메뉴 건너뛰기




Volumn 104, Issue , 2020, Pages

Lightweight convolutional neural network for vehicle recognition in thermal infrared images

Author keywords

Fire module; Lightweight CNN; Thermal infrared; Vehicle recognition

Indexed keywords

AUTOMOBILE DRIVERS; CONVOLUTION; EMBEDDED SYSTEMS; INFRARED DEVICES; INFRARED IMAGING; INFRARED RADIATION; TEMPERATURE INDICATING CAMERAS; VEHICLES;

EID: 85075777211     PISSN: 13504495     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.infrared.2019.103120     Document Type: Article
Times cited : (34)

References (27)
  • 1
    • 85054169001 scopus 로고    scopus 로고
    • HybridNet: a fast vehicle detection system for autonomous driving
    • Dai, X., HybridNet: a fast vehicle detection system for autonomous driving. Signal Process. Image Commun. 70 (2019), 79–88, 10.1016/j.image.2018.09.002.
    • (2019) Signal Process. Image Commun. , vol.70 , pp. 79-88
    • Dai, X.1
  • 2
    • 85021130949 scopus 로고    scopus 로고
    • Thermal-image processing and statistical analysis for vehicle category in nighttime traffic
    • Sangnoree, A., Chamnongthai, K., Thermal-image processing and statistical analysis for vehicle category in nighttime traffic. J. Vis. Commun. Image Represent. 48 (2017), 88–109, 10.1016/j.jvcir.2017.06.006.
    • (2017) J. Vis. Commun. Image Represent. , vol.48 , pp. 88-109
    • Sangnoree, A.1    Chamnongthai, K.2
  • 3
    • 85058484936 scopus 로고    scopus 로고
    • Near infrared nighttime road pedestrians recognition based on convolutional neural network
    • Dai, X., Duan, Y., Hu, J., et al. Near infrared nighttime road pedestrians recognition based on convolutional neural network. Infrared Phys. Technol. 97 (2019), 25–32, 10.1016/j.infrared.2018.11.028.
    • (2019) Infrared Phys. Technol. , vol.97 , pp. 25-32
    • Dai, X.1    Duan, Y.2    Hu, J.3
  • 4
    • 84992213083 scopus 로고    scopus 로고
    • InfAR dataset: infrared action recognition at different times
    • Gao, C., Du, Y., Liu, J., et al. InfAR dataset: infrared action recognition at different times. Neurocomputing 212 (2016), 36–47, 10.1016/j.neucom.2016.05.094.
    • (2016) Neurocomputing , vol.212 , pp. 36-47
    • Gao, C.1    Du, Y.2    Liu, J.3
  • 5
    • 85046832116 scopus 로고    scopus 로고
    • Deep learning approach for human action recognition in infrared images
    • Akula, A., Shah, A.K., Ghosh, R., Deep learning approach for human action recognition in infrared images. Cognit. Syst. Res. 50 (2018), 146–154, 10.1016/j.cogsys.2018.04.002.
    • (2018) Cognit. Syst. Res. , vol.50 , pp. 146-154
    • Akula, A.1    Shah, A.K.2    Ghosh, R.3
  • 6
    • 85046670648 scopus 로고    scopus 로고
    • Robust feature point detectors for car make recognition
    • Al-Maadeed, S., Boubezari, R., Kunhoth, S., et al. Robust feature point detectors for car make recognition. Comput. Ind. 100 (2018), 129–136, 10.1016/j.compind.2018.04.014.
    • (2018) Comput. Ind. , vol.100 , pp. 129-136
    • Al-Maadeed, S.1    Boubezari, R.2    Kunhoth, S.3
  • 7
    • 84955683269 scopus 로고    scopus 로고
    • Multilingual scene character recognition with co-occurrence of histogram of oriented gradients
    • Tian, S., Bhattacharya, U., Lu, S., et al. Multilingual scene character recognition with co-occurrence of histogram of oriented gradients. Pattern Recogn. 51 (2016), 125–134, 10.1016/j.patcog.2015.07.009.
    • (2016) Pattern Recogn. , vol.51 , pp. 125-134
    • Tian, S.1    Bhattacharya, U.2    Lu, S.3
  • 8
    • 84925364278 scopus 로고    scopus 로고
    • Vehicle make and model recognition using sparse representation and symmetrical SURFs
    • Chen, L., Hsieh, J., Yan, Y., et al. Vehicle make and model recognition using sparse representation and symmetrical SURFs. Pattern Recogn. 48 (2015), 1979–1998, 10.1016/j.patcog.2014.12.018.
    • (2015) Pattern Recogn. , vol.48 , pp. 1979-1998
    • Chen, L.1    Hsieh, J.2    Yan, Y.3
  • 9
    • 78649925358 scopus 로고    scopus 로고
    • Vehicle model recognition from frontal view image measurements
    • Psyllos, A., Anagnostopoulos, C.N., Kayafas, E., Vehicle model recognition from frontal view image measurements. Comput. Stand. Interfaces 33 (2011), 142–151, 10.1016/j.csi.2010.06.005.
