메뉴 건너뛰기




Volumn 10, Issue 10, 2021, Pages

Power electric transformer fault diagnosis based on infrared thermal images using wasserstein generative adversarial networks and deep learning classifier

Author keywords

Convolutional neural networks; Fault diagnosis; Generative adversarial networks; Image reconstruction; Infrared thermography; Transformers

Indexed keywords


EID: 85105721748     PISSN: None     EISSN: 20799292     Source Type: Journal    
DOI: 10.3390/electronics10101161     Document Type: Article
Times cited : (32)

References (51)
  • 2
    • 85060043299 scopus 로고    scopus 로고
    • Winding hottest-spot temperature analysis in dry-type transformer using numerical simulation
    • [CrossRef]
    • Mafra, R.; Magalhães, E.; Anselmo, B.; Belchior, F.; Lima e Silva, S.M.M. Winding hottest-spot temperature analysis in dry-type transformer using numerical simulation. Energies 2018, 12, 68. [CrossRef]
    • (2018) Energies , vol.12 , pp. 68
    • Mafra, R.1    Magalhães, E.2    Anselmo, B.3    Belchior, F.4    Lima e Silva, S.M.M.5
  • 3
    • 85053919475 scopus 로고    scopus 로고
    • Analysis of Winding Vibration Characteristics of Power Transformers Based on the Finite-Element Method
    • [CrossRef]
    • Duan, X.; Zhao, T.; Liu, J.; Zhang, L.; Zou, L. Analysis of Winding Vibration Characteristics of Power Transformers Based on the Finite-Element Method. Energies 2018, 11, 2404. [CrossRef]
    • (2018) Energies , vol.11 , pp. 2404
    • Duan, X.1    Zhao, T.2    Liu, J.3    Zhang, L.4    Zou, L.5
  • 4
    • 85032199864 scopus 로고    scopus 로고
    • Frequency response analysis (FRA) of transformers as a tool for fault detection and location: A review
    • [CrossRef]
    • Senobari, R.K.; Sadeh, J.; Borsi, H. Frequency response analysis (FRA) of transformers as a tool for fault detection and location: A review. Electric. Power Syst. Res. 2018, 155, 172–183. [CrossRef]
    • (2018) Electric. Power Syst. Res , vol.155 , pp. 172-183
    • Senobari, R.K.1    Sadeh, J.2    Borsi, H.3
  • 5
    • 85054029473 scopus 로고    scopus 로고
    • Identification of Power Transformer Winding Fault Types by a Hierarchical Dimension Reduction Classifier
    • [CrossRef]
    • Zhang, Z.; Gao, W.; Kari, T.; Lin, H. Identification of Power Transformer Winding Fault Types by a Hierarchical Dimension Reduction Classifier. Energies 2018, 11, 2434. [CrossRef]
    • (2018) Energies , vol.11 , pp. 2434
    • Zhang, Z.1    Gao, W.2    Kari, T.3    Lin, H.4
  • 6
    • 85054018310 scopus 로고    scopus 로고
    • Improved Fuzzy C-Means Clustering for Transformer Fault Diagnosis Using Dissolved Gas Analysis Data
    • [CrossRef]
    • Li, E.; Wang, L.; Song, B.; Jian, S. Improved Fuzzy C-Means Clustering for Transformer Fault Diagnosis Using Dissolved Gas Analysis Data. Energies 2018, 11, 2344. [CrossRef]
    • (2018) Energies , vol.11 , pp. 2344
    • Li, E.1    Wang, L.2    Song, B.3    Jian, S.4
  • 7
    • 85042733620 scopus 로고    scopus 로고
    • Transformer fault condition prognosis using vibration signals over cloud environment
    • [CrossRef]
    • Bagheri, M.; Zollanvari, A.; Nezhivenko, S. Transformer fault condition prognosis using vibration signals over cloud environment. IEEE Access 2018, 6, 9862–9874. [CrossRef]
    • (2018) IEEE Access , vol.6 , pp. 9862-9874
    • Bagheri, M.1    Zollanvari, A.2    Nezhivenko, S.3
  • 8
    • 85086590451 scopus 로고    scopus 로고
    • A temperature-based fault pre-warning method for the dry-type transformer in the offshore oil platform
    • [CrossRef]
