-
1
-
-
85079491695
-
Review on insulation and reliability of dry-type transformer
-
Beijing, China, 20–24 November
-
Chen, P.; Huang, Y.; Zeng, F.; Jin, Y.; Zhao, X.; Wang, J. Review on insulation and reliability of dry-type transformer. In Proceedings of the 2019 IEEE Sustainable Power and Energy Conference (iSPEC), Beijing, China, 20–24 November 2019.
-
(2019)
Proceedings of the 2019 IEEE Sustainable Power and Energy Conference (iSPEC)
-
-
Chen, P.1
Huang, Y.2
Zeng, F.3
Jin, Y.4
Zhao, X.5
Wang, J.6
-
2
-
-
85060043299
-
Winding hottest-spot temperature analysis in dry-type transformer using numerical simulation
-
[CrossRef]
-
Mafra, R.; Magalhães, E.; Anselmo, B.; Belchior, F.; Lima e Silva, S.M.M. Winding hottest-spot temperature analysis in dry-type transformer using numerical simulation. Energies 2018, 12, 68. [CrossRef]
-
(2018)
Energies
, vol.12
, pp. 68
-
-
Mafra, R.1
Magalhães, E.2
Anselmo, B.3
Belchior, F.4
Lima e Silva, S.M.M.5
-
3
-
-
85053919475
-
Analysis of Winding Vibration Characteristics of Power Transformers Based on the Finite-Element Method
-
[CrossRef]
-
Duan, X.; Zhao, T.; Liu, J.; Zhang, L.; Zou, L. Analysis of Winding Vibration Characteristics of Power Transformers Based on the Finite-Element Method. Energies 2018, 11, 2404. [CrossRef]
-
(2018)
Energies
, vol.11
, pp. 2404
-
-
Duan, X.1
Zhao, T.2
Liu, J.3
Zhang, L.4
Zou, L.5
-
4
-
-
85032199864
-
Frequency response analysis (FRA) of transformers as a tool for fault detection and location: A review
-
[CrossRef]
-
Senobari, R.K.; Sadeh, J.; Borsi, H. Frequency response analysis (FRA) of transformers as a tool for fault detection and location: A review. Electric. Power Syst. Res. 2018, 155, 172–183. [CrossRef]
-
(2018)
Electric. Power Syst. Res
, vol.155
, pp. 172-183
-
-
Senobari, R.K.1
Sadeh, J.2
Borsi, H.3
-
5
-
-
85054029473
-
Identification of Power Transformer Winding Fault Types by a Hierarchical Dimension Reduction Classifier
-
[CrossRef]
-
Zhang, Z.; Gao, W.; Kari, T.; Lin, H. Identification of Power Transformer Winding Fault Types by a Hierarchical Dimension Reduction Classifier. Energies 2018, 11, 2434. [CrossRef]
-
(2018)
Energies
, vol.11
, pp. 2434
-
-
Zhang, Z.1
Gao, W.2
Kari, T.3
Lin, H.4
-
6
-
-
85054018310
-
Improved Fuzzy C-Means Clustering for Transformer Fault Diagnosis Using Dissolved Gas Analysis Data
-
[CrossRef]
-
Li, E.; Wang, L.; Song, B.; Jian, S. Improved Fuzzy C-Means Clustering for Transformer Fault Diagnosis Using Dissolved Gas Analysis Data. Energies 2018, 11, 2344. [CrossRef]
-
(2018)
Energies
, vol.11
, pp. 2344
-
-
Li, E.1
Wang, L.2
Song, B.3
Jian, S.4
-
7
-
-
85042733620
-
Transformer fault condition prognosis using vibration signals over cloud environment
-
[CrossRef]
-
Bagheri, M.; Zollanvari, A.; Nezhivenko, S. Transformer fault condition prognosis using vibration signals over cloud environment. IEEE Access 2018, 6, 9862–9874. [CrossRef]
-
(2018)
IEEE Access
, vol.6
, pp. 9862-9874
-
-
Bagheri, M.1
