-
2
-
-
84964414633
-
Fraud detection system: A survey
-
Abdallah, A., Maarof, M.A., Zainal, A.: Fraud detection system: a survey. J. Netw. Comput. Appl. 68, 90–113 (2016). https://doi.org/10.1016/J.JNCA.2016.04.007. https://www.sciencedirect.com/science/article/pii/S1084804516300571
-
(2016)
J. Netw. Comput. Appl.
, vol.68
, pp. 90-113
-
-
Abdallah, A.1
Maarof, M.A.2
Zainal, A.3
-
3
-
-
84950263717
-
A survey of anomaly detection techniques in financial domain
-
Ahmed, M., Mahmood, A.N., Islam, M.R.: A survey of anomaly detection techniques in financial domain. Future Gener. Comput. Syst. 55, 278–288 (2016). https://doi.org/10.1016/J.FUTURE.2015.01.001. https://www.sciencedir ect.com/science/article/pii/S0167739X15000023
-
(2016)
Future Gener. Comput. Syst.
, vol.55
, pp. 278-288
-
-
Ahmed, M.1
Mahmood, A.N.2
Islam, M.R.3
-
4
-
-
84950256593
-
A survey of network anomaly detection techniques
-
Ahmed, M., Naser Mahmood, A., Hu, J.: A survey of network anomaly detection techniques. J. Netw. Comput. Appl. 60, 19–31 (2016). https://doi.org/10.1016/J.JNCA.2015.11.016. https://www.sciencedirect.com/science/article/pii/S1084804515002891
-
(2016)
J. Netw. Comput. Appl.
, vol.60
, pp. 19-31
-
-
Ahmed, M.1
Naser Mahmood, A.2
Hu, J.3
-
5
-
-
85042851554
-
Using deep convolutional neural network architectures for object classification and detection within X-ray baggage security imagery
-
Akcay, S., Kundegorski, M.E., Willcocks, C.G., Breckon, T.P.: Using deep convolutional neural network architectures for object classification and detection within X-ray baggage security imagery. IEEE Trans. Inf. Forensics Secur. 13(9), 2203– 2215 (2018). https://doi.org/10.1109/TIFS.2018.2812196
-
(2018)
IEEE Trans. Inf. Forensics Secur.
, vol.13
, Issue.9
, pp. 2203-2215
-
-
Akcay, S.1
Kundegorski, M.E.2
Willcocks, C.G.3
Breckon, T.P.4
-
6
-
-
85028452847
-
Variational autoencoder based anomaly detection using reconstruction probability
-
An, J., Cho, S.: Variational autoencoder based anomaly detection using reconstruction probability. Spec. Lect. IE 2, 1–18 (2015)
-
(2015)
Spec. Lect. IE
, vol.2
, pp. 1-18
-
-
An, J.1
Cho, S.2
-
7
-
-
85081997770
-
Towards principled methods for training generative adversarial networks
-
April
-
Arjovsky, M., Bottou, L.: Towards principled methods for training generative adversarial networks. In: 2017 ICLR, April 2017. http://arxiv.org/abs/1701.04862
-
(2017)
2017 ICLR
-
-
Arjovsky, M.1
Bottou, L.2
-
8
-
-
85047016172
-
Wasserstein generative adversarial networks
-
August
-
Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: Proceedings of the 34th International Conference on Machine Learning, pp. 214–223, Sydney, Australia, 06–11 August 2017. http://proceedings.mlr.press/v70/arjovsky17a.html
-
(2017)
Proceedings of the 34Th International Conference on Machine Learning, Pp. 214–223, Sydney, Australia, 06–11
-
-
Arjovsky, M.1
Chintala, S.2
Bottou, L.3
-
9
-
-
68049121093
-
Anomaly detection
-
Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection. ACM Comput. Surv. 41(3), 1–58 (2009). https://doi.org/10.1145/1541880.1541882
-
(2009)
ACM Comput. Surv.
, vol.41
, Issue.3
, pp. 1-58
-
-
Chandola, V.1
Banerjee, A.2
Kumar, V.3
-
10
-
-
85019228440
-
InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets
-
pp
-
Chen, X., et al.: InfoGAN: interpretable representation learning by information maximizing generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2172–2180 (2016)
-
(2016)
Advances in Neural Information Processing Systems
, pp. 2172-2180
-
-
Chen, X.1
-
12
-
-
85040689867
-
Generative adversarial networks: An overview
-
Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., Bharath, A.A.: Generative adversarial networks: an overview. IEEE Signal Process. Mag. 35(1), 53–65 (2018)
-
(2018)
IEEE Signal Process. Mag.
