메뉴 건너뛰기




Volumn 25, Issue , 2014, Pages 50-62

A kinetic model of Escherichia coli core metabolism satisfying multiple sets of mutant flux data

Author keywords

Ensemble modeling; Kinetic modeling; Metabolic network

Indexed keywords

BIOMOLECULES; ESCHERICHIA COLI; FORECASTING; KINETIC PARAMETERS; KINETIC THEORY; METABOLITES; PARAMETERIZATION; PHYSIOLOGY; STATISTICAL METHODS;

EID: 84904317199     PISSN: 10967176     EISSN: 10967184     Source Type: Journal    
DOI: 10.1016/j.ymben.2014.05.014     Document Type: Article
Times cited : (133)

References (87)
  • 1
    • 1542265814 scopus 로고    scopus 로고
    • Metabolic flux analysis of pykF gene knockout Escherichia coli based on 13C-labeling experiments together with measurements of enzyme activities and intracellular metabolite concentrations
    • Al Zaid Siddiquee K., Arauzo-Bravo M.J., Shimizu K. Metabolic flux analysis of pykF gene knockout Escherichia coli based on 13C-labeling experiments together with measurements of enzyme activities and intracellular metabolite concentrations. Appl. Microbiol. Biotechnol. 2004, 63(4):407-417.
    • (2004) Appl. Microbiol. Biotechnol. , vol.63 , Issue.4 , pp. 407-417
    • Al Zaid Siddiquee, K.1    Arauzo-Bravo, M.J.2    Shimizu, K.3
  • 2
    • 1542288938 scopus 로고    scopus 로고
    • Global organization of metabolic fluxes in the bacterium Escherichia coli
    • Almaas E., Kovacs B., Vicsek T., Oltvai Z.N., Barabasi A.L. Global organization of metabolic fluxes in the bacterium Escherichia coli. Nature 2004, 427(6977):839-843.
    • (2004) Nature , vol.427 , Issue.6977 , pp. 839-843
    • Almaas, E.1    Kovacs, B.2    Vicsek, T.3    Oltvai, Z.N.4    Barabasi, A.L.5
  • 4
    • 77949475400 scopus 로고    scopus 로고
    • An iterative identification procedure for dynamic modeling of biochemical networks
    • Balsa-Canto E., Alonso A.A., Banga J.R. An iterative identification procedure for dynamic modeling of biochemical networks. BMC Syst. Biol. 2010, 4:11.
    • (2010) BMC Syst. Biol. , vol.4 , pp. 11
    • Balsa-Canto, E.1    Alonso, A.A.2    Banga, J.R.3
  • 5
    • 0034212551 scopus 로고    scopus 로고
    • Engineering stability in gene networks by autoregulation
    • Becskei A., Serrano L. Engineering stability in gene networks by autoregulation. Nature 2000, 405(6786):590-593.
    • (2000) Nature , vol.405 , Issue.6786 , pp. 590-593
    • Becskei, A.1    Serrano, L.2
  • 6
  • 7
    • 25444467580 scopus 로고    scopus 로고
    • Large-scale 13C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast
    • Blank L.M., Kuepfer L., Sauer U. Large-scale 13C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast. Genome Biol. 2005, 6(6):R49.
    • (2005) Genome Biol. , vol.6 , Issue.6
    • Blank, L.M.1    Kuepfer, L.2    Sauer, U.3
  • 8
    • 84883800631 scopus 로고    scopus 로고
    • Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints
    • Chakrabarti A., Miskovic L., Soh K.C., Hatzimanikatis V. Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints. Biotechnol. J. 2013, 8(9):1043-1057.
    • (2013) Biotechnol. J. , vol.8 , Issue.9 , pp. 1043-1057
    • Chakrabarti, A.1    Miskovic, L.2    Soh, K.C.3    Hatzimanikatis, V.4
  • 10
    • 77951844002 scopus 로고    scopus 로고
    • A kinetic model describes metabolic response to perturbations and distribution of flux control in the benzenoid network of Petunia hybrida
    • Colon A.M., Sengupta N., Rhodes D., Dudareva N., Morgan J. A kinetic model describes metabolic response to perturbations and distribution of flux control in the benzenoid network of Petunia hybrida. Plant J: Cell Mol. Biol. 2010, 62(1):64-76.