    • (2011) Comput. Stand. Interfaces , vol.33 , pp. 142-151
    • Psyllos, A.1    Anagnostopoulos, C.N.2    Kayafas, E.3
  • 10
    • 85041633633 scopus 로고    scopus 로고
    • Multi-vehicle detection algorithm through combining Harr and HOG features
    • Wei, Y., Tian, Q., Guo, J., et al. Multi-vehicle detection algorithm through combining Harr and HOG features. Math. Comput. Simul 155 (2019), 130–145, 10.1016/j.matcom.2017.12.011.
    • (2019) Math. Comput. Simul , vol.155 , pp. 130-145
    • Wei, Y.1    Tian, Q.2    Guo, J.3
  • 11
    • 85061316338 scopus 로고    scopus 로고
    • Research on security of key algorithms in intelligent driving system
    • Liu, S., Wu, Y., Ji, Y., et al. Research on security of key algorithms in intelligent driving system. Chin. J. Electron. 28 (2019), 29–38, 10.1049/cje.2018.11.003.
    • (2019) Chin. J. Electron. , vol.28 , pp. 29-38
    • Liu, S.1    Wu, Y.2    Ji, Y.3
  • 12
    • 85029164121 scopus 로고    scopus 로고
    • A deep convolution neural network model for vehicle recognition and face recognition
    • Luo, X., Shen, R., Hu, J., et al. A deep convolution neural network model for vehicle recognition and face recognition. Procedia Comp. Sci. 107 (2017), 715–720, 10.1016/j.procs.2017.03.153.
    • (2017) Procedia Comp. Sci. , vol.107 , pp. 715-720
    • Luo, X.1    Shen, R.2    Hu, J.3
  • 13
    • 85060448922 scopus 로고    scopus 로고
    • Vehicle type detection based on deep learning in traffic scene
    • Li, S., Lin, J., Li, G., et al. Vehicle type detection based on deep learning in traffic scene. Procedia Comp. Sci. 131 (2018), 564–572, 10.1016/j.procs.2018.04.281.
    • (2018) Procedia Comp. Sci. , vol.131 , pp. 564-572
    • Li, S.1    Lin, J.2    Li, G.3
  • 14
    • 84893337971 scopus 로고    scopus 로고
    • Facial expression recognition using Deep Boltzmann machine from thermal infrared images, 2013 Humaine Association Conference on affective Computing and Intelligent Interaction (ACII), Geneva, Switzerland pp, 239–244
    • S. He, S. Wang, W. Lan, et al., Facial expression recognition using Deep Boltzmann machine from thermal infrared images, 2013 Humaine Association Conference on affective Computing and Intelligent Interaction (ACII), Geneva, Switzerland, 2013, pp, 239–244, https://doi.org/ 10.1109/ACII.2013.46.
    • He, S.1    Wang, S.2    Lan, W.3
  • 15
    • 85023191940 scopus 로고    scopus 로고
    • Deep learning for infrared thermal image based machine health monitoring
    • Janssens, O., Walle, R.V.D., Loccufier, M., et al. Deep learning for infrared thermal image based machine health monitoring. IEEE/ASME Trans. Mechatron. 23 (2018), 151–159, 10.1109/TMECH.2017.2722479.
    • (2018) IEEE/ASME Trans. Mechatron. , vol.23 , pp. 151-159
    • Janssens, O.1    Walle, R.V.D.2    Loccufier, M.3
  • 16
    • 85062778330 scopus 로고    scopus 로고
    • Application of deep learning in infrared non-destructive testing, 14th Quantitative InfraRed Thermography Conference, Berlin, Germany
    • B. Yousefi, D. Kalhor, R. Usamentiaga, et al., Application of deep learning in infrared non-destructive testing, 14th Quantitative InfraRed Thermography Conference, Berlin, Germany, 2018, pp. 97–105, https://doi.org/10.21611/qirt.2018.p27.
    • (2018) , pp. 97-105
    • Yousefi, B.1    Kalhor, D.2    Usamentiaga, R.3
  • 17
    • 85062039802 scopus 로고    scopus 로고
    • Lightweight convolutional neural network with SE module for image super-resolution
    • Wu, Y., Zhou, X., Liu, P., et al. Lightweight convolutional neural network with SE module for image super-resolution. Procedia Comp. Sci. 139 (2018), 144–150, 10.1016/j.procs.2018.10.230.
    • (2018) Procedia Comp. Sci. , vol.139 , pp. 144-150
    • Wu, Y.1    Zhou, X.2    Liu, P.3
  • 18
    • 85062299361 scopus 로고    scopus 로고
    • EdgeNet: SqueezeNet like Convolution Neural Network on Embedded FPGA, 2018 25th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Bordeaux
