메뉴 건너뛰기




Volumn 13, Issue 10, 2020, Pages

Abnormality detection of cast-resin transformers using the fuzzy logic clustering decision tree

Author keywords

Abnormal defects; Cast resin transformers; Decision tree; Hierarchical clustering; Partial discharge; Pattern recognition

Indexed keywords

COMPUTER CIRCUITS; DECISION TREES; ELECTRIC POWER SYSTEMS; EPOXY RESINS; FUZZY LOGIC; PARTIAL DISCHARGES; PATTERN RECOGNITION; TREES (MATHEMATICS);

EID: 85086009434     PISSN: None     EISSN: 19961073     Source Type: Journal    
DOI: 10.3390/en13102546     Document Type: Article
Times cited : (8)

References (37)
  • 1
    • 85046724764 scopus 로고    scopus 로고
    • Measurements on partial discharge in on-site operating power transformer: A case study
    • Kunicki, M.; Cichon, A.; Borucki, S. Measurements on partial discharge in on-site operating power transformer: A case study. IET Gener. Transm. Distrib. 2018, 12, 2487-2495. [CrossRef]
    • (2018) IET Gener. Transm. Distrib. , vol.12 , pp. 2487-2495
    • Kunicki, M.1    Cichon, A.2    Borucki, S.3
  • 2
    • 85020660141 scopus 로고    scopus 로고
    • Detection, measurement, and classification of partial discharge in a power transformer: Methods, trends, and future research
    • Mondal, M.; Kumbhar, G.B. Detection, measurement, and classification of partial discharge in a power transformer: Methods, trends, and future research. IETE Tech. Rev. 2018, 35, 483-493. [CrossRef]
    • (2018) IETE Tech. Rev. , vol.35 , pp. 483-493
    • Mondal, M.1    Kumbhar, G.B.2
  • 3
    • 85067365957 scopus 로고    scopus 로고
    • Partial discharge detection and diagnosis in gas insulated switchgear: State of the art
    • Khan, Q.; Refaat, S.S.; Abu-Rub, H.; Toliyat, H.A. Partial discharge detection and diagnosis in gas insulated switchgear: State of the art. IEEE Electr. Insul. Mag. 2019, 35, 16-33. [CrossRef]
    • (2019) IEEE Electr. Insul. Mag. , vol.35 , pp. 16-33
    • Khan, Q.1    Refaat, S.S.2    Abu-Rub, H.3    Toliyat, H.A.4
  • 4
    • 85075903961 scopus 로고    scopus 로고
    • Automatic partial discharge recognition using the cross wavelet transform in high voltage cable joint measuring systems using two opposite polarity sensors
    • Mor, A.R.; Munoz, F.A.; Wu, J.; Heredia, L.C.C. Automatic partial discharge recognition using the cross wavelet transform in high voltage cable joint measuring systems using two opposite polarity sensors. Int. J. Electr. Power Energy Syst. 2020, 117, 105695.