    • (2010) Plant J: Cell Mol. Biol. , vol.62 , Issue.1 , pp. 64-76
    • Colon, A.M.1    Sengupta, N.2    Rhodes, D.3    Dudareva, N.4    Morgan, J.5
  • 11
    • 68049144661 scopus 로고    scopus 로고
    • Ensemble modeling for strain development of L-lysine-producing Escherichia coli
    • Contador C.A., Rizk M.L., Asenjo J.A., Liao J.C. Ensemble modeling for strain development of L-lysine-producing Escherichia coli. Metab. Eng. 2009, 11(4-5):221-233.
    • (2009) Metab. Eng. , vol.11 , Issue.4-5 , pp. 221-233
    • Contador, C.A.1    Rizk, M.L.2    Asenjo, J.A.3    Liao, J.C.4
  • 13
    • 77952953154 scopus 로고    scopus 로고
    • Hybrid dynamic modeling of Escherichia coli central metabolic network combining Michaelis-Menten and approximate kinetic equations
    • Costa R.S., Machado D., Rocha I., Ferreira E.C. Hybrid dynamic modeling of Escherichia coli central metabolic network combining Michaelis-Menten and approximate kinetic equations. Biosystems 2010, 100(2):150-157.
    • (2010) Biosystems , vol.100 , Issue.2 , pp. 150-157
    • Costa, R.S.1    Machado, D.2    Rocha, I.3    Ferreira, E.C.4
  • 14
    • 0035824029 scopus 로고    scopus 로고
    • Regulation of gene expression in flux balance models of metabolism
    • Covert M.W., Schilling C.H., Palsson B. Regulation of gene expression in flux balance models of metabolism. J. Theor. Biol. 2001, 213(1):73-88.
    • (2001) J. Theor. Biol. , vol.213 , Issue.1 , pp. 73-88
    • Covert, M.W.1    Schilling, C.H.2    Palsson, B.3
  • 15
    • 77951629773 scopus 로고    scopus 로고
    • Ensemble modeling of hepatic fatty acid metabolism with a synthetic glyoxylate shunt
    • Dean J.T., Rizk M.L., Tan Y., Dipple K.M., Liao J.C. Ensemble modeling of hepatic fatty acid metabolism with a synthetic glyoxylate shunt. Biophys. J. 2010, 98(8):1385-1395.
    • (2010) Biophys. J. , vol.98 , Issue.8 , pp. 1385-1395
    • Dean, J.T.1    Rizk, M.L.2    Tan, Y.3    Dipple, K.M.4    Liao, J.C.5
  • 18
    • 21244477594 scopus 로고    scopus 로고
    • K-Cone analysis: determining all candidate values for kinetic parameters on a network scale
    • Famili I., Mahadevan R., Palsson B.O. k-Cone analysis: determining all candidate values for kinetic parameters on a network scale. Biophys. J. 2005, 88(3):1616-1625.
    • (2005) Biophys. J. , vol.88 , Issue.3 , pp. 1616-1625
    • Famili, I.1    Mahadevan, R.2    Palsson, B.O.3
  • 20
    • 54949136572 scopus 로고    scopus 로고
    • System estimation from metabolic time-series data
    • Goel G., Chou I.C., Voit E.O. System estimation from metabolic time-series data. Bioinformatics 2008, 24(21):2505-2511.
    • (2008) Bioinformatics , vol.24 , Issue.21 , pp. 2505-2511
    • Goel, G.1    Chou, I.C.2    Voit, E.O.3
  • 21
    • 36248952170 scopus 로고    scopus 로고
    • The stability and robustness of metabolic states: identifying stabilizing sites in metabolic networks
    • Grimbs S., Selbig J., Bulik S., Holzhutter H.G., Steuer R. The stability and robustness of metabolic states: identifying stabilizing sites in metabolic networks. Mol. Syst. Biol. 2007, 3:146.
    • (2007) Mol. Syst. Biol. , vol.3 , pp. 146
    • Grimbs, S.1    Selbig, J.2    Bulik, S.3    Holzhutter, H.G.4    Steuer, R.5
  • 23
    • 0030141280 scopus 로고    scopus 로고
    • Analysis and design of metabolic reaction networks via mixed-integer linear optimization
    • Hatzimanikatis V., Floudas C.A., Bailey J.E. Analysis and design of metabolic reaction networks via mixed-integer linear optimization. AIChE J. 1996, 42(5):1277-1292.