    • K. Pradeep, K. Kamalavasan, R. Nathecsan, et al., EdgeNet: SqueezeNet like Convolution Neural Network on Embedded FPGA, 2018 25th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Bordeaux, 2018, pp. 81–84, https://doi.org/10.1109/ICECS.2018.8617876.
    • (2018) , pp. 81-84
    • Pradeep, K.1    Kamalavasan, K.2    Nathecsan, R.3
  • 19
    • 85060848584 scopus 로고    scopus 로고
    • SqueezeNext: hardware-aware neural network design, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT
    • A. Gholami, K. Kwon, B. Wu, et al., SqueezeNext: hardware-aware neural network design, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, 2018, pp. 1719–1728, https://doi.org/10.1109/CVPRW.2018.00215.
    • (2018) , pp. 1719-1728
    • Gholami, A.1    Kwon, K.2    Wu, B.3
  • 20
    • 85075801249 scopus 로고    scopus 로고
    • Squeezenet: Alexnet-level accuracy with 50× fewer parameters and <1mb model size, CoRR, abs/1602.07360
    • F.N. Iandola, M.W. Moskewicz, K. Ashraf, et al., Squeezenet: Alexnet-level accuracy with 50× fewer parameters and <1mb model size, CoRR, abs/1602.07360, 2016, https://arxiv.org/abs/1602.07360.
    • (2016)
    • Iandola, F.N.1    Moskewicz, M.W.2    Ashraf, K.3
  • 21
    • 85058693500 scopus 로고    scopus 로고
    • An automatic traffic density estimation using Single Shot Detection (SSD) and MobileNet-SSD
    • Biswas, D., Su, H., Wang, C., et al. An automatic traffic density estimation using Single Shot Detection (SSD) and MobileNet-SSD. Phys. Chem. Earth. 110 (2018), 176–184, 10.1016/j.pce.2018.12.001.
    • (2018) Phys. Chem. Earth. , vol.110 , pp. 176-184
    • Biswas, D.1    Su, H.2    Wang, C.3
  • 22
    • 85061081999 scopus 로고    scopus 로고
    • ShuffleNet: an extremely efficient convolutional neural network for mobile devices, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT
    • X. Zhang, X. Zhou, M. Lin, et al., ShuffleNet: an extremely efficient convolutional neural network for mobile devices, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, 2018, pp. 6848–6856, https://doi.org/10.1109/CVPR.2018.00716.
    • (2018) , pp. 6848-6856
    • Zhang, X.1    Zhou, X.2    Lin, M.3
  • 23
    • 85040604274 scopus 로고    scopus 로고
    • Xception: deep learning with depthwise separable convolutions, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI
    • F. Chollet, Xception: deep learning with depthwise separable convolutions, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, 2017, pp. 1800–1807, https://doi.org/10.1109/CVPR.2017.195.
    • (2017) , pp. 1800-1807
    • Chollet, F.1
  • 24
    • 85059613413 scopus 로고    scopus 로고
    • Hybrid pooling for enhancement of generalization ability in deep convolutional neural networks
    • Tong, Z., Tanaka, G., Hybrid pooling for enhancement of generalization ability in deep convolutional neural networks. Neurocomputing 333 (2019), 76–85, 10.1016/j.neucom.2018.12.036.
    • (2019) Neurocomputing , vol.333 , pp. 76-85
    • Tong, Z.1    Tanaka, G.2
  • 25
    • 85059446493 scopus 로고    scopus 로고
    • A comparison of deep networks with ReLU activation function and linear spline-type methods
    • Konstantin, E., Johannes, S., A comparison of deep networks with ReLU activation function and linear spline-type methods. Neural Networks 110 (2019), 232–242, 10.1016/j.neunet.2018.11.005.
    • (2019) Neural Networks , vol.110 , pp. 232-242
    • Konstantin, E.1    Johannes, S.2
  • 26
    • 85052280827 scopus 로고    scopus 로고
    • Semantic softmax loss for zero-shot learning
    • Ji, Z., Sun, Y., Yu, Y., et al. Semantic softmax loss for zero-shot learning. Neurocomputing 316 (2018), 369–375, 10.1016/j.neucom.2018.08.014.
    • (2018) Neurocomputing , vol.316 , pp. 369-375
    • Ji, Z.1    Sun, Y.2    Yu, Y.3
  • 27
    • 85061981927 scopus 로고    scopus 로고
    • Filter-based deep-compression with global average pooling for convolutional networks
    • Hsiao, T., Chang, Y., Chou, H., et al. Filter-based deep-compression with global average pooling for convolutional networks. J. Syst. Archit. 95 (2019), 9–18, 10.1016/j.sysarc.2019.02.008.
    • (2019) J. Syst. Archit. , vol.95 , pp. 9-18
    • Hsiao, T.1    Chang, Y.2    Chou, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.