-
1
-
-
85054169001
-
HybridNet: a fast vehicle detection system for autonomous driving
-
Dai, X., HybridNet: a fast vehicle detection system for autonomous driving. Signal Process. Image Commun. 70 (2019), 79–88, 10.1016/j.image.2018.09.002.
-
(2019)
Signal Process. Image Commun.
, vol.70
, pp. 79-88
-
-
Dai, X.1
-
2
-
-
85021130949
-
Thermal-image processing and statistical analysis for vehicle category in nighttime traffic
-
Sangnoree, A., Chamnongthai, K., Thermal-image processing and statistical analysis for vehicle category in nighttime traffic. J. Vis. Commun. Image Represent. 48 (2017), 88–109, 10.1016/j.jvcir.2017.06.006.
-
(2017)
J. Vis. Commun. Image Represent.
, vol.48
, pp. 88-109
-
-
Sangnoree, A.1
Chamnongthai, K.2
-
3
-
-
85058484936
-
Near infrared nighttime road pedestrians recognition based on convolutional neural network
-
Dai, X., Duan, Y., Hu, J., et al. Near infrared nighttime road pedestrians recognition based on convolutional neural network. Infrared Phys. Technol. 97 (2019), 25–32, 10.1016/j.infrared.2018.11.028.
-
(2019)
Infrared Phys. Technol.
, vol.97
, pp. 25-32
-
-
Dai, X.1
Duan, Y.2
Hu, J.3
-
4
-
-
84992213083
-
InfAR dataset: infrared action recognition at different times
-
Gao, C., Du, Y., Liu, J., et al. InfAR dataset: infrared action recognition at different times. Neurocomputing 212 (2016), 36–47, 10.1016/j.neucom.2016.05.094.
-
(2016)
Neurocomputing
, vol.212
, pp. 36-47
-
-
Gao, C.1
Du, Y.2
Liu, J.3
-
5
-
-
85046832116
-
Deep learning approach for human action recognition in infrared images
-
Akula, A., Shah, A.K., Ghosh, R., Deep learning approach for human action recognition in infrared images. Cognit. Syst. Res. 50 (2018), 146–154, 10.1016/j.cogsys.2018.04.002.
-
(2018)
Cognit. Syst. Res.
, vol.50
, pp. 146-154
-
-
Akula, A.1
Shah, A.K.2
Ghosh, R.3
-
6
-
-
85046670648
-
Robust feature point detectors for car make recognition
-
Al-Maadeed, S., Boubezari, R., Kunhoth, S., et al. Robust feature point detectors for car make recognition. Comput. Ind. 100 (2018), 129–136, 10.1016/j.compind.2018.04.014.
-
(2018)
Comput. Ind.
, vol.100
, pp. 129-136
-
-
Al-Maadeed, S.1
Boubezari, R.2
Kunhoth, S.3
-
7
-
-
84955683269
-
Multilingual scene character recognition with co-occurrence of histogram of oriented gradients
-
Tian, S., Bhattacharya, U., Lu, S., et al. Multilingual scene character recognition with co-occurrence of histogram of oriented gradients. Pattern Recogn. 51 (2016), 125–134, 10.1016/j.patcog.2015.07.009.
-
(2016)
Pattern Recogn.
, vol.51
, pp. 125-134
-
-
Tian, S.1
Bhattacharya, U.2
Lu, S.3
-
8
-
-
84925364278
-
Vehicle make and model recognition using sparse representation and symmetrical SURFs
-
Chen, L., Hsieh, J., Yan, Y., et al. Vehicle make and model recognition using sparse representation and symmetrical SURFs. Pattern Recogn. 48 (2015), 1979–1998, 10.1016/j.patcog.2014.12.018.
-
(2015)
Pattern Recogn.
, vol.48
, pp. 1979-1998
-
-
Chen, L.1
Hsieh, J.2
Yan, Y.3
-
9
-
-
78649925358
-
Vehicle model recognition from frontal view image measurements
-
Psyllos, A., Anagnostopoulos, C.N., Kayafas, E., Vehicle model recognition from frontal view image measurements. Comput. Stand. Interfaces 33 (2011), 142–151, 10.1016/j.csi.2010.06.005.