    • (1996) AIChE J. , vol.42 , Issue.5 , pp. 1277-1292
    • Hatzimanikatis, V.1    Floudas, C.A.2    Bailey, J.E.3
  • 24
    • 0032485838 scopus 로고    scopus 로고
    • Application of mathematical tools for metabolic design of microbial ethanol production
    • Hatzimanikatis V., Emmerling M., Sauer U., Bailey J.E. Application of mathematical tools for metabolic design of microbial ethanol production. Biotechnol. Bioeng. 1998, 58(2-3):154-161.
    • (1998) Biotechnol. Bioeng. , vol.58 , Issue.2-3 , pp. 154-161
    • Hatzimanikatis, V.1    Emmerling, M.2    Sauer, U.3    Bailey, J.E.4
  • 25
    • 25144492110 scopus 로고    scopus 로고
    • Approximative kinetic formats used in metabolic network modeling
    • Heijnen J.J. Approximative kinetic formats used in metabolic network modeling. Biotechnol. Bioeng. 2005, 91(5):534-545.
    • (2005) Biotechnol. Bioeng. , vol.91 , Issue.5 , pp. 534-545
    • Heijnen, J.J.1
  • 26
    • 33847797256 scopus 로고    scopus 로고
    • Thermodynamics-based metabolic flux analysis
    • Henry C.S., Broadbelt L.J., Hatzimanikatis V. Thermodynamics-based metabolic flux analysis. Biophys. J. 2007, 92(5):1792-1805.
    • (2007) Biophys. J. , vol.92 , Issue.5 , pp. 1792-1805
    • Henry, C.S.1    Broadbelt, L.J.2    Hatzimanikatis, V.3
  • 27
    • 84872663560 scopus 로고    scopus 로고
    • A reliable simulator for dynamic flux balance analysis
    • Hoffner K., Harwood S.M., Barton P.I. A reliable simulator for dynamic flux balance analysis. Biotechnol. Bioeng. 2013, 110(3):792-802.
    • (2013) Biotechnol. Bioeng. , vol.110 , Issue.3 , pp. 792-802
    • Hoffner, K.1    Harwood, S.M.2    Barton, P.I.3
  • 31
    • 77049084742 scopus 로고    scopus 로고
    • Mass action stoichiometric simulation models: incorporating kinetics and regulation into stoichiometric models
    • Jamshidi N., Palsson B.O. Mass action stoichiometric simulation models: incorporating kinetics and regulation into stoichiometric models. Biophys. J. 2010, 98(2):175-185.
    • (2010) Biophys. J. , vol.98 , Issue.2 , pp. 175-185
    • Jamshidi, N.1    Palsson, B.O.2
  • 32
    • 84875090763 scopus 로고    scopus 로고
    • Ensemble kinetic modeling of metabolic networks from dynamic metabolic profiles
    • Jia G., Stephanopoulos G., Gunawan R. Ensemble kinetic modeling of metabolic networks from dynamic metabolic profiles. Metabolites 2012, 2(4):891-912.
    • (2012) Metabolites , vol.2 , Issue.4 , pp. 891-912
    • Jia, G.1    Stephanopoulos, G.2    Gunawan, R.3
  • 33
    • 84875090763 scopus 로고    scopus 로고
    • Ensemble kinetic modeling of metabolic networks from dynamic metabolic profiles
    • Jia G., Stephanopoulos G.N., Gunawan R. Ensemble kinetic modeling of metabolic networks from dynamic metabolic profiles. Metabolites 2012, 2:891-912.
    • (2012) Metabolites , vol.2 , pp. 891-912
    • Jia, G.1    Stephanopoulos, G.N.2    Gunawan, R.3
  • 34
    • 84902133886 scopus 로고    scopus 로고
    • Metabolic modelling in the development of cell factories by synthetic biology
    • Jouhten P. Metabolic modelling in the development of cell factories by synthetic biology. Comput. Struct. Biotechnol. J. 2012, 3(4):9.
