메뉴 건너뛰기




Volumn 2017-January, Issue , 2017, Pages 5967-5976

Image-to-image translation with conditional adversarial networks

Author keywords

[No Author keywords available]

Indexed keywords

MAPPING;

EID: 85030759098     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2017.632     Document Type: Conference Paper
Times cited : (15051)

References (61)
  • 1
    • 85044546226 scopus 로고    scopus 로고
    • Accessed, 2017-04-21. 8
    • Bertrand gondouin. https://twitter.com/bgondouin/status/818571935529377792. Accessed, 2017-04-21. 8
    • Bertrand Gondouin
  • 2
    • 85044525485 scopus 로고    scopus 로고
    • Brannon dorsey. Accessed, 2017-04-21. 8
    • Brannon dorsey. https://twitter.com/brannondorsey/status/806283494041223168. Accessed, 2017-04-21. 8
  • 3
    • 85044503615 scopus 로고    scopus 로고
    • Accessed: 2017-04-21. 8
    • Christopher hesse. https://affinelayer.com/pixsrv/. Accessed: 2017-04-21. 8
    • Christopher Hesse
  • 4
    • 85044507568 scopus 로고    scopus 로고
    • Accessed: 2017-04-21. 8
    • Jack qiao. http://colormind.io/blog/. Accessed: 2017-04-21. 8
    • Jack Qiao
  • 5
    • 85044535369 scopus 로고    scopus 로고
    • Accessed, 2017-04-21. 8
    • Jasper van loenen. https://jaspervanloenen.com/neural-city/. Accessed, 2017-04-21. 8
    • Jasper Van Loenen
  • 6
    • 85044510079 scopus 로고    scopus 로고
    • Accessed, 2017-04-21. 8
    • Kaihu chen. http://www.terraai.org/imageops/index.html. Accessed, 2017-04-21. 8
    • Kaihu Chen
  • 7
    • 85044532331 scopus 로고    scopus 로고
    • Accessed, 2017-04-21. 8
    • Mario klingemann. https://twitter.com/quasimondo/status/826065030944870400. Accessed, 2017-04-21. 8
    • Mario Klingemann
  • 8
    • 24644478715 scopus 로고    scopus 로고
    • A non-local algorithm for image denoising
    • In IEEE, 1
    • A. Buades, B. Coll, and J.-M. Morel. A non-local algorithm for image denoising. In CVPR, volume 2, pages 60-65. IEEE, 2005. 1
    • (2005) CVPR , vol.2 , pp. 60-65
    • Buades, A.1    Coll, B.2    Morel, J.-M.3
  • 9
    • 85083954148 scopus 로고    scopus 로고
    • Semantic image segmentation with deep convolutional nets and fully connected crfs
    • In 2
    • L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Semantic image segmentation with deep convolutional nets and fully connected crfs. In ICLR, 2015. 2
    • (2015) ICLR
    • Chen, L.-C.1    Papandreou, G.2    Kokkinos, I.3    Murphy, K.4    Yuille, A.L.5
  • 12
    • 84965143571 scopus 로고    scopus 로고
    • Deep generative image models using alaplacian pyramid of adversarial networks
    • 2
    • E. L. Denton, S. Chintala, R. Fergus, et al. Deep generative image models using alaplacian pyramid of adversarial networks. In NIPS, pages 1486-1494, 2015. 2
    • (2015) NIPS , pp. 1486-1494
    • Denton, E.L.1    Chintala, S.2    Fergus, R.3
  • 14
    • 0035148826 scopus 로고    scopus 로고
    • Image quilting for texture synthesis and transfer
    • In ACM, 1, 4
    • A. A. Efros and W. T. Freeman. Image quilting for texture synthesis and transfer. In SIGGRAPH, pages 341-346. ACM, 2001. 1, 4
    • (2001) SIGGRAPH , pp. 341-346
    • Efros, A.A.1    Freeman, W.T.2
  • 15
    • 0033285309 scopus 로고    scopus 로고
    • Texture synthesis by nonparametric sampling
    • In IEEE, 4
    • A. A. Efros and T. K. Leung. Texture synthesis by nonparametric sampling. In ICCV, volume 2, pages 1033-1038. IEEE, 1999. 4
    • (1999) ICCV , vol.2 , pp. 1033-1038
    • Efros, A.A.1    Leung, T.K.2
  • 16
