메뉴 건너뛰기




Volumn 11363 LNCS, Issue , 2019, Pages 622-637

GANomaly: Semi-supervised Anomaly Detection via Adversarial Training

Author keywords

Anomaly detection; Generative Adversarial Networks; Semi supervised learning; X ray security imagery

Indexed keywords

COMPUTER VISION; MACHINE LEARNING; NETWORK CODING; SUPERVISED LEARNING;

EID: 85067239111     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-030-20893-6_39     Document Type: Conference Paper
Times cited : (1214)

References (40)
  • 2
    • 84964414633 scopus 로고    scopus 로고
    • Fraud detection system: A survey
    • Abdallah, A., Maarof, M.A., Zainal, A.: Fraud detection system: a survey. J. Netw. Comput. Appl. 68, 90–113 (2016). https://doi.org/10.1016/J.JNCA.2016.04.007. https://www.sciencedirect.com/science/article/pii/S1084804516300571
    • (2016) J. Netw. Comput. Appl. , vol.68 , pp. 90-113
    • Abdallah, A.1    Maarof, M.A.2    Zainal, A.3
  • 3
    • 84950263717 scopus 로고    scopus 로고
    • A survey of anomaly detection techniques in financial domain
    • Ahmed, M., Mahmood, A.N., Islam, M.R.: A survey of anomaly detection techniques in financial domain. Future Gener. Comput. Syst. 55, 278–288 (2016). https://doi.org/10.1016/J.FUTURE.2015.01.001. https://www.sciencedir ect.com/science/article/pii/S0167739X15000023
    • (2016) Future Gener. Comput. Syst. , vol.55 , pp. 278-288
    • Ahmed, M.1    Mahmood, A.N.2    Islam, M.R.3
  • 4
    • 84950256593 scopus 로고    scopus 로고
    • A survey of network anomaly detection techniques
    • Ahmed, M., Naser Mahmood, A., Hu, J.: A survey of network anomaly detection techniques. J. Netw. Comput. Appl. 60, 19–31 (2016). https://doi.org/10.1016/J.JNCA.2015.11.016. https://www.sciencedirect.com/science/article/pii/S1084804515002891
    • (2016) J. Netw. Comput. Appl. , vol.60 , pp. 19-31
    • Ahmed, M.1    Naser Mahmood, A.2    Hu, J.3
  • 5
    • 85042851554 scopus 로고    scopus 로고
    • Using deep convolutional neural network architectures for object classification and detection within X-ray baggage security imagery
    • Akcay, S., Kundegorski, M.E., Willcocks, C.G., Breckon, T.P.: Using deep convolutional neural network architectures for object classification and detection within X-ray baggage security imagery. IEEE Trans. Inf. Forensics Secur. 13(9), 2203– 2215 (2018). https://doi.org/10.1109/TIFS.2018.2812196
    • (2018) IEEE Trans. Inf. Forensics Secur. , vol.13 , Issue.9 , pp. 2203-2215
    • Akcay, S.1    Kundegorski, M.E.2    Willcocks, C.G.3    Breckon, T.P.4
  • 6
    • 85028452847 scopus 로고    scopus 로고
    • Variational autoencoder based anomaly detection using reconstruction probability
    • An, J., Cho, S.: Variational autoencoder based anomaly detection using reconstruction probability. Spec. Lect. IE 2, 1–18 (2015)
    • (2015) Spec. Lect. IE , vol.2 , pp. 1-18
    • An, J.1    Cho, S.2
  • 7
    • 85081997770 scopus 로고    scopus 로고
    • Towards principled methods for training generative adversarial networks
    • April
    • Arjovsky, M., Bottou, L.: Towards principled methods for training generative adversarial networks. In: 2017 ICLR, April 2017. http://arxiv.org/abs/1701.04862
    • (2017) 2017 ICLR
    • Arjovsky, M.1    Bottou, L.2
  • 9
    • 68049121093 scopus 로고    scopus 로고
    • Anomaly detection
    • Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection. ACM Comput. Surv. 41(3), 1–58 (2009). https://doi.org/10.1145/1541880.1541882
    • (2009) ACM Comput. Surv. , vol.41 , Issue.3 , pp. 1-58
    • Chandola, V.1    Banerjee, A.2    Kumar, V.3
  • 10
    • 85019228440 scopus 로고    scopus 로고
    • InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets
    • pp
    • Chen, X., et al.: InfoGAN: interpretable representation learning by information maximizing generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2172–2180 (2016)