    • (2012) Comput. Struct. Biotechnol. J. , vol.3 , Issue.4 , pp. 9
    • Jouhten, P.1
  • 35
    • 78649975647 scopus 로고    scopus 로고
    • Modeling and simulation of the main metabolism in Escherichia coli and its several single-gene knockout mutants with experimental verification
    • Kadir T.A., Mannan A.A., Kierzek A.M., McFadden J., Shimizu K. Modeling and simulation of the main metabolism in Escherichia coli and its several single-gene knockout mutants with experimental verification. Microb. Cell Factories 2010, 9:88.
    • (2010) Microb. Cell Factories , vol.9 , pp. 88
    • Kadir, T.A.1    Mannan, A.A.2    Kierzek, A.M.3    McFadden, J.4    Shimizu, K.5
  • 37
    • 78649677586 scopus 로고    scopus 로고
    • Environments that induce synthetic microbial ecosystems
    • Klitgord N., Segrè D. Environments that induce synthetic microbial ecosystems. PLoS Comput. Biol. 2010, 6:e1001002.
    • (2010) PLoS Comput. Biol. , vol.6
    • Klitgord, N.1    Segrè, D.2
  • 39
    • 84864795465 scopus 로고    scopus 로고
    • Recent advances in reconstruction and applications of genome-scale metabolic models
    • Kim T.Y., Sohn S.B., Kim Y.B., Kim W.J., Lee S.Y. Recent advances in reconstruction and applications of genome-scale metabolic models. Curr. Opin. Biotechnol. 2012, 23(4):617-623.
    • (2012) Curr. Opin. Biotechnol. , vol.23 , Issue.4 , pp. 617-623
    • Kim, T.Y.1    Sohn, S.B.2    Kim, Y.B.3    Kim, W.J.4    Lee, S.Y.5
  • 41
    • 27244440301 scopus 로고    scopus 로고
    • Biochemical networks with uncertain parameters
    • Liebermeister W., Klipp E. Biochemical networks with uncertain parameters. Syst. Biol. 2005, 152(3):97-107.
    • (2005) Syst. Biol. , vol.152 , Issue.3 , pp. 97-107
    • Liebermeister, W.1    Klipp, E.2
  • 42
    • 33846647495 scopus 로고    scopus 로고
    • Bringing metabolic networks to life: integration of kinetic, metabolic, and proteomic data
    • Liebermeister W., Klipp E. Bringing metabolic networks to life: integration of kinetic, metabolic, and proteomic data. Theor. Biol. Med. Model. 2006, 3:42.
    • (2006) Theor. Biol. Med. Model. , vol.3 , pp. 42
    • Liebermeister, W.1    Klipp, E.2
  • 43
    • 77950368645 scopus 로고    scopus 로고
    • Global sensitivity analysis in dynamic metabolic networks
    • Di Maggio JCDR J., Diaz M.S. Global sensitivity analysis in dynamic metabolic networks. Comput. Chem. Eng. 2009, 34(5):12.
    • (2009) Comput. Chem. Eng. , vol.34 , Issue.5 , pp. 12
    • Di Maggio, J.1    Diaz, M.S.2
  • 44
    • 1642457253 scopus 로고    scopus 로고
    • The effects of alternate optimal solutions in constraint-based genome-scale metabolic models
    • Mahadevan R., Schilling C.H. The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab. Eng. 2003, 5(4):264-276.
    • (2003) Metab. Eng. , vol.5 , Issue.4 , pp. 264-276
    • Mahadevan, R.1    Schilling, C.H.2
  • 45
    • 77955058605 scopus 로고    scopus 로고
    • Production of biofuels and biochemicals: in need of an ORACLE
    • Miskovic L., Hatzimanikatis V. Production of biofuels and biochemicals: in need of an ORACLE. Trends Biotechnol. 2010, 28(8):391-397.
    • (2010) Trends Biotechnol. , vol.28 , Issue.8 , pp. 391-397
    • Miskovic, L.1    Hatzimanikatis, V.2
  • 46
    • 78650218972 scopus 로고    scopus 로고
    • Modeling of uncertainties in biochemical reactions
    • Miskovic L., Hatzimanikatis V. Modeling of uncertainties in biochemical reactions. Biotechnol. Bioeng. 2011, 108(2):413-423.