Zollanvari, A.2
Nezhivenko, S.3
-
8
-
-
85086590451
-
A temperature-based fault pre-warning method for the dry-type transformer in the offshore oil platform
-
[CrossRef]
-
Sun, Y.; Hua, Y.; Wang, E.; Li, N.; Ma, S.; Zhang, L.; Hu, Y. A temperature-based fault pre-warning method for the dry-type transformer in the offshore oil platform. Int. J. Electr. Power Energy Syst. 2020, 123, 106218. [CrossRef]
-
(2020)
Int. J. Electr. Power Energy Syst
, vol.123
, pp. 106218
-
-
Sun, Y.1
Hua, Y.2
Wang, E.3
Li, N.4
Ma, S.5
Zhang, L.6
Hu, Y.7
-
9
-
-
84986891103
-
Partial discharge detection in 11.4 kV cast resin power transformer
-
[CrossRef]
-
Chen, M.-K.; Chen, J.-M.; Cheng, C.-Y. Partial discharge detection in 11.4 kV cast resin power transformer. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 2223–2231. [CrossRef]
-
(2016)
IEEE Trans. Dielectr. Electr. Insul
, vol.23
, pp. 2223-2231
-
-
Chen, M.-K.1
Chen, J.-M.2
Cheng, C.-Y.3
-
10
-
-
85055720362
-
Inter-turn fault detection of dry-type transformers using core-leakage fluxes
-
[CrossRef]
-
Athikessavan, S.C.; Jeyasankar, E.; Manohar, S.S.; Panda, S.K. Inter-turn fault detection of dry-type transformers using core-leakage fluxes. IEEE Trans. Power Deliv. 2019, 34, 1230–1241. [CrossRef]
-
(2019)
IEEE Trans. Power Deliv
, vol.34
, pp. 1230-1241
-
-
Athikessavan, S.C.1
Jeyasankar, E.2
Manohar, S.S.3
Panda, S.K.4
-
11
-
-
0035197111
-
Monitoring and diagnostic systems for dry type transformers
-
Eindhoven, The Netherlands, 25–29 June [CrossRef]
-
Gockenbach, E.; Werle, P.; Borsi, H. Monitoring and diagnostic systems for dry type transformers. In Proceedings of the ICSD’01 2001 IEEE 7th International Conference on Solid Dielectrics (Cat. No.01CH37117), Eindhoven, The Netherlands, 25–29 June 2001. [CrossRef]
-
(2001)
Proceedings of the ICSD’01 2001 IEEE 7th International Conference on Solid Dielectrics (Cat. No.01CH37117)
-
-
Gockenbach, E.1
Werle, P.2
Borsi, H.3
-
12
-
-
85086009434
-
Abnormality detection of cast-resin transformers using the fuzzy logic clustering decision tree
-
[CrossRef]
-
Lee, C.-T.; Horng, S.-C. Abnormality detection of cast-resin transformers using the fuzzy logic clustering decision tree. Energies 2020, 13, 2546. [CrossRef]
-
(2020)
Energies
, vol.13
, pp. 2546
-
-
Lee, C.-T.1
Horng, S.-C.2
-
13
-
-
85028343739
-
Reliability modeling of power transformers with maintenance outage
-
[CrossRef]
-
Tang, S.; Hale, C.; Thaker, H. Reliability modeling of power transformers with maintenance outage. Syst. Sci. Control Eng. 2014, 2, 316–324. [CrossRef]
-
(2014)
Syst. Sci. Control Eng
, vol.2
, pp. 316-324
-
-
Tang, S.1
Hale, C.2
Thaker, H.3
-
14
-
-
85036633440
-
A Worldwide Transformer Reliability Survey
-
Berlin, Germany, 14–16 November 2016
-
Tenbohlen, S.; Vahidi, F.; Jagers, J. A Worldwide Transformer Reliability Survey. In Proceedings of the VDE High Voltage Technology 2016, ETG-Symposium, Berlin, Germany, 14–16 November 2016; pp. 1–6.