-
(2011)
Comput. Stand. Interfaces
, vol.33
, pp. 142-151
-
-
Psyllos, A.1
Anagnostopoulos, C.N.2
Kayafas, E.3
-
10
-
-
85041633633
-
Multi-vehicle detection algorithm through combining Harr and HOG features
-
Wei, Y., Tian, Q., Guo, J., et al. Multi-vehicle detection algorithm through combining Harr and HOG features. Math. Comput. Simul 155 (2019), 130–145, 10.1016/j.matcom.2017.12.011.
-
(2019)
Math. Comput. Simul
, vol.155
, pp. 130-145
-
-
Wei, Y.1
Tian, Q.2
Guo, J.3
-
11
-
-
85061316338
-
Research on security of key algorithms in intelligent driving system
-
Liu, S., Wu, Y., Ji, Y., et al. Research on security of key algorithms in intelligent driving system. Chin. J. Electron. 28 (2019), 29–38, 10.1049/cje.2018.11.003.
-
(2019)
Chin. J. Electron.
, vol.28
, pp. 29-38
-
-
Liu, S.1
Wu, Y.2
Ji, Y.3
-
12
-
-
85029164121
-
A deep convolution neural network model for vehicle recognition and face recognition
-
Luo, X., Shen, R., Hu, J., et al. A deep convolution neural network model for vehicle recognition and face recognition. Procedia Comp. Sci. 107 (2017), 715–720, 10.1016/j.procs.2017.03.153.
-
(2017)
Procedia Comp. Sci.
, vol.107
, pp. 715-720
-
-
Luo, X.1
Shen, R.2
Hu, J.3
-
13
-
-
85060448922
-
Vehicle type detection based on deep learning in traffic scene
-
Li, S., Lin, J., Li, G., et al. Vehicle type detection based on deep learning in traffic scene. Procedia Comp. Sci. 131 (2018), 564–572, 10.1016/j.procs.2018.04.281.
-
(2018)
Procedia Comp. Sci.
, vol.131
, pp. 564-572
-
-
Li, S.1
Lin, J.2
Li, G.3
-
14
-
-
84893337971
-
-
Facial expression recognition using Deep Boltzmann machine from thermal infrared images, 2013 Humaine Association Conference on affective Computing and Intelligent Interaction (ACII), Geneva, Switzerland pp, 239–244
-
S. He, S. Wang, W. Lan, et al., Facial expression recognition using Deep Boltzmann machine from thermal infrared images, 2013 Humaine Association Conference on affective Computing and Intelligent Interaction (ACII), Geneva, Switzerland, 2013, pp, 239–244, https://doi.org/ 10.1109/ACII.2013.46.
-
-
-
He, S.1
Wang, S.2
Lan, W.3
-
15
-
-
85023191940
-
Deep learning for infrared thermal image based machine health monitoring
-
Janssens, O., Walle, R.V.D., Loccufier, M., et al. Deep learning for infrared thermal image based machine health monitoring. IEEE/ASME Trans. Mechatron. 23 (2018), 151–159, 10.1109/TMECH.2017.2722479.
-
(2018)
IEEE/ASME Trans. Mechatron.
, vol.23
, pp. 151-159
-
-
Janssens, O.1
Walle, R.V.D.2
Loccufier, M.3
-
16
-
-
85062778330
-
-
Application of deep learning in infrared non-destructive testing, 14th Quantitative InfraRed Thermography Conference, Berlin, Germany
-
B. Yousefi, D. Kalhor, R. Usamentiaga, et al., Application of deep learning in infrared non-destructive testing, 14th Quantitative InfraRed Thermography Conference, Berlin, Germany, 2018, pp. 97–105, https://doi.org/10.21611/qirt.2018.p27.
-
(2018)
, pp. 97-105
-
-
Yousefi, B.1
Kalhor, D.2
Usamentiaga, R.3
-
17
-
-
85062039802
-
Lightweight convolutional neural network with SE module for image super-resolution
-
Wu, Y., Zhou, X., Liu, P., et al. Lightweight convolutional neural network with SE module for image super-resolution. Procedia Comp. Sci. 139 (2018), 144–150, 10.1016/j.procs.2018.10.230.
-
(2018)
Procedia Comp. Sci.
, vol.139
, pp. 144-150
-
-
Wu, Y.1
Zhou, X.2
Liu, P.3
-
18
-
-
85062299361
-
-
EdgeNet: SqueezeNet like Convolution Neural Network on Embedded FPGA, 2018 25th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Bordeaux
-
K. Pradeep, K. Kamalavasan, R. Nathecsan, et al., EdgeNet: SqueezeNet like Convolution Neural Network on Embedded FPGA, 2018 25th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Bordeaux, 2018, pp. 81–84, https://doi.org/10.1109/ICECS.2018.8617876.
