-
1
-
-
84900827538
-
Kinetic models in industrial biotechnology – improving cell factory performance
-
Almquist J. Cvijovic M. Hatzimanikatis V. Nielsen J. Jirstrand M. (2014). Kinetic models in industrial biotechnology – improving cell factory performance. Metab. Eng. 24, 38–60.10.1016/j.ymben.2014.03.007
-
(2014)
Metab. Eng
, vol.24
, pp. 38-60
-
-
Almquist, J.1
Cvijovic, M.2
Hatzimanikatis, V.3
Nielsen, J.4
Jirstrand, M.5
-
2
-
-
84884923719
-
On the use of metabolic control analysis in the optimization of cyanobacterial biosolar cell factories
-
Angermayr S. A. Hellingwerf K. J. (2013). On the use of metabolic control analysis in the optimization of cyanobacterial biosolar cell factories. J. Phys. Chem. B 117, 11169–11175.10.1021/jp4013152
-
(2013)
J. Phys. Chem. B
, vol.117
, pp. 11169-11175
-
-
Angermayr, S.A.1
Hellingwerf, K.J.2
-
4
-
-
0242487787
-
Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization
-
Burgard A. P. Pharkya P. Maranas C. D. (2003). Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng. 84, 647–657.10.1002/bit.10803
-
(2003)
Biotechnol. Bioeng
, vol.84
, pp. 647-657
-
-
Burgard, A.P.1
Pharkya, P.2
Maranas, C.D.3
-
5
-
-
80051664276
-
Metabolically engineered Escherichia coli for biotechnological production of four-carbon 1,4-dicarboxylic acids
-
Cao Y. Cao Y. Lin X. (2011). Metabolically engineered Escherichia coli for biotechnological production of four-carbon 1,4-dicarboxylic acids. J. Ind. Microbiol. Biotechnol. 38, 649–656.10.1007/s10295-010-0913-4
-
(2011)
J. Ind. Microbiol. Biotechnol
, vol.38
, pp. 649-656
-
-
Cao, Y.1
Cao, Y.2
Lin, X.3
-
6
-
-
84893719710
-
Fermentative succinate production: an emerging technology to replace the traditional petrochemical processes
-
Cao Y. Zhang R. Sun C. Cheng T. Liu Y. Xian M. (2013). Fermentative succinate production: an emerging technology to replace the traditional petrochemical processes. Biomed Res. Int. 2013, 723412.10.1155/2013/723412
-
(2013)
Biomed Res. Int
, vol.2013
, pp. 723412
-
-
Cao, Y.1
Zhang, R.2
Sun, C.3
Cheng, T.4
Liu, Y.5
Xian, M.6
-
7
-
-
33747148392
-
Transcriptional regulation of the fad regulon genes of Escherichia coli by ArcA
-
Cho B. K. Knight E. M. Palsson B. O. (2006). Transcriptional regulation of the fad regulon genes of Escherichia coli by ArcA. Microbiology 152, 2207–2219.10.1099/mic.0.28912-0
-
(2006)
Microbiology
, vol.152
, pp. 2207-2219
-
-
Cho, B.K.1
Knight, E.M.2
Palsson, B.O.3
-
8
-
-
80052441741
-
Re-examination of metabolic fluxes in Escherichia coli during anaerobic fermentation of glucose using C-13 labeling experiments and 2-dimensional nuclear magnetic resonance (NMR) spectroscopy
-
Choudhary M. K. Yoon J. M. Gonzalez R. Shanks J. V. (2011). Re-examination of metabolic fluxes in Escherichia coli during anaerobic fermentation of glucose using C-13 labeling experiments and 2-dimensional nuclear magnetic resonance (NMR) spectroscopy. Biotechnol. Bioprocess Eng. 16, 419–437.10.1007/s12257-010-0449-5
-
(2011)
Biotechnol. Bioprocess Eng
, vol.16
, pp. 419-437
-
-
Choudhary, M.K.1
Yoon, J.M.2
Gonzalez, R.3
Shanks, J.V.4
-
9
-
-
84895756673
-
k-OptForce: integrating kinetics with flux balance analysis for strain design
-
Chowdhury A. Zomorrodi A. R. Maranas C. D. (2014). k-OptForce: integrating kinetics with flux balance analysis for strain design. PLoS Comput. Biol. 10:e1003487.10.1371/journal.pcbi.1003487
-
(2014)
PLoS Comput. Biol
, vol.10
, pp. e1003487
-
-
Chowdhury, A.1
Zomorrodi, A.R.2
Maranas, C.D.3
-
10
-
-
84877118199
-