    • Sun, Y.; Hua, Y.; Wang, E.; Li, N.; Ma, S.; Zhang, L.; Hu, Y. A temperature-based fault pre-warning method for the dry-type transformer in the offshore oil platform. Int. J. Electr. Power Energy Syst. 2020, 123, 106218. [CrossRef]
    • (2020) Int. J. Electr. Power Energy Syst , vol.123 , pp. 106218
    • Sun, Y.1    Hua, Y.2    Wang, E.3    Li, N.4    Ma, S.5    Zhang, L.6    Hu, Y.7
  • 9
    • 84986891103 scopus 로고    scopus 로고
    • Partial discharge detection in 11.4 kV cast resin power transformer
    • [CrossRef]
    • Chen, M.-K.; Chen, J.-M.; Cheng, C.-Y. Partial discharge detection in 11.4 kV cast resin power transformer. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 2223–2231. [CrossRef]
    • (2016) IEEE Trans. Dielectr. Electr. Insul , vol.23 , pp. 2223-2231
    • Chen, M.-K.1    Chen, J.-M.2    Cheng, C.-Y.3
  • 10
    • 85055720362 scopus 로고    scopus 로고
    • Inter-turn fault detection of dry-type transformers using core-leakage fluxes
    • [CrossRef]
    • Athikessavan, S.C.; Jeyasankar, E.; Manohar, S.S.; Panda, S.K. Inter-turn fault detection of dry-type transformers using core-leakage fluxes. IEEE Trans. Power Deliv. 2019, 34, 1230–1241. [CrossRef]
    • (2019) IEEE Trans. Power Deliv , vol.34 , pp. 1230-1241
    • Athikessavan, S.C.1    Jeyasankar, E.2    Manohar, S.S.3    Panda, S.K.4
  • 12
    • 85086009434 scopus 로고    scopus 로고
    • Abnormality detection of cast-resin transformers using the fuzzy logic clustering decision tree
    • [CrossRef]
    • Lee, C.-T.; Horng, S.-C. Abnormality detection of cast-resin transformers using the fuzzy logic clustering decision tree. Energies 2020, 13, 2546. [CrossRef]
    • (2020) Energies , vol.13 , pp. 2546
    • Lee, C.-T.1    Horng, S.-C.2
  • 13
    • 85028343739 scopus 로고    scopus 로고
    • Reliability modeling of power transformers with maintenance outage
    • [CrossRef]
    • Tang, S.; Hale, C.; Thaker, H. Reliability modeling of power transformers with maintenance outage. Syst. Sci. Control Eng. 2014, 2, 316–324. [CrossRef]
    • (2014) Syst. Sci. Control Eng , vol.2 , pp. 316-324
    • Tang, S.1    Hale, C.2    Thaker, H.3
  • 15
    • 85055541012 scopus 로고    scopus 로고
    • Understanding the power transformer component failures for health index-based maintenance planning in electric utilities
    • [CrossRef]
    • Murugan, R.; Ramasamy, R. Understanding the power transformer component failures for health index-based maintenance planning in electric utilities. Eng. Fail. Anal. 2019, 96, 274–288. [CrossRef]
    • (2019) Eng. Fail. Anal , vol.96 , pp. 274-288
    • Murugan, R.1    Ramasamy, R.2
  • 16
    • 85018490413 scopus 로고    scopus 로고
    • Thermal response and failure mode evaluation of a dry-type transformer
    • [CrossRef]
    • Alonso, P.E.B.; Meana-Fernández, A.; Oro, J.M.F. Thermal response and failure mode evaluation of a dry-type transformer. Appl. Therm. Eng. 2017, 120, 763–771. [CrossRef]
    • (2017) Appl. Therm. Eng , vol.120 , pp. 763-771
    • Alonso, P.E.B.1    Meana-Fernández, A.2    Oro, J.M.F.3
  • 18
    • 84941213333 scopus 로고    scopus 로고
    • A novel intelligent fault diagnosis method for electrical equipment using infrared thermography
    • [CrossRef]
    • Zou, H.; Huang, F. A novel intelligent fault diagnosis method for electrical equipment using infrared thermography. Infrared Phys. Technol. 2015, 73, 29–35. [CrossRef]
    • (2015) Infrared Phys. Technol , vol.73 , pp. 29-35
    • Zou, H.1    Huang, F.2
  • 19
    • 85028435170 scopus 로고    scopus 로고
    • Application of Infrared Thermography to Failure Detection in Industrial Induction Motors: Case Stories
    • [CrossRef]