-
Proceedings of the VDE High Voltage Technology 2016, ETG-Symposium
, pp. 1-6
-
-
Tenbohlen, S.1
Vahidi, F.2
Jagers, J.3
-
15
-
-
85055541012
-
Understanding the power transformer component failures for health index-based maintenance planning in electric utilities
-
[CrossRef]
-
Murugan, R.; Ramasamy, R. Understanding the power transformer component failures for health index-based maintenance planning in electric utilities. Eng. Fail. Anal. 2019, 96, 274–288. [CrossRef]
-
(2019)
Eng. Fail. Anal
, vol.96
, pp. 274-288
-
-
Murugan, R.1
Ramasamy, R.2
-
16
-
-
85018490413
-
Thermal response and failure mode evaluation of a dry-type transformer
-
[CrossRef]
-
Alonso, P.E.B.; Meana-Fernández, A.; Oro, J.M.F. Thermal response and failure mode evaluation of a dry-type transformer. Appl. Therm. Eng. 2017, 120, 763–771. [CrossRef]
-
(2017)
Appl. Therm. Eng
, vol.120
, pp. 763-771
-
-
Alonso, P.E.B.1
Meana-Fernández, A.2
Oro, J.M.F.3
-
17
-
-
85058081769
-
Recent Industrial Applications of Infrared Thermography: A Review
-
[CrossRef]
-
Osornio-Rios, R.A.; Antonino-Daviu, J.A.; de Jesus Romero-Troncoso, R. Recent Industrial Applications of Infrared Thermography: A Review. IEEE Trans. Ind. Inform. 2019, 15, 615–625. [CrossRef]
-
(2019)
IEEE Trans. Ind. Inform
, vol.15
, pp. 615-625
-
-
Osornio-Rios, R.A.1
Antonino-Daviu, J.A.2
de Jesus Romero-Troncoso, R.3
-
18
-
-
84941213333
-
A novel intelligent fault diagnosis method for electrical equipment using infrared thermography
-
[CrossRef]
-
Zou, H.; Huang, F. A novel intelligent fault diagnosis method for electrical equipment using infrared thermography. Infrared Phys. Technol. 2015, 73, 29–35. [CrossRef]
-
(2015)
Infrared Phys. Technol
, vol.73
, pp. 29-35
-
-
Zou, H.1
Huang, F.2
-
19
-
-
85028435170
-
Application of Infrared Thermography to Failure Detection in Industrial Induction Motors: Case Stories
-
[CrossRef]
-
López-Pérez, D.; Antonino-Daviu, J. Application of Infrared Thermography to Failure Detection in Industrial Induction Motors: Case Stories. IEEE Trans. Ind. Appl. 2017, 53, 1901–1908. [CrossRef]
-
(2017)
IEEE Trans. Ind. Appl
, vol.53
, pp. 1901-1908
-
-
López-Pérez, D.1
Antonino-Daviu, J.2
-
20
-
-
85066777916
-
Intelligent Localization of Transformer Internal Degradations Combining Deep Convolutional Neural Networks and Image Segmentation
-
[CrossRef]
-
Duan, J.; He, Y.; Du, B.; Ghandour, R.M.R.; Wu, W.; Zhang, H. Intelligent Localization of Transformer Internal Degradations Combining Deep Convolutional Neural Networks and Image Segmentation. IEEE Access 2019, 7, 62705–62720. [CrossRef]
-
(2019)
IEEE Access
, vol.7
, pp. 62705-62720
-
-
Duan, J.1
He, Y.2
Du, B.3
Ghandour, R.M.R.4
Wu, W.5
Zhang, H.6
-
21
-
-
85054413911
-
Thermal Imaging and Vibration-Based Multisensor Fault Detection for Rotating Machinery
-
[CrossRef]
-
Janssens, O.; Loccufier, M.; van Hoecke, S. Thermal Imaging and Vibration-Based Multisensor Fault Detection for Rotating Machinery. IEEE Trans. Ind. Inform. 2019, 15, 434–444. [CrossRef]
-
(2019)
IEEE Trans. Ind. Inform
, vol.15
, pp. 434-444
-
-
Janssens, O.1
Loccufier, M.2
van Hoecke, S.3
-
22
-
-
85056325984
-
Robust Powerline Equipment Inspection System Based on a Convolutional Neural Network
-
[CrossRef]
-
Siddiqui, Z.A.; Park, U.; Lee, S.-W.; Jung, N.-J.; Choi, M.; Lim, C.; Seo, J.-H. Robust Powerline Equipment Inspection System Based on a Convolutional Neural Network. Sensors 2018, 18, 3837. [CrossRef]
-
(2018)
Sensors
, vol.18
, pp. 3837
-
-
Siddiqui, Z.A.1
Park, U.2
Lee, S.-W.3
Jung, N.-J.4
Choi, M.5
Lim, C.6
Seo, J.-H.7
-
24
-
-
85067299389
-
A lighted deep convolutional neural network based fault diagnosis of rotating machinery
-
[CrossRef]
-
Ma, S.; Cai, W.; Liu, W.; Shang, Z.; Liu, G. A lighted deep convolutional neural network based fault diagnosis of rotating machinery. Sensors 2019, 19, 2381. [CrossRef]
-
(2019)
Sensors
, vol.19
, pp. 2381
-
-
Ma, S.1
Cai, W.2
Liu, W.3
Shang, Z.4
Liu, G.5
-
25
-
-
85075777211
-
Lightweight convolutional neural network for vehicle recognition in thermal infrared images
-
[CrossRef]
-
Kang, Q.; Zhao, H.; Yang, D.; Ahmed, H.S.; Ma, J. Lightweight convolutional neural network for vehicle recognition in thermal infrared images. Infrared Phys. Technol. 2020, 104, 103120. [CrossRef]
-
(2020)
Infrared Phys. Technol
, vol.104
, pp. 103120
-
-
Kang, Q.1
Zhao, H.2
Yang, D.3
Ahmed, H.S.4
Ma, J.5
-
26
-
-
84988340112
-
-
CoRR. arXiv arXiv:1602.07360
-
Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. Squeezenet: Alexnet-level accuracy with 50× fewer parameters and<1mb model size, CoRR. arXiv 2016, arXiv:1602.07360.