Constraint-based strain design using continuous modifications (CosMos) of flux bounds finds new strategies for metabolic engineering
-
a
-
Cotten C. Reed J. L. (2013a). Constraint-based strain design using continuous modifications (CosMos) of flux bounds finds new strategies for metabolic engineering. Biotechnol. J. 8, 595–604.10.1002/biot.201200316
-
(2013)
Biotechnol. J
, vol.8
, pp. 595-604
-
-
Cotten, C.1
Reed, J.L.2
-
11
-
-
84873053978
-
Mechanistic analysis of multi-omics datasets to generate kinetic parameters for constraint-based metabolic models
-
b
-
Cotten C. Reed J. L. (2013b). Mechanistic analysis of multi-omics datasets to generate kinetic parameters for constraint-based metabolic models. BMC Bioinformatics 14:32.10.1186/1471-2105-14-32
-
(2013)
BMC Bioinformatics
, vol.14
, pp. 32
-
-
Cotten, C.1
Reed, J.L.2
-
12
-
-
84862207929
-
Expanding the chemical palate of cells by combining systems biology and metabolic engineering
-
Curran K. A. Alper H. S. (2012). Expanding the chemical palate of cells by combining systems biology and metabolic engineering. Metab. Eng. 14, 289–297.10.1016/j.ymben.2012.04.006
-
(2012)
Metab. Eng
, vol.14
, pp. 289-297
-
-
Curran, K.A.1
Alper, H.S.2
-
13
-
-
0015935290
-
The interaction of phosphoglucomutase with nucleotide inhibitors
-
Duckworth H. W. Barber B. H. Sanwal B. D. (1973). The interaction of phosphoglucomutase with nucleotide inhibitors. J. Biol. Chem. 248, 1431–1435.
-
(1973)
J. Biol. Chem
, vol.248
, pp. 1431-1435
-
-
Duckworth, H.W.1
Barber, B.H.2
Sanwal, B.D.3
-
14
-
-
34347332311
-
A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information
-
Feist A. M. Henry C. S. Reed J. L. Krummenacker M. Joyce A. R. Karp P. D. et al. (2007). A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol. Syst. Biol. 3, 121.10.1038/msb4100155
-
(2007)
Mol. Syst. Biol
, vol.3
, pp. 121
-
-
Feist, A.M.1
Henry, C.S.2
Reed, J.L.3
Krummenacker, M.4
Joyce, A.R.5
Karp, P.D.6
-
15
-
-
84861149640
-
Integrating flux balance analysis into kinetic models to decipher the dynamic metabolism of Shewanella oneidensis MR-1
-
Feng X. Xu Y. Chen Y. Tang Y. J. (2012). Integrating flux balance analysis into kinetic models to decipher the dynamic metabolism of Shewanella oneidensis MR-1. PLoS Comput. Biol. 8:e1002376.10.1371/journal.pcbi.1002376
-
(2012)
PLoS Comput. Biol
, vol.8
, pp. e1002376
-
-
Feng, X.1
Xu, Y.2
Chen, Y.3
Tang, Y.J.4
-
16
-
-
77952643400
-
Integrated stoichiometric, thermodynamic and kinetic modelling of steady state metabolism
-
Fleming R. M. Thiele I. Provan G. Nasheuer H. P. (2010). Integrated stoichiometric, thermodynamic and kinetic modelling of steady state metabolism. J. Theor. Biol. 264, 683–692.10.1016/j.jtbi.2010.02.044
-
(2010)
J. Theor. Biol
, vol.264
, pp. 683-692
-
-
Fleming, R.M.1
Thiele, I.2
Provan, G.3
Nasheuer, H.P.4
-
17
-
-
84877149255
-
SMET: systematic multiple enzyme targeting – a method to rationally design optimal strains for target chemical overproduction
-
Flowers D. Thompson R. A. Birdwell D. Wang T. Trinh C. T. (2013). SMET: systematic multiple enzyme targeting – a method to rationally design optimal strains for target chemical overproduction. Biotechnol. J. 8, 605–618.10.1002/biot.201200233
-
(2013)
Biotechnol. J
, vol.8
, pp. 605-618
-
-
Flowers, D.1
Thompson, R.A.2
Birdwell, D.3
Wang, T.4
Trinh, C.T.5
-
18
-
-
84857881099
-
Contrasting catalytic and allosteric mechanisms for phosphoglycerate dehydrogenases
-
Grant G. A. (2012). Contrasting catalytic and allosteric mechanisms for phosphoglycerate dehydrogenases. Arch. Biochem. Biophys. 519, 175–185.10.1016/j.abb.2011.10.005