    • (2020) Int. J. Electr. Power Energy Syst. , vol.117 , pp. 105695
    • Mor, A.R.1    Munoz, F.A.2    Wu, J.3    Heredia, L.C.C.4
  • 5
    • 85068876235 scopus 로고    scopus 로고
    • A fractional Fourier transform-based approach for gas-insulated switchgear partial discharge recognition
    • Gu, F.C.; Chen, H.C.; Chen, B.Y. A fractional Fourier transform-based approach for gas-insulated switchgear partial discharge recognition. J. Electr. Eng. Technol. 2019, 14, 2073-2084. [CrossRef]
    • (2019) J. Electr. Eng. Technol. , vol.14 , pp. 2073-2084
    • Gu, F.C.1    Chen, H.C.2    Chen, B.Y.3
  • 6
    • 85055906142 scopus 로고    scopus 로고
    • Fractal-based autonomous partial discharge pattern recognition method for MV motors
    • Ma, Z.; Yang, Y.; Kearns, M.; Cowan, K.; Yi, H.J.; Hepburn, D.M.; Zhou, C.K. Fractal-based autonomous partial discharge pattern recognition method for MV motors. High Volt. 2018, 3, 103-114. [CrossRef]
    • (2018) High Volt. , vol.3 , pp. 103-114
    • Ma, Z.1    Yang, Y.2    Kearns, M.3    Cowan, K.4    Yi, H.J.5    Hepburn, D.M.6    Zhou, C.K.7
  • 7
    • 85068444913 scopus 로고    scopus 로고
    • Partial discharge classification using deep learning methods-Survey of recent progress
    • Barrios, S.; Buldain, D.; Comech, M.P.; Gilbert, I.; Orue, I. Partial discharge classification using deep learning methods-Survey of recent progress. Energies 2019, 12, 2485. [CrossRef]
    • (2019) Energies , vol.12 , pp. 2485
    • Barrios, S.1    Buldain, D.2    Comech, M.P.3    Gilbert, I.4    Orue, I.5
  • 8
    • 85047079482 scopus 로고    scopus 로고
    • Recurrent neural network for partial discharge diagnosis in gas-insulated switchgear
    • Nguyen, M.T.; Nguyen, V.H.; Yun, S.J.; Kim, Y.H. Recurrent neural network for partial discharge diagnosis in gas-insulated switchgear. Energies 2018, 11, 1202. [CrossRef]
    • (2018) Energies , vol.11 , pp. 1202
    • Nguyen, M.T.1    Nguyen, V.H.2    Yun, S.J.3    Kim, Y.H.4
  • 9
    • 85065076399 scopus 로고    scopus 로고
    • Online monitoring of transformer through stream clustering of partial discharge signals
    • Firuzi, K.; Vakilian, M.; Phung, B.T.; Blackburn, T. Online monitoring of transformer through stream clustering of partial discharge signals. IET Sci. Meas. Technol. 2019, 13, 409-415. [CrossRef]
    • (2019) IET Sci. Meas. Technol. , vol.13 , pp. 409-415
    • Firuzi, K.1    Vakilian, M.2    Phung, B.T.3    Blackburn, T.4
  • 10
    • 85057788881 scopus 로고    scopus 로고
    • Density-based clustering methods for unsupervised separation of partial discharge sources
    • Heredia, L.C.C.; Mor, A.R. Density-based clustering methods for unsupervised separation of partial discharge sources. Intern. J. Electr. Power Energy Syst. 2019, 107, 224-230. [CrossRef]
    • (2019) Intern. J. Electr. Power Energy Syst. , vol.107 , pp. 224-230
    • Heredia, L.C.C.1    Mor, A.R.2
  • 11
    • 85060371876 scopus 로고    scopus 로고
    • Partial discharge fault diagnosis based on multi-scale dispersion entropy and a hypersphere multiclass support vector machine
    • Shang, H.K.; Li, F.;Wu, Y.J. Partial discharge fault diagnosis based on multi-scale dispersion entropy and a hypersphere multiclass support vector machine. Entropy 2019, 21, 81. [CrossRef]
    • (2019) Entropy , vol.21 , pp. 81
    • Shang, H.K.1    Li, F.2    Wu, Y.J.3
  • 12
    • 85076638401 scopus 로고    scopus 로고