-
(2016)
Squeezenet: Alexnet-level accuracy with 50× fewer parameters and<1mb model size
-
-
Iandola, F.N.1
Han, S.2
Moskewicz, M.W.3
Ashraf, K.4
Dally, W.J.5
Keutzer, K.6
-
27
-
-
85058693500
-
An automatic traffic density estimation using Single Shot Detection (SSD) and MobileNet-SSD
-
[CrossRef]
-
Biswas, D.; Su, H.; Wang, C.; Stevanovic, A.; Wang, W. An automatic traffic density estimation using Single Shot Detection (SSD) and MobileNet-SSD. Phys. Chem. Earth 2019, 110, 176–184. [CrossRef]
-
(2019)
Phys. Chem. Earth
, vol.110
, pp. 176-184
-
-
Biswas, D.1
Su, H.2
Wang, C.3
Stevanovic, A.4
Wang, W.5
-
28
-
-
85061081999
-
ShuffleNet: An extremely efficient convolutional neural network for mobile devices
-
Salt Lake City, UT, USA, 18–23 June 2018. [CrossRef]
-
Zhang, X.; Zhou, X.; Lin, M.; Sun, J. ShuffleNet: An extremely efficient convolutional neural network for mobile devices. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [CrossRef]
-
Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
-
-
Zhang, X.1
Zhou, X.2
Lin, M.3
Sun, J.4
-
29
-
-
79959353548
-
Stacked convolutional auto-encoders for hierarchical feature extraction
-
Springer: Berlin/Heidelberg, Germany
-
Masci, J.; Meier, U.; Ciresan, D.; Schmidhuber, J. Stacked convolutional auto-encoders for hierarchical feature extraction. In Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2011; pp. 52–59.
-
(2011)
Lecture Notes in Computer Science
, pp. 52-59
-
-
Masci, J.1
Meier, U.2
Ciresan, D.3
Schmidhuber, J.4
-
30
-
-
84937849144
-
Generative adversarial nets
-
Montreal, QC, Canada, 8–13 December 2014
-
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; pp. 2672–2680.
-
Proceedings of the Advances in Neural Information Processing Systems
, pp. 2672-2680
-
-
Goodfellow, I.1
Pouget-Abadie, J.2
Mirza, M.3
Xu, B.4
Warde-Farley, D.5
Ozair, S.6
Courville, A.7
Bengio, Y.8
-
32
-
-
85103870927
-
Generative adversarial networks in computer vision: A survey and taxonomy
-
Wang, Z.; She, Q.; Ward, T.E. Generative adversarial networks in computer vision: A survey and taxonomy. ACM Comput. Surv. 2021, 54, 1–38.
-
(2021)
ACM Comput. Surv
, vol.54
, pp. 1-38
-
-
Wang, Z.1
She, Q.2
Ward, T.E.3
-
34
-
-
85018875486
-
Improved techniques for training GANs
-
Barcelona, Spain, 5–10 December 2016
-
Salimans, T.; Goodfellow, I.; Zaremba, W.; Cheung, V.; Radford, A.; Chen, X. Improved techniques for training GANs. In Proceedings of the 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016; pp. 2234–2242.
-
Proceedings of the 30th International Conference on Neural Information Processing Systems
, pp. 2234-2242
-
-
Salimans, T.1
Goodfellow, I.2
Zaremba, W.3
Cheung, V.4
Radford, A.5
Chen, X.6
-
35
-
-
85035363407
-
Wasserstein Generative Adversarial Networks
-
Sydney, Australia, 6–11 August
-
Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein Generative Adversarial Networks. In Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; Volume 70, pp. 214–223.
