON: a general purpose global optimization software package
    • Sahinidis N. V. (1996). BARON: a general purpose global optimization software package. J. Global Optim. 8, 201–205.10.1007/BF00138693
    • (1996) J. Global Optim , vol.8 , pp. 201-205
    • Sahinidis, N.V.1
  • 55
    • 0043032584 scopus 로고    scopus 로고
    • Global gene expression profiling in Escherichia coli K12. The effects of oxygen availability and FNR
    • Salmon K. Hung S. P. Mekjian K. Baldi P. Hatfield G. W. Gunsalus R. P. (2003). Global gene expression profiling in Escherichia coli K12. The effects of oxygen availability and FNR. J. Biol. Chem. 278, 29837–29855.10.1074/jbc.M213060200
    • (2003) J. Biol. Chem , vol.278 , pp. 29837-29855
    • Salmon, K.1    Hung, S.P.2    Mekjian, K.3    Baldi, P.4    Hatfield, G.W.5    Gunsalus, R.P.6
  • 56
    • 17644381300 scopus 로고    scopus 로고
    • Global gene expression profiling in Escherichia coli K12: effects of oxygen availability and ArcA
    • Salmon K. A. Hung S. P. Steffen N. R. Krupp R. Baldi P. Hatfield G. W. et al. (2005). Global gene expression profiling in Escherichia coli K12: effects of oxygen availability and ArcA. J. Biol. Chem. 280, 15084–15096.10.1074/jbc.M414030200
    • (2005) J. Biol. Chem , vol.280 , pp. 15084-15096
    • Salmon, K.A.1    Hung, S.P.2    Steffen, N.R.3    Krupp, R.4    Baldi, P.5    Hatfield, G.W.6
  • 57
    • 16444375254 scopus 로고    scopus 로고
    • Efficient succinic acid production from glucose through overexpression of pyruvate carboxylase in an Escherichia coli alcohol dehydrogenase and lactate dehydrogenase mutant
    • Sanchez A. M. Bennett G. N. San K. Y. (2005). Efficient succinic acid production from glucose through overexpression of pyruvate carboxylase in an Escherichia coli alcohol dehydrogenase and lactate dehydrogenase mutant. Biotechnol. Prog. 21, 358–365.10.1021/bp049676e
    • (2005) Biotechnol. Prog , vol.21 , pp. 358-365
    • Sanchez, A.M.1    Bennett, G.N.2    San, K.Y.3
  • 59
    • 0037069467 scopus 로고    scopus 로고
    • Analysis of optimality in natural and perturbed metabolic networks
    • Segre D. Vitkup D. Church G. M. (2002). Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl. Acad. Sci. U.S.A. 99, 15112–15117.10.1073/pnas.232349399
    • (2002) Proc. Natl. Acad. Sci. U.S.A , vol.99 , pp. 15112-15117
    • Segre, D.1    Vitkup, D.2    Church, G.M.3
  • 60
    • 77649176477 scopus 로고    scopus 로고
    • Towards a genome-scale kinetic model of cellular metabolism
    • Smallbone K. Simeonidis E. Swainston N. Mendes P. (2010). Towards a genome-scale kinetic model of cellular metabolism. BMC Syst. Biol. 4:6.10.1186/1752-0509-4-6
    • (2010) BMC Syst. Biol , vol.4 , pp. 6
    • Smallbone, K.1    Simeonidis, E.2    Swainston, N.3    Mendes, P.4
  • 61
    • 84857995962 scopus 로고    scopus 로고
    • Prediction of dynamic behavior of mutant strains from limited wild-type data
    • Song H. S. Ramkrishna D. (2012). Prediction of dynamic behavior of mutant strains from limited wild-type data. Metab. Eng. 14, 69–80.10.1016/j.ymben.2012.02.003
    • (2012) Metab. Eng , vol.14 , pp. 69-80
    • Song, H.S.1    Ramkrishna, D.2
  • 62
    • 0028862915 scopus 로고
    • Transaldolase B of Escherichia coli K-12: cloning of its gene, talB, and characterization of the enzyme from recombinant strains
    • Sprenger G. A. Schorken U. Sprenger G. Sahm H. (1995). Transaldolase B of Escherichia coli K-12: cloning of its gene, talB, and characterization of the enzyme from recombinant strains. J. Bacteriol. 177, 5930–5936.