    • 84973897611 scopus 로고    scopus 로고
    • Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture
    • In 1
    • D. Eigen and R. Fergus. Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In Proceedings of the IEEE International Conference on Computer Vision, pages 2650-2658, 2015. 1
    • (2015) Proceedings of The IEEE International Conference on Computer Vision , pp. 2650-2658
    • Eigen, D.1    Fergus, R.2
  • 17
    • 84870175866 scopus 로고    scopus 로고
    • How do humans sketch objects?
    • 4, 8
    • M. Eitz, J. Hays, and M. Alexa. How do humans sketch objects? SIGGRAPH, 31(4):44-1, 2012. 4, 8
    • (2012) SIGGRAPH , vol.31 , Issue.4 , pp. 44-51
    • Eitz, M.1    Hays, J.2    Alexa, M.3
  • 20
    • 84986325538 scopus 로고    scopus 로고
    • Image style transfer using convolutional neural networks
    • 4
    • L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer using convolutional neural networks. CVPR, 2016. 4
    • (2016) CVPR
    • Gatys, L.A.1    Ecker, A.S.2    Bethge, M.3
  • 24
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • 3
    • G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786):504-507, 2006. 3
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 25
    • 84980049328 scopus 로고    scopus 로고
    • Let there be Color!: Joint End-to-end Learning of Global and Local Image Priors for Automatic Image Colorization with Simultaneous Classification
    • 2
    • S. Iizuka, E. Simo-Serra, and H. Ishikawa. Let there be Color!: Joint End-to-end Learning of Global and Local Image Priors for Automatic Image Colorization with Simultaneous Classification. ACM Transactions on Graphics (TOG), 35(4), 2016. 2
    • (2016) ACM Transactions on Graphics (TOG) , vol.35 , Issue.4
    • Iizuka, S.1    Simo-Serra, E.2    Ishikawa, H.3
  • 29
    • 85083951076 scopus 로고    scopus 로고
    • A method for stochastic optimization
    • 4
    • D. Kingma and J. Ba. Adam: A method for stochastic optimization. ICLR, 2015. 4
    • (2015) ICLR
    • Kingma, D.1    Adam, J.Ba.2
  • 30
    • 84905741277 scopus 로고    scopus 로고
    • Transient attributes for high-level understanding and editing of outdoor scenes
    • 1, 4
    • P.-Y. Laffont, Z. Ren, X. Tao, C. Qian, and J. Hays. Transient attributes for high-level understanding and editing of outdoor scenes. ACM Transactions on Graphics (TOG), 33(4):149, 2014. 1, 4
    • (2014) ACM Transactions on Graphics (TOG) , vol.33 , Issue.4 , pp. 149
    • Laffont, P.-Y.1    Ren, Z.2    Tao, X.3    Qian, C.4    Hays, J.5
  • 32
    • 85030792287 scopus 로고    scopus 로고
    • Learning representations for automatic colorization
    • 2, 7
    • G. Larsson, M. Maire, and G. Shakhnarovich. Learning representations for automatic colorization. ECCV, 2016. 2, 7
    • (2016) ECCV
    • Larsson, G.1    Maire, M.2    Shakhnarovich, G.3
  • 34
    • 84986290423 scopus 로고    scopus 로고
    • Combining markov random fields and convolutional neural networks for image synthesis
    • 2, 4
    • C. Li and M. Wand. Combining markov random fields and convolutional neural networks for image synthesis. CVPR, 2016. 2, 4
    • (2016) CVPR
    • Li, C.1    Wand, M.2
  • 35
    • 84990854650 scopus 로고    scopus 로고
    • Precomputed real-time texture synthesis with markovian generative adversarial networks
    • 2, 4
    • C. Li and M. Wand. Precomputed real-time texture synthesis with markovian generative adversarial networks. ECCV, 2016. 2, 4
    • (2016) ECCV
    • Li, C.1    Wand, M.2
  • 36