-
(2012)
Arch. Biochem. Biophys
, vol.519
, pp. 175-185
-
-
Grant, G.A.1
-
20
-
-
0026740596
-
Substrate synergism and the steady-state kinetic reaction mechanism for EPSP synthase from Escherichia coli
-
Gruys K. J. Walker M. C. Sikorski J. A. (1992). Substrate synergism and the steady-state kinetic reaction mechanism for EPSP synthase from Escherichia coli. Biochemistry 31, 5534–5544.10.1021/bi00139a016
-
(1992)
Biochemistry
, vol.31
, pp. 5534-5544
-
-
Gruys, K.J.1
Walker, M.C.2
Sikorski, J.A.3
-
21
-
-
84879770168
-
Parameter identification of in vivo kinetic models: limitations and challenges
-
Heijnen J. J. Verheijen P. J. (2013). Parameter identification of in vivo kinetic models: limitations and challenges. Biotechnol. J. 8, 768–775.10.1002/biot.201300105
-
(2013)
Biotechnol. J
, vol.8
, pp. 768-775
-
-
Heijnen, J.J.1
Verheijen, P.J.2
-
22
-
-
84864186953
-
Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries
-
Hong K. K. Nielsen J. (2012). Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell. Mol. Life Sci. 69, 2671–2690.10.1007/s00018-012-0945-1
-
(2012)
Cell. Mol. Life Sci
, vol.69
, pp. 2671-2690
-
-
Hong, K.K.1
Nielsen, J.2
-
24
-
-
0032514651
-
Evolution of enzymatic activities in the enolase superfamily: characterization of the (D)-glucarate/galactarate catabolic pathway in Escherichia coli
-
Hubbard B. K. Koch M. Palmer D. R. Babbitt P. C. Gerlt J. A. (1998). Evolution of enzymatic activities in the enolase superfamily: characterization of the (D)-glucarate/galactarate catabolic pathway in Escherichia coli. Biochemistry 37, 14369–14375.10.1021/bi981124f
-
(1998)
Biochemistry
, vol.37
, pp. 14369-14375
-
-
Hubbard, B.K.1
Koch, M.2
Palmer, D.R.3
Babbitt, P.C.4
Gerlt, J.A.5
-
25
-
-
34247612307
-
Multiple high-throughput analyses monitor the response of E. coli to perturbations
-
Ishii N. Nakahigashi K. Baba T. Robert M. Soga T. Kanai A. et al. (2007). Multiple high-throughput analyses monitor the response of E. coli to perturbations. Science 316, 593–597.10.1126/science.1132067
-
(2007)
Science
, vol.316
, pp. 593-597
-
-
Ishii, N.1
Nakahigashi, K.2
Baba, T.3
Robert, M.4
Soga, T.5
Kanai, A.6
-
26
-
-
77049084742
-
Mass action stoichiometric simulation models: incorporating kinetics and regulation into stoichiometric models
-
Jamshidi N. Palsson B. O. (2010). Mass action stoichiometric simulation models: incorporating kinetics and regulation into stoichiometric models. Biophys. J. 98, 175–185.10.1016/j.bpj.2009.09.064
-
(2010)
Biophys. J
, vol.98
, pp. 175-185
-
-
Jamshidi, N.1
Palsson, B.O.2
-
27
-
-
84902133886
-
Metabolic modelling in the development of cell factories by synthetic biology
-
Jouhten P. (2012). Metabolic modelling in the development of cell factories by synthetic biology. Comput. Struct. Biotechnol. J. 3, 9.10.5936/csbj.201210009
-
(2012)
Comput. Struct. Biotechnol. J
, vol.3
, pp. 9
-
-
Jouhten, P.1
-
28
-
-
84904317199
-
A kinetic model of Escherichia coli core metabolism satisfying multiple sets of mutant flux data
-
Khodayari A. Zomorrodi A. R. Liao J. C. Maranas C. D. (2014). A kinetic model of Escherichia coli core metabolism satisfying multiple sets of mutant flux data. Metab. Eng. 25C, 50–62.10.1016/j.ymben.2014.05.014
-
(2014)
Metab. Eng
, vol.25C
, pp. 50-62
-
-
Khodayari, A.1
Zomorrodi, A.R.2
Liao, J.C.3
Maranas, C.D.4
-
29
-
-
77951552860
-
OptORF: optimal metabolic and regulatory perturbations for metabolic engineering of microbial strains
-