    • A novel application of deep belief networks in learning partial discharge patterns for classifying corona, surface, and internal discharges
    • Karimi, M.; Majidi, M.; MirSaeedi, H.; Arefi, M.M.; Oskuoee, M. A novel application of deep belief networks in learning partial discharge patterns for classifying corona, surface, and internal discharges. IEEE Trans. Ind. Electron. 2020, 67, 3277-3287. [CrossRef]
    • (2020) IEEE Trans. Ind. Electron. , vol.67 , pp. 3277-3287
    • Karimi, M.1    Majidi, M.2    MirSaeedi, H.3    Arefi, M.M.4    Oskuoee, M.5
  • 13
    • 85069926419 scopus 로고    scopus 로고
    • A convolutional neural network-based deep learning methodology for recognition of partial discharge patterns from high-voltage cables
    • Peng, X.S.; Yang, F.; Wang, G.J.; Wu, Y.J.; Li, L.; Li, Z.H.; Bhatti, A.A.; Zhou, C.K.; Hepburn, D.M.; Reid, A.J.; et al. A convolutional neural network-based deep learning methodology for recognition of partial discharge patterns from high-voltage cables. IEEE Trans. Power Deliv. 2019, 34, 1460-1469. [CrossRef]
    • (2019) IEEE Trans. Power Deliv. , vol.34 , pp. 1460-1469
    • Peng, X.S.1    Yang, F.2    Wang, G.J.3    Wu, Y.J.4    Li, L.5    Li, Z.H.6    Bhatti, A.A.7    Zhou, C.K.8    Hepburn, D.M.9    Reid, A.J.10
  • 14
    • 85069908746 scopus 로고    scopus 로고
    • Identification of partial discharge defects based on deep learning method
    • Duan, L.; Hu, J.; Zhao, G.; Chen, K.J.; He, J.L.; Wang, S.X. Identification of partial discharge defects based on deep learning method. IEEE Trans. Power Deliv. 2019, 34, 1557-1568. [CrossRef]
    • (2019) IEEE Trans. Power Deliv. , vol.34 , pp. 1557-1568
    • Duan, L.1    Hu, J.2    Zhao, G.3    Chen, K.J.4    He, J.L.5    Wang, S.X.6
  • 15
    • 85072535565 scopus 로고    scopus 로고
    • Wind speed and power ultra short-term robust forecasting based on Takagi-Sugeno fuzzy model
    • Liu, F.; Li, R.; Dreglea, A.Wind speed and power ultra short-term robust forecasting based on Takagi-Sugeno fuzzy model. Energies 2019, 12, 3551. [CrossRef]
    • (2019) Energies , vol.12 , pp. 3551
    • Liu, F.1    Li, R.2    Dreglea, A.3
  • 17
    • 85076157546 scopus 로고    scopus 로고
    • Recognitive approach to the energy policies and investments in renewable energy resources via the fuzzy hybrid models
    • Wang, S.B.; Li,W.J.; Dincer, H.; Yuksel, S. Recognitive approach to the energy policies and investments in renewable energy resources via the fuzzy hybrid models. Energies 2019, 12, 4536. [CrossRef]
    • (2019) Energies , vol.12 , pp. 4536
    • Wang, S.B.1    Li, W.J.2    Dincer, H.3    Yuksel, S.4
  • 18
    • 85049902363 scopus 로고    scopus 로고
    • An improved interval fuzzy modeling method: Applications to the estimation of photovoltaic/wind/battery power in renewable energy systems
    • Thao, N.G.M.; Uchida, K. An improved interval fuzzy modeling method: Applications to the estimation of photovoltaic/wind/battery power in renewable energy systems. Energies 2018, 11, 482. [CrossRef]
    • (2018) Energies , vol.11 , pp. 482
    • Thao, N.G.M.1    Uchida, K.2
  • 19
    • 85086010981 scopus 로고    scopus 로고
    • IEC 60270. High Voltage Test Techniques. In Partial Discharge Measurements, 3rd ed.; International Electro-Technical Commission: Geneva, Switzerland, 2015
    • IEC 60270. High Voltage Test Techniques. In Partial Discharge Measurements, 3rd ed.; International Electro-Technical Commission: Geneva, Switzerland, 2015.