    • López-Pérez, D.; Antonino-Daviu, J. Application of Infrared Thermography to Failure Detection in Industrial Induction Motors: Case Stories. IEEE Trans. Ind. Appl. 2017, 53, 1901–1908. [CrossRef]
    • (2017) IEEE Trans. Ind. Appl , vol.53 , pp. 1901-1908
    • López-Pérez, D.1    Antonino-Daviu, J.2
  • 20
    • 85066777916 scopus 로고    scopus 로고
    • Intelligent Localization of Transformer Internal Degradations Combining Deep Convolutional Neural Networks and Image Segmentation
    • [CrossRef]
    • Duan, J.; He, Y.; Du, B.; Ghandour, R.M.R.; Wu, W.; Zhang, H. Intelligent Localization of Transformer Internal Degradations Combining Deep Convolutional Neural Networks and Image Segmentation. IEEE Access 2019, 7, 62705–62720. [CrossRef]
    • (2019) IEEE Access , vol.7 , pp. 62705-62720
    • Duan, J.1    He, Y.2    Du, B.3    Ghandour, R.M.R.4    Wu, W.5    Zhang, H.6
  • 21
    • 85054413911 scopus 로고    scopus 로고
    • Thermal Imaging and Vibration-Based Multisensor Fault Detection for Rotating Machinery
    • [CrossRef]
    • Janssens, O.; Loccufier, M.; van Hoecke, S. Thermal Imaging and Vibration-Based Multisensor Fault Detection for Rotating Machinery. IEEE Trans. Ind. Inform. 2019, 15, 434–444. [CrossRef]
    • (2019) IEEE Trans. Ind. Inform , vol.15 , pp. 434-444
    • Janssens, O.1    Loccufier, M.2    van Hoecke, S.3
  • 22
    • 85056325984 scopus 로고    scopus 로고
    • Robust Powerline Equipment Inspection System Based on a Convolutional Neural Network
    • [CrossRef]
    • Siddiqui, Z.A.; Park, U.; Lee, S.-W.; Jung, N.-J.; Choi, M.; Lim, C.; Seo, J.-H. Robust Powerline Equipment Inspection System Based on a Convolutional Neural Network. Sensors 2018, 18, 3837. [CrossRef]
    • (2018) Sensors , vol.18 , pp. 3837
    • Siddiqui, Z.A.1    Park, U.2    Lee, S.-W.3    Jung, N.-J.4    Choi, M.5    Lim, C.6    Seo, J.-H.7
  • 24
    • 85067299389 scopus 로고    scopus 로고
    • A lighted deep convolutional neural network based fault diagnosis of rotating machinery
    • [CrossRef]
    • Ma, S.; Cai, W.; Liu, W.; Shang, Z.; Liu, G. A lighted deep convolutional neural network based fault diagnosis of rotating machinery. Sensors 2019, 19, 2381. [CrossRef]
    • (2019) Sensors , vol.19 , pp. 2381
    • Ma, S.1    Cai, W.2    Liu, W.3    Shang, Z.4    Liu, G.5
  • 25
    • 85075777211 scopus 로고    scopus 로고
    • Lightweight convolutional neural network for vehicle recognition in thermal infrared images
    • [CrossRef]
    • Kang, Q.; Zhao, H.; Yang, D.; Ahmed, H.S.; Ma, J. Lightweight convolutional neural network for vehicle recognition in thermal infrared images. Infrared Phys. Technol. 2020, 104, 103120. [CrossRef]
    • (2020) Infrared Phys. Technol , vol.104 , pp. 103120
    • Kang, Q.1    Zhao, H.2    Yang, D.3    Ahmed, H.S.4    Ma, J.5
  • 27
    • 85058693500 scopus 로고    scopus 로고
    • An automatic traffic density estimation using Single Shot Detection (SSD) and MobileNet-SSD
    • [CrossRef]
    • Biswas, D.; Su, H.; Wang, C.; Stevanovic, A.; Wang, W. An automatic traffic density estimation using Single Shot Detection (SSD) and MobileNet-SSD. Phys. Chem. Earth 2019, 110, 176–184. [CrossRef]
    • (2019) Phys. Chem. Earth , vol.110 , pp. 176-184
    • Biswas, D.1    Su, H.2    Wang, C.3    Stevanovic, A.4    Wang, W.5
  • 29
    • 79959353548 scopus 로고    scopus 로고
    • Stacked convolutional auto-encoders for hierarchical feature extraction
    • Springer: Berlin/Heidelberg, Germany
    • Masci, J.; Meier, U.; Ciresan, D.; Schmidhuber, J. Stacked convolutional auto-encoders for hierarchical feature extraction. In Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2011; pp. 52–59.