Kim J. Reed J. L. (2010). OptORF: optimal metabolic and regulatory perturbations for metabolic engineering of microbial strains. BMC Syst. Biol. 4:53.10.1186/1752-0509-4-53
-
(2010)
BMC Syst. Biol
, vol.4
, pp. 53
-
-
Kim, J.1
Reed, J.L.2
-
30
-
-
80052573483
-
Large-scale bi-level strain design approaches and mixed-integer programming solution techniques
-
Kim J. Reed J. L. Maravelias C. T. (2011). Large-scale bi-level strain design approaches and mixed-integer programming solution techniques. PLoS ONE 6:e24162.10.1371/journal.pone.0024162
-
(2011)
PLoS ONE
, vol.6
, pp. e24162
-
-
Kim, J.1
Reed, J.L.2
Maravelias, C.T.3
-
31
-
-
84887626141
-
Somewhat in control – the role of transcription in regulating microbial metabolic fluxes
-
Kochanowski K. Sauer U. Chubukov V. (2013). Somewhat in control – the role of transcription in regulating microbial metabolic fluxes. Curr. Opin. Biotechnol. 24, 987–993.10.1016/j.copbio.2013.03.014
-
(2013)
Curr. Opin. Biotechnol
, vol.24
, pp. 987-993
-
-
Kochanowski, K.1
Sauer, U.2
Chubukov, V.3
-
32
-
-
84860728385
-
Metabolic engineering and flux analysis of Corynebacterium glutamicum for L-serine production
-
Lai S. Zhang Y. Liu S. Liang Y. Shang X. Chai X. et al. (2012). Metabolic engineering and flux analysis of Corynebacterium glutamicum for L-serine production. Sci. China Life Sci. 55, 283–290.10.1007/s11427-012-4304-0
-
(2012)
Sci. China Life Sci
, vol.55
, pp. 283-290
-
-
Lai, S.1
Zhang, Y.2
Liu, S.3
Liang, Y.4
Shang, X.5
Chai, X.6
-
33
-
-
84861440312
-
Systems metabolic engineering of microorganisms for natural and non-natural chemicals
-
Lee J. W. Na D. Park J. M. Lee J. Choi S. Lee S. Y. (2012). Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat. Chem. Biol. 8, 536–546.10.1038/nchembio.970
-
(2012)
Nat. Chem. Biol
, vol.8
, pp. 536-546
-
-
Lee, J.W.1
Na, D.2
Park, J.M.3
Lee, J.4
Choi, S.5
Lee, S.Y.6
-
34
-
-
36849002434
-
Systems metabolic engineering of Escherichia coli for L-threonine production
-
Lee K. H. Park J. H. Kim T. Y. Kim H. U. Lee S. Y. (2007). Systems metabolic engineering of Escherichia coli for L-threonine production. Mol. Syst. Biol. 3, 149.10.1038/msb4100196
-
(2007)
Mol. Syst. Biol
, vol.3
, pp. 149
-
-
Lee, K.H.1
Park, J.H.2
Kim, T.Y.3
Kim, H.U.4
Lee, S.Y.5
-
35
-
-
29144484729
-
Metabolic engineering of Escherichia coli for enhanced production of succinic acid, based on genome comparison and in silico gene knockout simulation
-
Lee S. J. Lee D. Y. Kim T. Y. Kim B. H. Lee J. Lee S. Y. (2005). Metabolic engineering of Escherichia coli for enhanced production of succinic acid, based on genome comparison and in silico gene knockout simulation. Appl. Environ. Microbiol. 71, 7880–7887.10.1128/AEM.71.12.7880-7887.2005
-
(2005)
Appl. Environ. Microbiol
, vol.71
, pp. 7880-7887
-
-
Lee, S.J.1
Lee, D.Y.2
Kim, T.Y.3
Kim, B.H.4
Lee, J.5
Lee, S.Y.6
-
36
-
-
33745282141
-
Effect of sucA or sucC gene knockout on the metabolism in Escherichia coli based on gene expressions, enzyme activities, intracellular metabolite concentrations and metabolic fluxes by 13C-labeling experiments
-
Li M. Ho P. Y. Yao S. Shimizu K. (2006). Effect of sucA or sucC gene knockout on the metabolism in Escherichia coli based on gene expressions, enzyme activities, intracellular metabolite concentrations and metabolic fluxes by 13C-labeling experiments. Biochem. Eng. J. 30, 289–296.10.1016/j.bej.2006.05.011
-
(2006)
Biochem. Eng. J
, vol.30
, pp. 289-296
-
-
Li, M.1
Ho, P.Y.2
Yao, S.3
Shimizu, K.4
-
37
-
-
84864389492
-