-
(2018)
, pp. 81-84
-
-
Pradeep, K.1
Kamalavasan, K.2
Nathecsan, R.3
-
19
-
-
85060848584
-
-
SqueezeNext: hardware-aware neural network design, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT
-
A. Gholami, K. Kwon, B. Wu, et al., SqueezeNext: hardware-aware neural network design, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, 2018, pp. 1719–1728, https://doi.org/10.1109/CVPRW.2018.00215.
-
(2018)
, pp. 1719-1728
-
-
Gholami, A.1
Kwon, K.2
Wu, B.3
-
20
-
-
85075801249
-
-
Squeezenet: Alexnet-level accuracy with 50× fewer parameters and <1mb model size, CoRR, abs/1602.07360
-
F.N. Iandola, M.W. Moskewicz, K. Ashraf, et al., Squeezenet: Alexnet-level accuracy with 50× fewer parameters and <1mb model size, CoRR, abs/1602.07360, 2016, https://arxiv.org/abs/1602.07360.
-
(2016)
-
-
Iandola, F.N.1
Moskewicz, M.W.2
Ashraf, K.3
-
21
-
-
85058693500
-
An automatic traffic density estimation using Single Shot Detection (SSD) and MobileNet-SSD
-
Biswas, D., Su, H., Wang, C., et al. An automatic traffic density estimation using Single Shot Detection (SSD) and MobileNet-SSD. Phys. Chem. Earth. 110 (2018), 176–184, 10.1016/j.pce.2018.12.001.
-
(2018)
Phys. Chem. Earth.
, vol.110
, pp. 176-184
-
-
Biswas, D.1
Su, H.2
Wang, C.3
-
22
-
-
85061081999
-
-
ShuffleNet: an extremely efficient convolutional neural network for mobile devices, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT
-
X. Zhang, X. Zhou, M. Lin, et al., ShuffleNet: an extremely efficient convolutional neural network for mobile devices, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, 2018, pp. 6848–6856, https://doi.org/10.1109/CVPR.2018.00716.
-
(2018)
, pp. 6848-6856
-
-
Zhang, X.1
Zhou, X.2
Lin, M.3
-
23
-
-
85040604274
-
-
Xception: deep learning with depthwise separable convolutions, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI
-
F. Chollet, Xception: deep learning with depthwise separable convolutions, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, 2017, pp. 1800–1807, https://doi.org/10.1109/CVPR.2017.195.
-
(2017)
, pp. 1800-1807
-
-
Chollet, F.1
-
24
-
-
85059613413
-
Hybrid pooling for enhancement of generalization ability in deep convolutional neural networks
-
Tong, Z., Tanaka, G., Hybrid pooling for enhancement of generalization ability in deep convolutional neural networks. Neurocomputing 333 (2019), 76–85, 10.1016/j.neucom.2018.12.036.
-
(2019)
Neurocomputing
, vol.333
, pp. 76-85
-
-
Tong, Z.1
Tanaka, G.2
-
25
-
-
85059446493
-
A comparison of deep networks with ReLU activation function and linear spline-type methods
-
Konstantin, E., Johannes, S., A comparison of deep networks with ReLU activation function and linear spline-type methods. Neural Networks 110 (2019), 232–242, 10.1016/j.neunet.2018.11.005.
-
(2019)
Neural Networks
, vol.110
, pp. 232-242
-
-
Konstantin, E.1
Johannes, S.2
-
26
-
-
85052280827
-
Semantic softmax loss for zero-shot learning
-
Ji, Z., Sun, Y., Yu, Y., et al. Semantic softmax loss for zero-shot learning. Neurocomputing 316 (2018), 369–375, 10.1016/j.neucom.2018.08.014.
-
(2018)
Neurocomputing
, vol.316
, pp. 369-375
-
-
Ji, Z.1
Sun, Y.2
Yu, Y.3
-
27
-
-
85061981927
-
Filter-based deep-compression with global average pooling for convolutional networks
-
Hsiao, T., Chang, Y., Chou, H., et al. Filter-based deep-compression with global average pooling for convolutional networks. J. Syst. Archit. 95 (2019), 9–18, 10.1016/j.sysarc.2019.02.008.
-
(2019)
J. Syst. Archit.
, vol.95
, pp. 9-18
-
-
Hsiao, T.1
Chang, Y.2
Chou, H.3
|