, vol.35
, Issue.1
, pp. 53-65
-
-
Creswell, A.1
White, T.2
Dumoulin, V.3
Arulkumaran, K.4
Sengupta, B.5
Bharath, A.A.6
-
14
-
-
85072112813
-
Adversarial feature learning
-
Toulon, France, April
-
Donahue, J., Krähenbühl, P., Darrell, T.: Adversarial feature learning. In: International Conference on Learning Representations (ICLR), Toulon, France, April 2017. http://arxiv.org/abs/1605.09782
-
(2017)
International Conference on Learning Representations (ICLR)
-
-
Donahue, J.1
Krähenbühl, P.2
Darrell, T.3
-
17
-
-
85047004943
-
Improved training of Wasserstein GANs
-
pp
-
Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of Wasserstein GANs. In: Advances in Neural Information Processing Systems, pp. 5767–5777 (2017)
-
(2017)
Advances in Neural Information Processing Systems
, pp. 5767-5777
-
-
Gulrajani, I.1
Ahmed, F.2
Arjovsky, M.3
Dumoulin, V.4
Courville, A.C.5
-
18
-
-
84986265779
-
Learning temporal regularity in video sequences
-
pp
-
Hasan, M., Choi, J., Neumann, J., Roy-Chowdhury, A.K., Davis, L.S.: Learning temporal regularity in video sequences. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 733–742 (2016)
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 733-742
-
-
Hasan, M.1
Choi, J.2
Neumann, J.3
Roy-Chowdhury, A.K.4
Davis, L.S.5
-
19
-
-
7544223741
-
A survey of outlier detection methodologies
-
Hodge, V., Austin, J.: A survey of outlier detection methodologies. Artif. Intell. Rev. 22(2), 85–126 (2004). https://doi.org/10.1023/B:AIRE.0000045502.10941.a9
-
(2004)
Artif. Intell. Rev.
, vol.22
, Issue.2
, pp. 85-126
-
-
Hodge, V.1
Austin, J.2
-
20
-
-
84969584486
-
Batch normalization: Accelerating deep network training by reducing internal covariate shift
-
pp., Lille, France, 07–09 July 2015
-
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456, Lille, France, 07–09 July 2015. http://proceedings.mlr.press/v37/ioffe15.html
-
In: Proceedings of the 32Nd International Conference on Machine Learning
, pp. 448-456
-
-
Ioffe, S.1
Szegedy, C.2
-
21
-
-
85030759098
-
Image-to-image translation with conditional adversarial networks
-
pp., July
-
Isola, P., Zhu, J., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5967–5976, July 2017. https://doi.org/10.1109/CVPR.2017.632
-
(2017)
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 5967-5976
-
-
Isola, P.1
Zhu, J.2
Zhou, T.3
Efros, A.A.4
-
23
-
-
85056774690
-
An overview of deep learning based methods for unsupervised and semi-supervised anomaly detection in videos
-
Kiran, B.R., Thomas, D.M., Parakkal, R.: An overview of deep learning based methods for unsupervised and semi-supervised anomaly detection in videos. J. Imaging 4(2), 36 (2018)
-
(2018)
J. Imaging
, vol.4
, Issue.2
, pp. 36
-
-
Kiran, B.R.1
Thomas, D.M.2
Parakkal, R.3
-
26
-
-
85144245575
-
Precise recovery of latent vectors from generative adversarial networks
-
Lipton, Z.C., Tripathi, S.: Precise recovery of latent vectors from generative adversarial networks. In: ICLR Workshop (2017)
-
(2017)
ICLR Workshop
-
-
Lipton, Z.C.1
Tripathi, S.2
-
27
-
-
84987948522
-
-
ICLR
-
Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., Frey, B.: Adversarial autoencoders. In: ICLR (2016)
-
(2016)
Adversarial Autoencoders
-
-
Makhzani, A.1
Shlens, J.2
Jaitly, N.3
Goodfellow, I.4
Frey, B.5
-
28
-
-
0142063407
-
Novelty detection: A review-part 1: Statistical approaches
-
Markou, M., Singh, S.: Novelty detection: a review-part 1: statistical approaches. Signal Process. 83(12), 2481–2497 (2003). https://doi.org/10.1016/J.SIGPRO. 2003.07.018. https://www.sciencedirect.com/science/article/pii/S016516840300 2020