    • (1995) J. Bacteriol , vol.177 , pp. 5930-5936
    • Sprenger, G.A.1    Schorken, U.2    Sprenger, G.3    Sahm, H.4
  • 63
    • 84857702241 scopus 로고    scopus 로고
    • Metabolic ensemble modeling for strain engineers
    • Tan Y. Liao J. C. (2012). Metabolic ensemble modeling for strain engineers. Biotechnol. J. 7, 343–353.10.1002/biot.201100186
    • (2012) Biotechnol. J , vol.7 , pp. 343-353
    • Tan, Y.1    Liao, J.C.2
  • 64
    • 78650571311 scopus 로고    scopus 로고
    • Reducing the allowable kinetic space by constructing ensemble of dynamic models with the same steady-state flux
    • Tan Y. Rivera J. G. Contador C. A. Asenjo J. A. Liao J. C. (2011). Reducing the allowable kinetic space by constructing ensemble of dynamic models with the same steady-state flux. Metab. Eng. 13, 60–75.10.1016/j.ymben.2010.11.001
    • (2011) Metab. Eng , vol.13 , pp. 60-75
    • Tan, Y.1    Rivera, J.G.2    Contador, C.A.3    Asenjo, J.A.4    Liao, J.C.5
  • 65
    • 77949495880 scopus 로고    scopus 로고
    • Predicting metabolic engineering knockout strategies for chemical production: accounting for competing pathways
    • Tepper N. Shlomi T. (2010). Predicting metabolic engineering knockout strategies for chemical production: accounting for competing pathways. Bioinformatics 26, 536–543.10.1093/bioinformatics/btp704
    • (2010) Bioinformatics , vol.26 , pp. 536-543
    • Tepper, N.1    Shlomi, T.2
  • 66
    • 58749106454 scopus 로고    scopus 로고
    • Ensemble modeling of metabolic networks
    • Tran L. M. Rizk M. L. Liao J. C. (2008). Ensemble modeling of metabolic networks. Biophys. J. 95, 5606–5617.10.1529/biophysj.108.135442
    • (2008) Biophys. J , vol.95 , pp. 5606-5617
    • Tran, L.M.1    Rizk, M.L.2    Liao, J.C.3
  • 68
    • 84899649367 scopus 로고    scopus 로고
    • Discovery of novel allosteric effectors based on the predicted allosteric sites for Escherichia coli D-3-phosphoglycerate dehydrogenase
    • Wang Q. Qi Y. Yin N. Lai L. (2014). Discovery of novel allosteric effectors based on the predicted allosteric sites for Escherichia coli D-3-phosphoglycerate dehydrogenase. PLoS ONE 9:e94829.10.1371/journal.pone.0094829
    • (2014) PLoS ONE , vol.9 , pp. e94829
    • Wang, Q.1    Qi, Y.2    Yin, N.3    Lai, L.4
  • 69
    • 37349117342 scopus 로고    scopus 로고
    • Improved succinic acid production in the anaerobic culture of an Escherichia coli pflB ldhA double mutant as a result of enhanced anaplerotic activities in the preceding aerobic culture
    • Wu H. Li Z. M. Zhou L. Ye Q. (2007). Improved succinic acid production in the anaerobic culture of an Escherichia coli pflB ldhA double mutant as a result of enhanced anaplerotic activities in the preceding aerobic culture. Appl. Environ. Microbiol. 73, 7837–7843.10.1128/AEM.01546-07
    • (2007) Appl. Environ. Microbiol , vol.73 , pp. 7837-7843
    • Wu, H.1    Li, Z.M.2    Zhou, L.3    Ye, Q.4
  • 70
    • 80052021573 scopus 로고    scopus 로고
    • Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA
    • Xu P. Ranganathan S. Fowler Z. L. Maranas C. D. Koffas M. A. (2011). Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA. Metab. Eng. 13, 578–587.10.1016/j.ymben.2011.06.008
    • (2011) Metab. Eng , vol.13 , pp. 578-587
    • Xu, P.1    Ranganathan, S.2    Fowler, Z.L.3    Maranas, C.D.4    Koffas, M.A.5
  • 71
    • 73949115238 scopus 로고    scopus 로고
    • Metabolic evolution of energy-conserving pathways for succinate production in Escherichia coli
    • Zhang X. Jantama K. Moore J. C. Jarboe L. R. Shanmugam K. T. Ingram L. O. (2009). Metabolic evolution of energy-conserving pathways for succinate production in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 106, 20180–20185.10.1073/pnas.0905396106
    • (2009) Proc. Natl. Acad. Sci. U.S.A , vol.106 , pp. 20180-20185
    • Zhang, X.1    Jantama, K.2    Moore, J.C.3    Jarboe, L.R.4    Shanmugam, K.T.5    Ingram, L.O.6
  • 72
    • 84875981840 scopus 로고    scopus 로고
    • Engineering of acetate recycling and citrate synthase to improve aerobic succinate production in Corynebacterium glutamicum
    • Zhu N. Xia H. Wang Z. Zhao X. Chen T. (2013). Engineering of acetate recycling and citrate synthase to improve aerobic succinate production in Corynebacterium glutamicum. PLoS ONE 8:e60659.10.1371/journal.pone.0060659
    • (2013) PLoS ONE , vol.8 , pp. e60659
    • Zhu, N.1    Xia, H.2    Wang, Z.3    Zhao, X.4    Chen, T.5
  • 73
    • 84869010163 scopus 로고    scopus 로고
    • Mathematical optimization applications in metabolic networks
    • Zomorrodi A. R. Suthers P. F. Ranganathan S. Maranas C. D. (2012). Mathematical optimization applications in metabolic networks. Metab. Eng. 14, 672–686.10.1016/j.ymben.2012.09.005
    • (2012) Metab. Eng , vol.14 , pp. 672-686
    • Zomorrodi, A.R.1    Suthers, P.F.2    Ranganathan, S.3    Maranas, C.D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.