    • (2011) Biotechnol. Bioeng. , vol.108 , Issue.2 , pp. 413-423
    • Miskovic, L.1    Hatzimanikatis, V.2
  • 47
    • 0242574982 scopus 로고    scopus 로고
    • Parameter estimation in biochemical pathways: a comparison of global optimization methods
    • Moles C.G., Mendes P., Banga J.R. Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Res. 2003, 13(11):2467-2474.
    • (2003) Genome Res. , vol.13 , Issue.11 , pp. 2467-2474
    • Moles, C.G.1    Mendes, P.2    Banga, J.R.3
  • 48
    • 0031018721 scopus 로고    scopus 로고
    • Metabolic control analysis of biochemical pathways based on a thermokinetic description of reaction rates
    • Nielsen J. Metabolic control analysis of biochemical pathways based on a thermokinetic description of reaction rates. Biochem. J. 1997, 321(Pt 1):133-138.
    • (1997) Biochem. J. , vol.321 , Issue.Pt 1 , pp. 133-138
    • Nielsen, J.1
  • 49
    • 84865967872 scopus 로고    scopus 로고
    • Kinetic modelling of central carbon metabolism in Escherichia coli
    • Peskov K., Mogilevskaya E., Demin O. Kinetic modelling of central carbon metabolism in Escherichia coli. FEBS J. 2012, 279(18):3374-3385.
    • (2012) FEBS J. , vol.279 , Issue.18 , pp. 3374-3385
    • Peskov, K.1    Mogilevskaya, E.2    Demin, O.3
  • 50
    • 80052023331 scopus 로고    scopus 로고
    • Steady-state global optimization of metabolic non-linear dynamic models through recasting into power-law canonical models
    • Pozo C., Marin-Sanguino A., Alves R., Guillen-Gosalbez G., Jimenez L., Sorribas A. Steady-state global optimization of metabolic non-linear dynamic models through recasting into power-law canonical models. BMC Syst. Biol. 2011, 5:137.
    • (2011) BMC Syst. Biol. , vol.5 , pp. 137
    • Pozo, C.1    Marin-Sanguino, A.2    Alves, R.3    Guillen-Gosalbez, G.4    Jimenez, L.5    Sorribas, A.6
  • 51
    • 0037406843 scopus 로고    scopus 로고
    • Thirteen years of building constraint-based in silico models of Escherichia coli
    • Reed J.L., Palsson B.O. Thirteen years of building constraint-based in silico models of Escherichia coli. J. Bacteriol. 2003, 185(9):2692-2699.
    • (2003) J. Bacteriol. , vol.185 , Issue.9 , pp. 2692-2699
    • Reed, J.L.1    Palsson, B.O.2
  • 52
    • 70149091494 scopus 로고    scopus 로고
    • Ensemble modeling for aromatic production in Escherichia coli
    • Rizk M.L., Liao J.C. Ensemble modeling for aromatic production in Escherichia coli. PloS One 2009, 4(9):e6903.
    • (2009) PloS One , vol.4 , Issue.9
    • Rizk, M.L.1    Liao, J.C.2
  • 53
    • 70349779362 scopus 로고    scopus 로고
    • Ensemble modeling and related mathematical modeling of metabolic networks
    • Rizk M.L., Liao J.C. Ensemble modeling and related mathematical modeling of metabolic networks. J. Taiwan Inst. Chem. Eng. 2009, 40:595-601.
    • (2009) J. Taiwan Inst. Chem. Eng. , vol.40 , pp. 595-601
    • Rizk, M.L.1    Liao, J.C.2
  • 54
  • 55
    • 77954724818 scopus 로고    scopus 로고
    • Genome-scale metabolic modeling of a clostridial co-culture for consolidated bioprocessing
    • Salimi F., Zhuang K., Mahadevan R. Genome-scale metabolic modeling of a clostridial co-culture for consolidated bioprocessing. Biotechnol. J 2010, 5:726-738.
    • (2010) Biotechnol. J , vol.5 , pp. 726-738
    • Salimi, F.1    Zhuang, K.2    Mahadevan, R.3
  • 56
    • 0014733809 scopus 로고
    • Biochemical systems analysis. 3. Dynamic solutions using a power-law approximation
    • Savageau M.A. Biochemical systems analysis. 3. Dynamic solutions using a power-law approximation. J. Theor. Biol. 1970, 26(2):215-226.