    • (2016) Advances in Neural Information Processing Systems , pp. 2172-2180
    • Chen, X.1
  • 19
    • 7544223741 scopus 로고    scopus 로고
    • A survey of outlier detection methodologies
    • Hodge, V., Austin, J.: A survey of outlier detection methodologies. Artif. Intell. Rev. 22(2), 85–126 (2004). https://doi.org/10.1023/B:AIRE.0000045502.10941.a9
    • (2004) Artif. Intell. Rev. , vol.22 , Issue.2 , pp. 85-126
    • Hodge, V.1    Austin, J.2
  • 20
    • 84969584486 scopus 로고    scopus 로고
    • Batch normalization: Accelerating deep network training by reducing internal covariate shift
    • pp., Lille, France, 07–09 July 2015
    • Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456, Lille, France, 07–09 July 2015. http://proceedings.mlr.press/v37/ioffe15.html
    • In: Proceedings of the 32Nd International Conference on Machine Learning , pp. 448-456
    • Ioffe, S.1    Szegedy, C.2
  • 23
    • 85056774690 scopus 로고    scopus 로고
    • An overview of deep learning based methods for unsupervised and semi-supervised anomaly detection in videos
    • Kiran, B.R., Thomas, D.M., Parakkal, R.: An overview of deep learning based methods for unsupervised and semi-supervised anomaly detection in videos. J. Imaging 4(2), 36 (2018)
    • (2018) J. Imaging , vol.4 , Issue.2 , pp. 36
    • Kiran, B.R.1    Thomas, D.M.2    Parakkal, R.3
  • 26
    • 85144245575 scopus 로고    scopus 로고
    • Precise recovery of latent vectors from generative adversarial networks
    • Lipton, Z.C., Tripathi, S.: Precise recovery of latent vectors from generative adversarial networks. In: ICLR Workshop (2017)
    • (2017) ICLR Workshop
    • Lipton, Z.C.1    Tripathi, S.2
  • 28
    • 0142063407 scopus 로고    scopus 로고
    • Novelty detection: A review-part 1: Statistical approaches
    • Markou, M., Singh, S.: Novelty detection: a review-part 1: statistical approaches. Signal Process. 83(12), 2481–2497 (2003). https://doi.org/10.1016/J.SIGPRO. 2003.07.018. https://www.sciencedirect.com/science/article/pii/S016516840300 2020
    • (2003) Signal Process , vol.83 , Issue.12 , pp. 2481-2497
    • Markou, M.1    Singh, S.2
  • 29
    • 0142126712 scopus 로고    scopus 로고
    • Novelty detection: A review-part 2: Neural network based approaches
    • Markou, M., Singh, S.: Novelty detection: a review-part 2: neural network based approaches. Signal Process. 83(12), 2499–2521 (2003). https://doi.org/10.1016/J.SIGPRO.2003.07.019. https://www.sciencedirect.com/science/article/pii/S0165 168403002032
    • (2003) Signal Process , vol.83 , Issue.12 , pp. 2499-2521
    • Markou, M.1    Singh, S.2
  • 30
    • 85039901892 scopus 로고    scopus 로고
    • Anomaly detection in video using predictive convolutional long short-term memory networks
    • Medel, J.R., Savakis, A.: Anomaly detection in video using predictive convolutional long short-term memory networks. CoRR abs/1612.0 (2016)
    • (2016) Corr Abs/1612
    • Medel, J.R.1    Savakis, A.2
  • 35
    • 85062206366 scopus 로고    scopus 로고
    • Training adversarial discrim-inators for cross-channel abnormal event detection in crowds
    • Ravanbakhsh, M., Sangineto, E., Nabi, M., Sebe, N.: Training adversarial discrim-inators for cross-channel abnormal event detection in crowds. CoRR abs/1706.0 (2017). http://arxiv.org/abs/1706.07680
    • (2017) Corr Abs/1706 , pp. 0
    • Ravanbakhsh, M.1    Sangineto, E.2    Nabi, M.3    Sebe, N.4
  • 36
    • 85011617327 scopus 로고    scopus 로고
    • Automated X-ray image analysis for cargo security: Critical review and future promise
    • Rogers, T.W., Jaccard, N., Morton, E.J., Griffin, L.D.: Automated X-ray image analysis for cargo security: critical review and future promise. J. X-Ray Sci. Technol. (Prepr.) 25, 1–24 (2016)
    • (2016) J. X-Ray Sci. Technol. (Prepr.) , vol.25 , pp. 1-24
    • Rogers, T.W.1    Jaccard, N.2    Morton, E.J.3    Griffin, L.D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.