-
(2017)
Proceedings of the 34th International Conference on Machine Learning
, vol.70
, pp. 214-223
-
-
Arjovsky, M.1
Chintala, S.2
Bottou, L.3
-
36
-
-
85067239111
-
GANomaly: Semi-supervised Anomaly Detection via Adversarial Training
-
Akcay, S.; Abarghouei, A.A.; Breckon, T.P. GANomaly: Semi-supervised Anomaly Detection via Adversarial Training. ACCV 2018, 11363, 622–637.
-
(2018)
ACCV
, vol.11363
, pp. 622-637
-
-
Akcay, S.1
Abarghouei, A.A.2
Breckon, T.P.3
-
38
-
-
85059349532
-
Pros and cons of GAN evaluation measures
-
[CrossRef]
-
Borji, A. Pros and cons of GAN evaluation measures. Comput. Vis. Image Underst. 2019, 179, 41–65. [CrossRef]
-
(2019)
Comput. Vis. Image Underst
, vol.179
, pp. 41-65
-
-
Borji, A.1
-
39
-
-
84947418173
-
The influence of the sigmoid function parameters on the speed of backpropagation learning
-
Springer: Berlin/Heidelberg, Germany
-
Han, J.; Moraga, C. The influence of the sigmoid function parameters on the speed of backpropagation learning. In Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1995; pp. 195–201.
-
(1995)
Lecture Notes in Computer Science
, pp. 195-201
-
-
Han, J.1
Moraga, C.2
-
42
-
-
85082957418
-
A lightweight neural network with strong robustness for bearing fault diagnosis
-
[CrossRef]
-
Yao, D.; Liu, H.; Yang, J.; Li, X. A lightweight neural network with strong robustness for bearing fault diagnosis. Measurement 2020, 159, 107756. [CrossRef]
-
(2020)
Measurement
, vol.159
, pp. 107756
-
-
Yao, D.1
Liu, H.2
Yang, J.3
Li, X.4
-
43
-
-
85064722120
-
A novel deep learning method for intelligent fault diagnosis of rotating machinery based on improved CNN-SVM and multichannel data fusion
-
[CrossRef] [PubMed]
-
Gong, W.; Chen, H.; Zhang, Z.; Zhang, M.; Wang, R.; Guan, C.; Wang, Q. A novel deep learning method for intelligent fault diagnosis of rotating machinery based on improved CNN-SVM and multichannel data fusion. Sensors 2019, 19, 1693. [CrossRef] [PubMed]
-
(2019)
Sensors
, vol.19
, pp. 1693
-
-
Gong, W.1
Chen, H.2
Zhang, Z.3
Zhang, M.4
Wang, R.5
Guan, C.6
Wang, Q.7
-
44
-
-
85030759098
-
Image-to-image translation with conditional adversarial networks
-
Honolulu, HI, USA, 21–26 July
-
Isola, P.; Zhu, J.-Y.; Zhou, T.; Efros, A.A. Image-to-image translation with conditional adversarial networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.
-
(2017)
Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
-
-
Isola, P.1
Zhu, J.-Y.2
Zhou, T.3
Efros, A.A.4
-
45
-
-
80052250414
-
Adaptive Subgradient Methods for Online Learning and Stochastic Optimization
-
Duchi, J.C.; Hazan, E.; Singer, Y. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. J. Mach. Learn. Res. 2011, 12, 2121–2159.
-
(2011)
J. Mach. Learn. Res
, vol.12
, pp. 2121-2159
-
-
Duchi, J.C.1
Hazan, E.2
Singer, Y.3
-
46
-
-
0032983160
-
On the momentum term in gradient descent learning algorithms
-
[CrossRef]
-
Qian, N. On the momentum term in gradient descent learning algorithms. Neural Netw. 1999, 12, 145–151. [CrossRef]
-
(1999)
Neural Netw
, vol.12
, pp. 145-151
-
-
Qian, N.1
-
47
-
-
85020126914
-
ImageNet classification with deep convolutional neural networks
-
[CrossRef]
-
Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [CrossRef]
-
(2017)
Commun. ACM
, vol.60
, pp. 84-90
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
49
-
-
84986274465
-
Deep residual learning for image recognition
-
Las Vegas, NE, USA, 26 June–1 July
-
He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NE, USA, 26 June–1 July 2016.
-
(2016)
Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
|