Construction of Escherichia coli strains producing L-serine from glucose
-
Li Y. Chen G. K. Tong X. W. Zhang H. T. Liu X. G. Liu Y. H. et al. (2012). Construction of Escherichia coli strains producing L-serine from glucose. Biotechnol. Lett. 34, 1525–1530.10.1007/s10529-012-0937-0
-
(2012)
Biotechnol. Lett
, vol.34
, pp. 1525-1530
-
-
Li, Y.1
Chen, G.K.2
Tong, X.W.3
Zhang, H.T.4
Liu, X.G.5
Liu, Y.H.6
-
38
-
-
29144444584
-
Chemostat culture characterization of Escherichia coli mutant strains metabolically engineered for aerobic succinate production: a study of the modified metabolic network based on metabolite profile, enzyme activity, and gene expression profile
-
a
-
Lin H. Bennett G. N. San K. Y. (2005a). Chemostat culture characterization of Escherichia coli mutant strains metabolically engineered for aerobic succinate production: a study of the modified metabolic network based on metabolite profile, enzyme activity, and gene expression profile. Metab. Eng. 7, 337–352.10.1016/j.ymben.2005.06.002
-
(2005)
Metab. Eng
, vol.7
, pp. 337-352
-
-
Lin, H.1
Bennett, G.N.2
San, K.Y.3
-
39
-
-
19744367895
-
Fed-batch culture of a metabolically engineered Escherichia coli strain designed for high-level succinate production and yield under aerobic conditions
-
b
-
Lin H. Bennett G. N. San K. Y. (2005b). Fed-batch culture of a metabolically engineered Escherichia coli strain designed for high-level succinate production and yield under aerobic conditions. Biotechnol. Bioeng. 90, 775–779.10.1002/bit.20458
-
(2005)
Biotechnol. Bioeng
, vol.90
, pp. 775-779
-
-
Lin, H.1
Bennett, G.N.2
San, K.Y.3
-
40
-
-
83655197763
-
Efficient aerobic succinate production from glucose in minimal medium with Corynebacterium glutamicum
-
Litsanov B. Kabus A. Brocker M. Bott M. (2012). Efficient aerobic succinate production from glucose in minimal medium with Corynebacterium glutamicum. Microb. Biotechnol. 5, 116–128.10.1111/j.1751-7915.2011.00310.x
-
(2012)
Microb. Biotechnol
, vol.5
, pp. 116-128
-
-
Litsanov, B.1
Kabus, A.2
Brocker, M.3
Bott, M.4
-
41
-
-
0024286929
-
Purification and regulatory properties of isocitrate lyase from Escherichia coli ML308
-
MacKintosh C. Nimmo H. G. (1988). Purification and regulatory properties of isocitrate lyase from Escherichia coli ML308. Biochem. J. 250, 25–31.
-
(1988)
Biochem. J
, vol.250
, pp. 25-31
-
-
MacKintosh, C.1
Nimmo, H.G.2
-
42
-
-
0036708443
-
Dynamic flux balance analysis of diauxic growth in Escherichia coli
-
Mahadevan R. Edwards J. S. Doyle F. J. III (2002). Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys. J. 83, 1331–1340.10.1016/S0006-3495(02)73903-9
-
(2002)
Biophys. J
, vol.83
, pp. 1331-1340
-
-
Mahadevan, R.1
Edwards, J.S.2
Doyle, F.J.3
-
43
-
-
84867003199
-
An integrated computational environment for elementary modes analysis of biochemical networks
-
Maia P. Vilaca P. Rocha I. Pont M. Tomb J. F. Rocha M. (2012). An integrated computational environment for elementary modes analysis of biochemical networks. Int. J. Data Min. Bioinform. 6, 382–395.10.1504/IJDMB.2012.049292
-
(2012)
Int. J. Data Min. Bioinform
, vol.6
, pp. 382-395
-
-
Maia, P.1
Vilaca, P.2
Rocha, I.3
Pont, M.4
Tomb, J.F.5
Rocha, M.6
-
44
-
-
0029930612
-
Enhanced production of succinic acid by overexpression of phosphoenolpyruvate carboxylase in Escherichia coli
-
Millard C. S. Chao Y. P. Liao J. C. Donnelly M. I. (1996). Enhanced production of succinic acid by overexpression of phosphoenolpyruvate carboxylase in Escherichia coli. Appl. Environ. Microbiol. 62, 1808–1810.