    • (1970) J. Theor. Biol. , vol.26 , Issue.2 , pp. 215-226
    • Savageau, M.A.1
  • 57
    • 65549092780 scopus 로고    scopus 로고
    • Use of randomized sampling for analysis of metabolic networks
    • Schellenberger J., Palsson B.O. Use of randomized sampling for analysis of metabolic networks. J. Biol. Chem. 2009, 284(9):5457-5461.
    • (2009) J. Biol. Chem. , vol.284 , Issue.9 , pp. 5457-5461
    • Schellenberger, J.1    Palsson, B.O.2
  • 58
    • 84876522835 scopus 로고    scopus 로고
    • BRENDA in 2013: integrated reactions, kinetic data, enzyme function data, improved disease classification: new options and contents in BRENDA
    • (Database issue)
    • Schomburg I., Chang A., Placzek S., Sohngen C., Rother M., Lang M., Munaretto C., Ulas S., Stelzer M., Grote A., et al. BRENDA in 2013: integrated reactions, kinetic data, enzyme function data, improved disease classification: new options and contents in BRENDA. Nucleic Acids Res. 2013, 41:D764-772. (Database issue).
    • (2013) Nucleic Acids Res. , vol.41
    • Schomburg, I.1    Chang, A.2    Placzek, S.3    Sohngen, C.4    Rother, M.5    Lang, M.6    Munaretto, C.7    Ulas, S.8    Stelzer, M.9    Grote, A.10
  • 59
    • 84887038430 scopus 로고    scopus 로고
    • Kinetic modelling of phospholipid synthesis in Plasmodium knowlesi unravels crucial steps and relative importance of multiple pathways
    • Sen P., Vial H.J., Radulescu O. Kinetic modelling of phospholipid synthesis in Plasmodium knowlesi unravels crucial steps and relative importance of multiple pathways. BMC Syst. Biol. 2013, 7(1):123.
    • (2013) BMC Syst. Biol. , vol.7 , Issue.1 , pp. 123
    • Sen, P.1    Vial, H.J.2    Radulescu, O.3
  • 60
    • 34247183123 scopus 로고    scopus 로고
    • A genome-scale computational study of the interplay between transcriptional regulation and metabolism
    • Shlomi T., Eisenberg Y., Sharan R., Ruppin E. A genome-scale computational study of the interplay between transcriptional regulation and metabolism. Mol. Syst. Biol. 2007, 3:101.
    • (2007) Mol. Syst. Biol. , vol.3 , pp. 101
    • Shlomi, T.1    Eisenberg, Y.2    Sharan, R.3    Ruppin, E.4
  • 61
    • 84881518999 scopus 로고    scopus 로고
    • Large-scale metabolic models: from reconstruction to differential equations
    • Smallbone K., Mendes P. Large-scale metabolic models: from reconstruction to differential equations. Ind. Biotechnol. 2013, 9(4):6.
    • (2013) Ind. Biotechnol. , vol.9 , Issue.4 , pp. 6
    • Smallbone, K.1    Mendes, P.2
  • 62
    • 35448974147 scopus 로고    scopus 로고
    • Something from nothing: bridging the gap between constraint-based and kinetic modelling
    • Smallbone K., Simeonidis E., Broomhead D.S., Kell D.B. Something from nothing: bridging the gap between constraint-based and kinetic modelling. FEBS J. 2007, 274(21):5576-5585.
    • (2007) FEBS J. , vol.274 , Issue.21 , pp. 5576-5585
    • Smallbone, K.1    Simeonidis, E.2    Broomhead, D.S.3    Kell, D.B.4
  • 65
    • 34547607606 scopus 로고    scopus 로고
    • Cooperativity and saturation in biochemical networks: a saturable formalism using Taylor series approximations
    • Sorribas A., Hernandez-Bermejo B., Vilaprinyo E., Alves R. Cooperativity and saturation in biochemical networks: a saturable formalism using Taylor series approximations. Biotechnol. Bioeng. 2007, 97(5):1259-1277.