  • 20
    • 85076857452 scopus 로고    scopus 로고
    • Construction of decision tree based on C4.5 algorithm for online voltage stability assessment
    • Meng, X.F.; Zhang, P.; Xu, Y.; Xie, H. Construction of decision tree based on C4.5 algorithm for online voltage stability assessment. Intern. J. Electr. Power Energy Syst. 2020, 118, 105793. [CrossRef]
    • (2020) Intern. J. Electr. Power Energy Syst. , vol.118 , pp. 105793
    • Meng, X.F.1    Zhang, P.2    Xu, Y.3    Xie, H.4
  • 21
    • 85066116650 scopus 로고    scopus 로고
    • Fuzzy rule-based classification system using multi-population quantum evolutionary algorithm with contradictory rule reconstruction
    • Zhang, Y.X.; Qian, X.Y.;Wang, J.H.; Gendeel, M. Fuzzy rule-based classification system using multi-population quantum evolutionary algorithm with contradictory rule reconstruction. Appl. Intell. 2019, 49, 4007-4021. [CrossRef]
    • (2019) Appl. Intell. , vol.49 , pp. 4007-4021
    • Zhang, Y.X.1    Qian, X.Y.2    Wang, J.H.3    Gendeel, M.4
  • 22
    • 85025479657 scopus 로고    scopus 로고
    • CHI-BD: A fuzzy rule-based classification system for Big Data classification problems
    • Elkano, M.; Galar, M.; Sanz, J.; Bustince, H. CHI-BD: A fuzzy rule-based classification system for Big Data classification problems. Fuzzy Sets Syst. 2018, 348, 75-101. [CrossRef]
    • (2018) Fuzzy Sets Syst. , vol.348 , pp. 75-101
    • Elkano, M.1    Galar, M.2    Sanz, J.3    Bustince, H.4
  • 23
    • 85046164662 scopus 로고    scopus 로고
    • Classifying dysmorphic syndromes by using artificial neural network based hierarchical decision tree
    • Ozdemir, M.E.; Telatar, Z.; Erogul, O.; Tunca, Y. Classifying dysmorphic syndromes by using artificial neural network based hierarchical decision tree. Australas. Phys. Eng. Sci. Med. 2018, 41, 451-461. [CrossRef] [PubMed]
    • (2018) Australas. Phys. Eng. Sci. Med. , vol.41 , pp. 451-461
    • Ozdemir, M.E.1    Telatar, Z.2    Erogul, O.3    Tunca, Y.4
  • 24
    • 85018938048 scopus 로고    scopus 로고
    • Learning hierarchical decision trees for single-image super-resolution
    • Huang, J.J.; Siu, W.C. Learning hierarchical decision trees for single-image super-resolution. IEEE Trans. Circuits Syst. Video Technol. 2017, 27, 937-950. [CrossRef]
    • (2017) IEEE Trans. Circuits Syst. Video Technol. , vol.27 , pp. 937-950
    • Huang, J.J.1    Siu, W.C.2
  • 25
    • 85058151520 scopus 로고    scopus 로고
    • Hierarchical Bayesian network modeling framework for large-scale process monitoring and decision making
    • Chen, G.J.; Ge, Z.Q. Hierarchical Bayesian network modeling framework for large-scale process monitoring and decision making. IEEE Trans. Control Syst. Technol. 2020, 28, 671-679. [CrossRef]
    • (2020) IEEE Trans. Control Syst. Technol. , vol.28 , pp. 671-679
    • Chen, G.J.1    Ge, Z.Q.2
  • 27
    • 85068858871 scopus 로고    scopus 로고
    • Hierarchical artificial neural network modelling of aluminum alloy properties used in die casting
    • Munoz-Ibanez, C.; Alfaro-Ponce, M.; Chairez, I. Hierarchical artificial neural network modelling of aluminum alloy properties used in die casting. Int. J. Adv. Manuf. Technol. 2019, 104, 541-1550. [CrossRef]
    • (2019) Int. J. Adv. Manuf. Technol. , vol.104 , pp. 541-1550
    • Munoz-Ibanez, C.1    Alfaro-Ponce, M.2    Chairez, I.3
  • 28
    • 85066454496 scopus 로고    scopus 로고
    • Hierarchical neural network for damage detection using modal parameters
    • Chang, M.; Kim, J.K.; Lee, J. Hierarchical neural network for damage detection using modal parameters. Struct. Eng. Mech. 2019, 70, 457-466.