-
(2003)
Signal Process
, vol.83
, Issue.12
, pp. 2481-2497
-
-
Markou, M.1
Singh, S.2
-
29
-
-
0142126712
-
Novelty detection: A review-part 2: Neural network based approaches
-
Markou, M., Singh, S.: Novelty detection: a review-part 2: neural network based approaches. Signal Process. 83(12), 2499–2521 (2003). https://doi.org/10.1016/J.SIGPRO.2003.07.019. https://www.sciencedirect.com/science/article/pii/S0165 168403002032
-
(2003)
Signal Process
, vol.83
, Issue.12
, pp. 2499-2521
-
-
Markou, M.1
Singh, S.2
-
30
-
-
85039901892
-
Anomaly detection in video using predictive convolutional long short-term memory networks
-
Medel, J.R., Savakis, A.: Anomaly detection in video using predictive convolutional long short-term memory networks. CoRR abs/1612.0 (2016)
-
(2016)
Corr Abs/1612
-
-
Medel, J.R.1
Savakis, A.2
-
33
-
-
84893296219
-
A review of novelty detection
-
Pimentel, M.A., Clifton, D.A., Clifton, L., Tarassenko, L.: A review of novelty detection. Signal Process. 99, 215–249 (2014)
-
(2014)
Signal Process
, vol.99
, pp. 215-249
-
-
Pimentel, M.A.1
Clifton, D.A.2
Clifton, L.3
Tarassenko, L.4
-
35
-
-
85062206366
-
Training adversarial discrim-inators for cross-channel abnormal event detection in crowds
-
Ravanbakhsh, M., Sangineto, E., Nabi, M., Sebe, N.: Training adversarial discrim-inators for cross-channel abnormal event detection in crowds. CoRR abs/1706.0 (2017). http://arxiv.org/abs/1706.07680
-
(2017)
Corr Abs/1706
, pp. 0
-
-
Ravanbakhsh, M.1
Sangineto, E.2
Nabi, M.3
Sebe, N.4
-
36
-
-
85011617327
-
Automated X-ray image analysis for cargo security: Critical review and future promise
-
Rogers, T.W., Jaccard, N., Morton, E.J., Griffin, L.D.: Automated X-ray image analysis for cargo security: critical review and future promise. J. X-Ray Sci. Technol. (Prepr.) 25, 1–24 (2016)
-
(2016)
J. X-Ray Sci. Technol. (Prepr.)
, vol.25
, pp. 1-24
-
-
Rogers, T.W.1
Jaccard, N.2
Morton, E.J.3
Griffin, L.D.4
-
37
-
-
84951976062
-
Real-time anomaly detection and localization in crowded scenes
-
Sabokrou, M., Fathy, M., Hoseini, M., Klette, R.: Real-time anomaly detection and localization in crowded scenes. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 56–62 (2015). https://doi.org/10. 1109/CVPRW.2015.7301284, http://ieeexplore.ieee.org/document/7301284/
-
(2015)
2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
, pp. 56-62
-
-
Sabokrou, M.1
Fathy, M.2
Hoseini, M.3
Klette, R.4
-
38
-
-
85018875486
-
Improved techniques for training GANs
-
pp
-
Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. In: Advances in Neural Information Processing Systems, pp. 2234–2242 (2016)
-
(2016)
Advances in Neural Information Processing Systems
, pp. 2234-2242
-
-
Salimans, T.1
Goodfellow, I.2
Zaremba, W.3
Cheung, V.4
Radford, A.5
Chen, X.6
-
39
-
-
85020524815
-
-
Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol., pp.,. Springer, Cham
-
Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G.: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 146–157. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9 12
-
(2017)
Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery
, vol.10265
, pp. 146-157
-
-
Schlegl, T.1
Seeböck, P.2
Waldstein, S.M.3
Schmidt-Erfurth, U.4
Langs, G.5
-
40
-
-
85057000290
-
-
arXiv preprint arXiv
-
Zenati, H., Foo, C.S., Lecouat, B., Manek, G., Chandrasekhar, V.R.: Efficient GAN-based anomaly detection. arXiv preprint arXiv:1802.06222 (2018)
-
(2018)
Efficient Gan-Based Anomaly Detection
-
-
Zenati, H.1
Foo, C.S.2
Lecouat, B.3
Manek, G.4
Chandrasekhar, V.R.5
|