    • (2007) Biotechnol. Bioeng. , vol.97 , Issue.5 , pp. 1259-1277
    • Sorribas, A.1    Hernandez-Bermejo, B.2    Vilaprinyo, E.3    Alves, R.4
  • 70
    • 84857702241 scopus 로고    scopus 로고
    • Metabolic ensemble modeling for strain engineers
    • Tan Y., Liao J.C. Metabolic ensemble modeling for strain engineers. Biotechnol. J. 2012, 7(3):343-353.
    • (2012) Biotechnol. J. , vol.7 , Issue.3 , pp. 343-353
    • Tan, Y.1    Liao, J.C.2
  • 72
    • 84904335509 scopus 로고    scopus 로고
    • The Core E. coli Model
    • The Core E. coli Model. http://gcrg.ucsd.edu/Downloads/EcoliCore.
  • 73
    • 0027380246 scopus 로고
    • In vivo analysis of glucose-induced fast changes in yeast adenine nucleotide pool applying a rapid sampling technique
    • Theobald U., Mailinger W., Reuss M., Rizzi M. in vivo analysis of glucose-induced fast changes in yeast adenine nucleotide pool applying a rapid sampling technique. Anal. Biochem. 1993, 214(1):31-37.
    • (1993) Anal. Biochem. , vol.214 , Issue.1 , pp. 31-37
    • Theobald, U.1    Mailinger, W.2    Reuss, M.3    Rizzi, M.4
  • 74
    • 0343471961 scopus 로고    scopus 로고
    • In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: I. Experimental observations
    • Theobald U., Mailinger W., Baltes M., Rizzi M., Reuss M. in vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: I. Experimental observations. Biotechnol. Bioeng. 1997, 55(2):305-316.
    • (1997) Biotechnol. Bioeng. , vol.55 , Issue.2 , pp. 305-316
    • Theobald, U.1    Mailinger, W.2    Baltes, M.3    Rizzi, M.4    Reuss, M.5
  • 75
    • 84875374752 scopus 로고    scopus 로고
    • Parameter optimization and sensitivity analysis for large kinetic models using a real-coded genetic algorithm
    • Tohsato Y., Ikuta K., Shionoya A., Mazaki Y., Ito M. Parameter optimization and sensitivity analysis for large kinetic models using a real-coded genetic algorithm. Gene 2013, 518(1):84-90.
    • (2013) Gene , vol.518 , Issue.1 , pp. 84-90
    • Tohsato, Y.1    Ikuta, K.2    Shionoya, A.3    Mazaki, Y.4    Ito, M.5
  • 76
    • 58749106454 scopus 로고    scopus 로고
    • Ensemble modeling of metabolic networks
    • Tran L.M., Rizk M.L., Liao J.C. Ensemble modeling of metabolic networks. Biophys. J. 2008, 95(12):5606-5617.
    • (2008) Biophys. J. , vol.95 , Issue.12 , pp. 5606-5617
    • Tran, L.M.1    Rizk, M.L.2    Liao, J.C.3
  • 78
    • 0033107539 scopus 로고    scopus 로고
    • In vivo dynamics of the pentose phosphate pathway in Saccharomyces cerevisiae
    • Vaseghi S., Baumeister A., Rizzi M., Reuss M. in vivo dynamics of the pentose phosphate pathway in Saccharomyces cerevisiae. Metab. Eng. 1999, 1(2):128-140.
    • (1999) Metab. Eng. , vol.1 , Issue.2 , pp. 128-140
    • Vaseghi, S.1    Baumeister, A.2    Rizzi, M.3    Reuss, M.4
  • 79
    • 0141684666 scopus 로고    scopus 로고
    • Dynamic simulation and metabolic re-design of a branched pathway using linlog kinetics
    • Visser D., Heijnen J.J. Dynamic simulation and metabolic re-design of a branched pathway using linlog kinetics. Metab. Eng. 2003, 5(3):164-176.
    • (2003) Metab. Eng. , vol.5 , Issue.3 , pp. 164-176
    • Visser, D.1    Heijnen, J.J.2
  • 80
    • 78049451371 scopus 로고    scopus 로고
    • Metabolome, transcriptome and metabolic flux analysis of arabinose fermentation by engineered Saccharomyces cerevisiae
    • Wisselink H.W., Cipollina C., Oud B., Crimi B., Heijnen J.J., Pronk J.T., van Maris A.J. Metabolome, transcriptome and metabolic flux analysis of arabinose fermentation by engineered Saccharomyces cerevisiae. Metab. Eng. 2010, 12(6):537-551.