    • (2019) Struct. Eng. Mech. , vol.70 , pp. 457-466
    • Chang, M.1    Kim, J.K.2    Lee, J.3
  • 29
    • 85060285065 scopus 로고    scopus 로고
    • Chebyshev inequality for q-integrals
    • Yan, T.S.; Ouyang, Y. Chebyshev inequality for q-integrals. Int. J. Approx. Reason. 2019, 106, 146-154. [CrossRef]
    • (2019) Int. J. Approx. Reason. , vol.106 , pp. 146-154
    • Yan, T.S.1    Ouyang, Y.2
  • 30
    • 85075368219 scopus 로고    scopus 로고
    • Classification of spatio-temporal trajectories from Volunteer Geographic Information through fuzzy rules
    • Cuenca-Jara, J.; Terroso-Saenz, F.; Valdes-Vela, M.; Skarmeta, A.F. Classification of spatio-temporal trajectories from Volunteer Geographic Information through fuzzy rules. Appl. Soft Comput. 2020, 86, 105916. [CrossRef]
    • (2020) Appl. Soft Comput. , vol.86 , pp. 105916
    • Cuenca-Jara, J.1    Terroso-Saenz, F.2    Valdes-Vela, M.3    Skarmeta, A.F.4
  • 31
    • 85049592549 scopus 로고    scopus 로고
    • Supervised methods for regrouping attributes in fuzzy rule-based classification systems
    • Slima, I.B.; Borgi, A. Supervised methods for regrouping attributes in fuzzy rule-based classification systems. Appl. Intell. 2018, 48, 4577-4593. [CrossRef]
    • (2018) Appl. Intell. , vol.48 , pp. 4577-4593
    • Slima, I.B.1    Borgi, A.2
  • 32
    • 85075406899 scopus 로고    scopus 로고
    • Network intrusion data analysis via consistency subset evaluator with ID3, C4.5 and best-first trees
    • Ooi, S.Y.; Leong, Y.M.; Lim, M.F.; Tiew, H.K.; Pang, Y.H. Network intrusion data analysis via consistency subset evaluator with ID3, C4.5 and best-first trees. Int. J. Comput. Sci. Netw. Secur. 2013, 13, 7-13.
    • (2013) Int. J. Comput. Sci. Netw. Secur. , vol.13 , pp. 7-13
    • Ooi, S.Y.1    Leong, Y.M.2    Lim, M.F.3    Tiew, H.K.4    Pang, Y.H.5
  • 33
    • 85071149433 scopus 로고    scopus 로고
    • Intensity and stationarity analysis of land use change based on cart algorithm
    • Sang, X.; Guo, Q.Z.; Wu, X.X.; Fu, Y.; Xie, T.Y.; He, C.W.; Zang, J.L. Intensity and stationarity analysis of land use change based on cart algorithm. Sci. Rep. 2019, 9, 12279. [CrossRef] [PubMed]
    • (2019) Sci. Rep. , vol.9 , pp. 12279
    • Sang, X.1    Guo, Q.Z.2    Wu, X.X.3    Fu, Y.4    Xie, T.Y.5    He, C.W.6    Zang, J.L.7
  • 34
    • 85042608881 scopus 로고    scopus 로고
    • Remote sensing image land type data mining based on QUEST decision tree
    • Wen, Y. Remote sensing image land type data mining based on QUEST decision tree. Clust. Comput. J. Netw. Softw. Tools Appl. 2019, 22, 8437-8443. [CrossRef]
    • (2019) Clust. Comput. J. Netw. Softw. Tools Appl. , vol.22 , pp. 8437-8443
    • Wen, Y.1
  • 35
    • 84983535145 scopus 로고    scopus 로고
    • A computational intelligence technique for the effective diagnosis of diabetic patients using principal component analysis (PCA) and modified fuzzy SLIQ decision tree approach
    • Varma, K.V.S.R.P.; Rao, A.A.; Mahalakshmi, T.S.; Rao, P.V.N. A computational intelligence technique for the effective diagnosis of diabetic patients using principal component analysis (PCA) and modified fuzzy SLIQ decision tree approach. Appl. Soft Comput. 2016, 49, 137-145.
    • (2016) Appl. Soft Comput. , vol.49 , pp. 137-145
    • Varma, K.V.S.R.P.1    Rao, A.A.2    Mahalakshmi, T.S.3    Rao, P.V.N.4
  • 36
    • 85086012565 scopus 로고    scopus 로고
    • accessed on 15 April 2019
    • Quinlan, J. See5.0. Available online: http://rulequest.com/see5-info.html (accessed on 15 April 2019).
    • See5.0
    • Quinlan, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.