-
(1996)
Appl. Environ. Microbiol
, vol.62
, pp. 1808-1810
-
-
Millard, C.S.1
Chao, Y.P.2
Liao, J.C.3
Donnelly, M.I.4
-
45
-
-
70449581223
-
The elucidation of metabolic pathways and their improvements using stable optimization of large-scale kinetic models of cellular systems
-
Nikolaev E. V. (2010). The elucidation of metabolic pathways and their improvements using stable optimization of large-scale kinetic models of cellular systems. Metab. Eng. 12, 26–38.10.1016/j.ymben.2009.08.010
-
(2010)
Metab. Eng
, vol.12
, pp. 26-38
-
-
Nikolaev, E.V.1
-
46
-
-
33846621634
-
Role of phosphoenolpyruvate in the NADP-isocitrate dehydrogenase and isocitrate lyase reaction in Escherichia coli
-
Ogawa T. Murakami K. Mori H. Ishii N. Tomita M. Yoshin M. (2007). Role of phosphoenolpyruvate in the NADP-isocitrate dehydrogenase and isocitrate lyase reaction in Escherichia coli. J. Bacteriol. 189, 1176–1178.10.1128/JB.01628-06
-
(2007)
J. Bacteriol
, vol.189
, pp. 1176-1178
-
-
Ogawa, T.1
Murakami, K.2
Mori, H.3
Ishii, N.4
Tomita, M.5
Yoshin, M.6
-
47
-
-
85117299974
-
-
Microorganisms and methods for the production of ethylene glycol. US 13/086,295
-
Osterhout R. E. Pharkya P. Burgard A. P. (2011). Microorganisms and methods for the production of ethylene glycol. US 13/086,295.
-
(2011)
-
-
Osterhout, R.E.1
Pharkya, P.2
Burgard, A.P.3
-
48
-
-
34249727710
-
Transition of Escherichia coli from aerobic to micro-aerobic conditions involves fast and slow reacting regulatory components
-
Partridge J. D. Sanguinetti G. Dibden D. P. Roberts R. E. Poole R. K. Green J. (2007). Transition of Escherichia coli from aerobic to micro-aerobic conditions involves fast and slow reacting regulatory components. J. Biol. Chem. 282, 11230–11237.10.1074/jbc.M700728200
-
(2007)
J. Biol. Chem
, vol.282
, pp. 11230-11237
-
-
Partridge, J.D.1
Sanguinetti, G.2
Dibden, D.P.3
Roberts, R.E.4
Poole, R.K.5
Green, J.6
-
49
-
-
33748769255
-
Escherichia coli transcriptome dynamics during the transition from anaerobic to aerobic conditions
-
Partridge J. D. Scott C. Tang Y. Poole R. K. Green J. (2006). Escherichia coli transcriptome dynamics during the transition from anaerobic to aerobic conditions. J. Biol. Chem. 281, 27806–27815.10.1074/jbc.M603450200
-
(2006)
J. Biol. Chem
, vol.281
, pp. 27806-27815
-
-
Partridge, J.D.1
Scott, C.2
Tang, Y.3
Poole, R.K.4
Green, J.5
-
50
-
-
17644369246
-
Impact of global transcriptional regulation by ArcA, ArcB, Cra, Crp, Cya, Fnr, and Mlc on glucose catabolism in Escherichia coli
-
Perrenoud A. Sauer U. (2005). Impact of global transcriptional regulation by ArcA, ArcB, Cra, Crp, Cya, Fnr, and Mlc on glucose catabolism in Escherichia coli. J. Bacteriol. 187, 3171–3179.10.1128/JB.187.9.3171-3179.2005
-
(2005)
J. Bacteriol
, vol.187
, pp. 3171-3179
-
-
Perrenoud, A.1
Sauer, U.2
-
51
-
-
8744224466
-
OptStrain: a computational framework for redesign of microbial production systems
-
Pharkya P. Burgard A. P. Maranas C. D. (2004). OptStrain: a computational framework for redesign of microbial production systems. Genome Res. 14, 2367–2376.10.1101/gr.2872004
-
(2004)
Genome Res
, vol.14
, pp. 2367-2376
-
-
Pharkya, P.1
Burgard, A.P.2
Maranas, C.D.3
-
52
-
-
77954590959
-
OptForce: an optimization procedure for identifying all genetic manipulations leading to targeted overproductions