    • (2011) Lecture Notes in Computer Science , pp. 52-59
    • Masci, J.1    Meier, U.2    Ciresan, D.3    Schmidhuber, J.4
  • 32
    • 85103870927 scopus 로고    scopus 로고
    • Generative adversarial networks in computer vision: A survey and taxonomy
    • Wang, Z.; She, Q.; Ward, T.E. Generative adversarial networks in computer vision: A survey and taxonomy. ACM Comput. Surv. 2021, 54, 1–38.
    • (2021) ACM Comput. Surv , vol.54 , pp. 1-38
    • Wang, Z.1    She, Q.2    Ward, T.E.3
  • 36
    • 85067239111 scopus 로고    scopus 로고
    • GANomaly: Semi-supervised Anomaly Detection via Adversarial Training
    • Akcay, S.; Abarghouei, A.A.; Breckon, T.P. GANomaly: Semi-supervised Anomaly Detection via Adversarial Training. ACCV 2018, 11363, 622–637.
    • (2018) ACCV , vol.11363 , pp. 622-637
    • Akcay, S.1    Abarghouei, A.A.2    Breckon, T.P.3
  • 38
    • 85059349532 scopus 로고    scopus 로고
    • Pros and cons of GAN evaluation measures
    • [CrossRef]
    • Borji, A. Pros and cons of GAN evaluation measures. Comput. Vis. Image Underst. 2019, 179, 41–65. [CrossRef]
    • (2019) Comput. Vis. Image Underst , vol.179 , pp. 41-65
    • Borji, A.1
  • 39
    • 84947418173 scopus 로고
    • The influence of the sigmoid function parameters on the speed of backpropagation learning
    • Springer: Berlin/Heidelberg, Germany
    • Han, J.; Moraga, C. The influence of the sigmoid function parameters on the speed of backpropagation learning. In Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1995; pp. 195–201.
    • (1995) Lecture Notes in Computer Science , pp. 195-201
    • Han, J.1    Moraga, C.2
  • 42
    • 85082957418 scopus 로고    scopus 로고
    • A lightweight neural network with strong robustness for bearing fault diagnosis
    • [CrossRef]
    • Yao, D.; Liu, H.; Yang, J.; Li, X. A lightweight neural network with strong robustness for bearing fault diagnosis. Measurement 2020, 159, 107756. [CrossRef]
    • (2020) Measurement , vol.159 , pp. 107756
    • Yao, D.1    Liu, H.2    Yang, J.3    Li, X.4
  • 43
    • 85064722120 scopus 로고    scopus 로고
    • A novel deep learning method for intelligent fault diagnosis of rotating machinery based on improved CNN-SVM and multichannel data fusion
    • [CrossRef] [PubMed]
    • Gong, W.; Chen, H.; Zhang, Z.; Zhang, M.; Wang, R.; Guan, C.; Wang, Q. A novel deep learning method for intelligent fault diagnosis of rotating machinery based on improved CNN-SVM and multichannel data fusion. Sensors 2019, 19, 1693. [CrossRef] [PubMed]
    • (2019) Sensors , vol.19 , pp. 1693
    • Gong, W.1    Chen, H.2    Zhang, Z.3    Zhang, M.4    Wang, R.5    Guan, C.6    Wang, Q.7
  • 45
    • 80052250414 scopus 로고    scopus 로고
    • Adaptive Subgradient Methods for Online Learning and Stochastic Optimization
    • Duchi, J.C.; Hazan, E.; Singer, Y. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. J. Mach. Learn. Res. 2011, 12, 2121–2159.
    • (2011) J. Mach. Learn. Res , vol.12 , pp. 2121-2159
    • Duchi, J.C.1    Hazan, E.2    Singer, Y.3
  • 46
    • 0032983160 scopus 로고    scopus 로고
    • On the momentum term in gradient descent learning algorithms
    • [CrossRef]
    • Qian, N. On the momentum term in gradient descent learning algorithms. Neural Netw. 1999, 12, 145–151. [CrossRef]
    • (1999) Neural Netw , vol.12 , pp. 145-151
    • Qian, N.1
  • 47
    • 85020126914 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • [CrossRef]
    • Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [CrossRef]
    • (2017) Commun. ACM , vol.60 , pp. 84-90
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.