    • 84937144752 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation
    • In 1, 2, 4
    • J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR, pages 3431-3440, 2015. 1, 2, 4
    • (2015) CVPR , pp. 3431-3440
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 37
    • 85083952137 scopus 로고    scopus 로고
    • Deep multi-scale video prediction beyond mean square error
    • 2, 3
    • M. Mathieu, C. Couprie, and Y. LeCun. Deep multi-scale video prediction beyond mean square error. ICLR, 2016. 2, 3
    • (2016) ICLR
    • Mathieu, M.1    Couprie, C.2    LeCun, Y.3
  • 42
    • 85044520509 scopus 로고    scopus 로고
    • Spatial pattern templates for recognition of objects with regular structure
    • Saar-brucken, Germany, 4, 8
    • R. Š. Radim Tyleček. Spatial pattern templates for recognition of objects with regular structure. In Proc. GCPR, Saar-brucken, Germany, 2013. 4, 8
    • (2013) Proc. GCPR
    • Radim Tyleček, R.Š.1
  • 47
    • 84951834022 scopus 로고    scopus 로고
    • U-net: Convolutional networks for biomedical image segmentation
    • In Springer, 2, 3
    • O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. In MIC-CAI, pages 234-241. Springer, 2015. 2, 3
    • (2015) MIC-CAI , pp. 234-241
    • Ronneberger, O.1    Fischer, P.2    Brox, T.3
  • 50
    • 84887839353 scopus 로고    scopus 로고
    • Data-driven hallucination of different times of day from a single outdoor photo
    • 1
    • Y. Shih, S. Paris, F. Durand, and W. T. Freeman. Data-driven hallucination of different times of day from a single outdoor photo. ACM Transactions on Graphics (TOG), 32(6):200, 2013. 1
    • (2013) ACM Transactions on Graphics (TOG) , vol.32 , Issue.6 , pp. 200
    • Shih, Y.1    Paris, S.2    Durand, F.3    Freeman, W.T.4
  • 52
    • 84990022453 scopus 로고    scopus 로고
    • Generative image modeling using style and structure adversarial networks
    • 2, 3, 4
    • X. Wang and A. Gupta. Generative image modeling using style and structure adversarial networks. ECCV, 2016. 2, 3, 4
    • (2016) ECCV
    • Wang, X.1    Gupta, A.2
  • 55
    • 84973859794 scopus 로고    scopus 로고
    • Holistically-nested edge detection
    • In 1, 2, 4
    • S. Xie and Z. Tu. Holistically-nested edge detection. In ICCV, 2015. 1, 2, 4
    • (2015) ICCV
    • Xie, S.1    Tu, Z.2
  • 57
    • 84911374908 scopus 로고    scopus 로고
    • Fine-Grained Visual Comparisons with Local Learning
    • In 4
    • A. Yu and K. Grauman. Fine-Grained Visual Comparisons with Local Learning. In CVPR, 2014. 4
    • (2014) CVPR
    • Yu, A.1    Grauman, K.2
  • 58
    • 84990021580 scopus 로고    scopus 로고
    • Colorful image colorization
    • 1, 2, 4, 7
    • R. Zhang, P. Isola, and A. A. Efros. Colorful image colorization. ECCV, 2016. 1, 2, 4, 7
    • (2016) ECCV
    • Zhang, R.1    Isola, P.2    Efros, A.A.3
  • 60
    • 85019205829 scopus 로고    scopus 로고
    • Learning temporal transformations from time-lapse videos
    • In 2, 3, 7
    • Y. Zhou and T. L. Berg. Learning temporal transformations from time-lapse videos. In ECCV, 2016. 2, 3, 7
    • (2016) ECCV
    • Zhou, Y.1    Berg, T.L.2
  • 61
    • 85030465393 scopus 로고    scopus 로고
    • Generative visual manipulation on the natural image manifold
    • In 2, 4
    • J.-Y. Zhu, P. Krähenbühl, E. Shechtman, and A. A. Efros. Generative visual manipulation on the natural image manifold. In ECCV, 2016. 2, 4
    • (2016) ECCV
    • Zhu, J.-Y.1    Krähenbühl, P.2    Shechtman, E.3    Efros, A.A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.