-
Ranganathan S. Suthers P. F. Maranas C. D. (2010). OptForce: an optimization procedure for identifying all genetic manipulations leading to targeted overproductions. PLoS Comput. Biol. 6:e1000744.10.1371/journal.pcbi.1000744
-
(2010)
PLoS Comput. Biol
, vol.6
, pp. e1000744
-
-
Ranganathan, S.1
Suthers, P.F.2
Maranas, C.D.3
-
54
-
-
0000318768
-
BARON: a general purpose global optimization software package
-
Sahinidis N. V. (1996). BARON: a general purpose global optimization software package. J. Global Optim. 8, 201–205.10.1007/BF00138693
-
(1996)
J. Global Optim
, vol.8
, pp. 201-205
-
-
Sahinidis, N.V.1
-
55
-
-
0043032584
-
Global gene expression profiling in Escherichia coli K12. The effects of oxygen availability and FNR
-
Salmon K. Hung S. P. Mekjian K. Baldi P. Hatfield G. W. Gunsalus R. P. (2003). Global gene expression profiling in Escherichia coli K12. The effects of oxygen availability and FNR. J. Biol. Chem. 278, 29837–29855.10.1074/jbc.M213060200
-
(2003)
J. Biol. Chem
, vol.278
, pp. 29837-29855
-
-
Salmon, K.1
Hung, S.P.2
Mekjian, K.3
Baldi, P.4
Hatfield, G.W.5
Gunsalus, R.P.6
-
56
-
-
17644381300
-
Global gene expression profiling in Escherichia coli K12: effects of oxygen availability and ArcA
-
Salmon K. A. Hung S. P. Steffen N. R. Krupp R. Baldi P. Hatfield G. W. et al. (2005). Global gene expression profiling in Escherichia coli K12: effects of oxygen availability and ArcA. J. Biol. Chem. 280, 15084–15096.10.1074/jbc.M414030200
-
(2005)
J. Biol. Chem
, vol.280
, pp. 15084-15096
-
-
Salmon, K.A.1
Hung, S.P.2
Steffen, N.R.3
Krupp, R.4
Baldi, P.5
Hatfield, G.W.6
-
57
-
-
16444375254
-
Efficient succinic acid production from glucose through overexpression of pyruvate carboxylase in an Escherichia coli alcohol dehydrogenase and lactate dehydrogenase mutant
-
Sanchez A. M. Bennett G. N. San K. Y. (2005). Efficient succinic acid production from glucose through overexpression of pyruvate carboxylase in an Escherichia coli alcohol dehydrogenase and lactate dehydrogenase mutant. Biotechnol. Prog. 21, 358–365.10.1021/bp049676e
-
(2005)
Biotechnol. Prog
, vol.21
, pp. 358-365
-
-
Sanchez, A.M.1
Bennett, G.N.2
San, K.Y.3
-
59
-
-
0037069467
-
Analysis of optimality in natural and perturbed metabolic networks
-
Segre D. Vitkup D. Church G. M. (2002). Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl. Acad. Sci. U.S.A. 99, 15112–15117.10.1073/pnas.232349399
-
(2002)
Proc. Natl. Acad. Sci. U.S.A
, vol.99
, pp. 15112-15117
-
-
Segre, D.1
Vitkup, D.2
Church, G.M.3
-
61
-
-
84857995962
-
Prediction of dynamic behavior of mutant strains from limited wild-type data
-
Song H. S. Ramkrishna D. (2012). Prediction of dynamic behavior of mutant strains from limited wild-type data. Metab. Eng. 14, 69–80.10.1016/j.ymben.2012.02.003
-
(2012)
Metab. Eng
, vol.14
, pp. 69-80
-
-
Song, H.S.1
Ramkrishna, D.2
-
62
-
-
0028862915
-
Transaldolase B of Escherichia coli K-12: cloning of its gene, talB, and characterization of the enzyme from recombinant strains
-
Sprenger G. A. Schorken U. Sprenger G. Sahm H. (1995). Transaldolase B of Escherichia coli K-12: cloning of its gene, talB, and characterization of the enzyme from recombinant strains. J. Bacteriol. 177, 5930–5936.