    • (2010) Metab. Eng. , vol.12 , Issue.6 , pp. 537-551
    • Wisselink, H.W.1    Cipollina, C.2    Oud, B.3    Crimi, B.4    Heijnen, J.J.5    Pronk, J.T.6    van Maris, A.J.7
  • 81
    • 80052021573 scopus 로고    scopus 로고
    • Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA
    • Xu P., Ranganathan S., Fowler Z.L., Maranas C.D., Koffas M.A. Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA. Metab. Eng. 2011, 13(5):578-587.
    • (2011) Metab. Eng. , vol.13 , Issue.5 , pp. 578-587
    • Xu, P.1    Ranganathan, S.2    Fowler, Z.L.3    Maranas, C.D.4    Koffas, M.A.5
  • 82
    • 80052867973 scopus 로고    scopus 로고
    • Efficient characterization of high-dimensional parameter spaces for systems biology
    • Zamora-Sillero E., Hafner M., Ibig A., Stelling J., Wagner A. Efficient characterization of high-dimensional parameter spaces for systems biology. BMC Syst. Biol. 2011, 5:142.
    • (2011) BMC Syst. Biol. , vol.5 , pp. 142
    • Zamora-Sillero, E.1    Hafner, M.2    Ibig, A.3    Stelling, J.4    Wagner, A.5
  • 83
    • 78751584992 scopus 로고    scopus 로고
    • Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments
    • Zhuang K., Izallalen M., Mouser P., Richter H., Risso C., Mahadevan R., Lovley D.R. Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments. ISME J. 2011, 5:305-316.
    • (2011) ISME J. , vol.5 , pp. 305-316
    • Zhuang, K.1    Izallalen, M.2    Mouser, P.3    Richter, H.4    Risso, C.5    Mahadevan, R.6    Lovley, D.R.7
  • 84
    • 84865358026 scopus 로고    scopus 로고
    • The design of long-term effective uranium bioremediation strategy using a community metabolic model
    • Zhuang K., Ma E., Lovley D.R., Mahadevan R. The design of long-term effective uranium bioremediation strategy using a community metabolic model. Biotechnol. Bioeng. 2012, 109:2475-2483.
    • (2012) Biotechnol. Bioeng. , vol.109 , pp. 2475-2483
    • Zhuang, K.1    Ma, E.2    Lovley, D.R.3    Mahadevan, R.4
  • 85
    • 84899012698 scopus 로고    scopus 로고
    • D-OptCom: Dynamic multi-level and multi-objective metabolic modeling of microbial communities
    • Zomorrodi A.R., Islam M.M., Maranas C.D. d-OptCom: Dynamic multi-level and multi-objective metabolic modeling of microbial communities. ACS Synth. Biol. 2014, 3:247-257.
    • (2014) ACS Synth. Biol. , vol.3 , pp. 247-257
    • Zomorrodi, A.R.1    Islam, M.M.2    Maranas, C.D.3
  • 86
    • 84861180223 scopus 로고    scopus 로고
    • OptCom: a multi-level optimization framework for the metabolic modeling and analysis of microbial communities
    • Zomorrodi A.R., Maranas C.D. OptCom: a multi-level optimization framework for the metabolic modeling and analysis of microbial communities. PLoS Comput. Biol. 2012, 8:e1002363.
    • (2012) PLoS Comput. Biol. , vol.8
    • Zomorrodi, A.R.1    Maranas, C.D.2
  • 87
    • 84883799668 scopus 로고    scopus 로고
    • Optimization-driven identification of genetic perturbations accelerates the convergence of model parameters in ensemble modeling of metabolic networks
    • Zomorrodi A.R., Lafontaine Rivera J.G., Liao J.C., Maranas C.D. Optimization-driven identification of genetic perturbations accelerates the convergence of model parameters in ensemble modeling of metabolic networks. Biotechnol. J. 2013, 8(9):1090-1104.
    • (2013) Biotechnol. J. , vol.8 , Issue.9 , pp. 1090-1104
    • Zomorrodi, A.R.1    Lafontaine Rivera, J.G.2    Liao, J.C.3    Maranas, C.D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.