-
(1995)
J. Bacteriol
, vol.177
, pp. 5930-5936
-
-
Sprenger, G.A.1
Schorken, U.2
Sprenger, G.3
Sahm, H.4
-
63
-
-
84857702241
-
Metabolic ensemble modeling for strain engineers
-
Tan Y. Liao J. C. (2012). Metabolic ensemble modeling for strain engineers. Biotechnol. J. 7, 343–353.10.1002/biot.201100186
-
(2012)
Biotechnol. J
, vol.7
, pp. 343-353
-
-
Tan, Y.1
Liao, J.C.2
-
64
-
-
78650571311
-
Reducing the allowable kinetic space by constructing ensemble of dynamic models with the same steady-state flux
-
Tan Y. Rivera J. G. Contador C. A. Asenjo J. A. Liao J. C. (2011). Reducing the allowable kinetic space by constructing ensemble of dynamic models with the same steady-state flux. Metab. Eng. 13, 60–75.10.1016/j.ymben.2010.11.001
-
(2011)
Metab. Eng
, vol.13
, pp. 60-75
-
-
Tan, Y.1
Rivera, J.G.2
Contador, C.A.3
Asenjo, J.A.4
Liao, J.C.5
-
65
-
-
77949495880
-
Predicting metabolic engineering knockout strategies for chemical production: accounting for competing pathways
-
Tepper N. Shlomi T. (2010). Predicting metabolic engineering knockout strategies for chemical production: accounting for competing pathways. Bioinformatics 26, 536–543.10.1093/bioinformatics/btp704
-
(2010)
Bioinformatics
, vol.26
, pp. 536-543
-
-
Tepper, N.1
Shlomi, T.2
-
66
-
-
58749106454
-
Ensemble modeling of metabolic networks
-
Tran L. M. Rizk M. L. Liao J. C. (2008). Ensemble modeling of metabolic networks. Biophys. J. 95, 5606–5617.10.1529/biophysj.108.135442
-
(2008)
Biophys. J
, vol.95
, pp. 5606-5617
-
-
Tran, L.M.1
Rizk, M.L.2
Liao, J.C.3
-
68
-
-
84899649367
-
Discovery of novel allosteric effectors based on the predicted allosteric sites for Escherichia coli D-3-phosphoglycerate dehydrogenase
-
Wang Q. Qi Y. Yin N. Lai L. (2014). Discovery of novel allosteric effectors based on the predicted allosteric sites for Escherichia coli D-3-phosphoglycerate dehydrogenase. PLoS ONE 9:e94829.10.1371/journal.pone.0094829
-
(2014)
PLoS ONE
, vol.9
, pp. e94829
-
-
Wang, Q.1
Qi, Y.2
Yin, N.3
Lai, L.4
-
69
-
-
37349117342
-
Improved succinic acid production in the anaerobic culture of an Escherichia coli pflB ldhA double mutant as a result of enhanced anaplerotic activities in the preceding aerobic culture
-
Wu H. Li Z. M. Zhou L. Ye Q. (2007). Improved succinic acid production in the anaerobic culture of an Escherichia coli pflB ldhA double mutant as a result of enhanced anaplerotic activities in the preceding aerobic culture. Appl. Environ. Microbiol. 73, 7837–7843.10.1128/AEM.01546-07
-
(2007)
Appl. Environ. Microbiol
, vol.73
, pp. 7837-7843
-
-
Wu, H.1
Li, Z.M.2
Zhou, L.3
Ye, Q.4
-
70
-
-
80052021573
-
Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA
-
Xu P. Ranganathan S. Fowler Z. L. Maranas C. D. Koffas M. A. (2011). Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA. Metab. Eng. 13, 578–587.10.1016/j.ymben.2011.06.008
-
(2011)
Metab. Eng
, vol.13
, pp. 578-587
-
-
Xu, P.1
Ranganathan, S.2
Fowler, Z.L.3
Maranas, C.D.4
Koffas, M.A.5
-
72
-
-
84875981840
-
Engineering of acetate recycling and citrate synthase to improve aerobic succinate production in Corynebacterium glutamicum
-
Zhu N. Xia H. Wang Z. Zhao X. Chen T. (2013). Engineering of acetate recycling and citrate synthase to improve aerobic succinate production in Corynebacterium glutamicum. PLoS ONE 8:e60659.10.1371/journal.pone.0060659
-
(2013)
PLoS ONE
, vol.8
, pp. e60659
-
-
Zhu, N.1
Xia, H.2
Wang, Z.3
Zhao, X.4
Chen, T.5
-
73
-
-
84869010163
-
Mathematical optimization applications in metabolic networks
-
Zomorrodi A. R. Suthers P. F. Ranganathan S. Maranas C. D. (2012). Mathematical optimization applications in metabolic networks. Metab. Eng. 14, 672–686.10.1016/j.ymben.2012.09.005
-
(2012)
Metab. Eng
, vol.14
, pp. 672-686
-
-
Zomorrodi, A.R.1
Suthers, P.F.2
Ranganathan, S.3
Maranas, C.D.4
|