메뉴 건너뛰기




Volumn 19, Issue 7, 2019, Pages

A novel deep learning method for intelligent fault diagnosis of rotating machinery based on improved CNN-SVM and multichannel data fusion

Author keywords

Convolutional neural network; Data fusion; Deep learning; Global average pooling; Intelligent fault diagnosis; Multichannel; Rotating machinery; Support vector machine

Indexed keywords

BACKPROPAGATION; CONVOLUTION; DATA FUSION; DATA MINING; DEEP LEARNING; FAILURE ANALYSIS; NEAREST NEIGHBOR SEARCH; NEURAL NETWORKS; ROLLER BEARINGS; ROTATING MACHINERY; SUPPORT VECTOR MACHINES;

EID: 85064722120     PISSN: 14248220     EISSN: None     Source Type: Journal    
DOI: 10.3390/s19071693     Document Type: Article
Times cited : (202)

References (52)
  • 1
    • 85042943940 scopus 로고    scopus 로고
    • Artificial intelligence for fault diagnosis of rotating machinery: A review
    • Liu, R.; Yang, B.; Zio, E.; Chen, X. Artificial intelligence for fault diagnosis of rotating machinery: A review. Mech. Syst. Signal Process. 2018, 108, 33–47. [CrossRef]
    • (2018) Mech. Syst. Signal Process. , vol.108 , pp. 33-47
    • Liu, R.1    Yang, B.2    Zio, E.3    Chen, X.4
  • 2
    • 85028727944 scopus 로고    scopus 로고
    • A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load
    • Zhang, W.; Li, C.; Peng, G.; Chen, Y.; Zhang, Z. A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load. Mech. Syst. Signal Process. 2018, 100, 439–453. [CrossRef]
    • (2018) Mech. Syst. Signal Process. , vol.100 , pp. 439-453
    • Zhang, W.1    Li, C.2    Peng, G.3    Chen, Y.4    Zhang, Z.5
  • 3
    • 85032874032 scopus 로고    scopus 로고
    • A novel method for intelligent fault diagnosis of rolling bearings using ensemble deep auto-encoders
    • Shao, H.; Jiang, H.; Ying, L.; Li, X. A novel method for intelligent fault diagnosis of rolling bearings using ensemble deep auto-encoders. Mech. Syst. Signal Process. 2018, 102, 278–297. [CrossRef]
    • (2018) Mech. Syst. Signal Process. , vol.102 , pp. 278-297
    • Shao, H.1    Jiang, H.2    Ying, L.3    Li, X.4
  • 4
    • 85028941380 scopus 로고    scopus 로고
    • Fault diagnosis for rotating machinery using multiple sensors and convolutional neural networks
    • Xia, M.; Li, T.; Xu, L.; Liu, L.; de Silva, C.W. Fault diagnosis for rotating machinery using multiple sensors and convolutional neural networks. IEEE/ASME Trans. Mech. 2018, 23, 101–110. [CrossRef]
    • (2018) IEEE/ASME Trans. Mech. , vol.23 , pp. 101-110
    • Xia, M.1    Li, T.2    Xu, L.3    Liu, L.4    de Silva, C.W.5
  • 5
    • 84949999884 scopus 로고    scopus 로고
    • A deep learning-based method for machinery health monitoring with big data
    • Lei, Y.; Jia, F.; Zhou, X.; Lin, J. A deep learning-based method for machinery health monitoring with big data. J. Mech. Eng. 2015, 51, 49–56. [CrossRef]
    • (2015) J. Mech. Eng. , vol.51 , pp. 49-56
    • Lei, Y.1    Jia, F.2    Zhou, X.3    Lin, J.4
  • 6
    • 84988420204 scopus 로고    scopus 로고
    • A review of data driven-based incipient fault diagnosis
    • Wen, C.; Lv, F.; Bao, Z.; Liu, M. A review of data driven-based incipient fault diagnosis. Acta Autom. Sin. 2016, 42, 1285–1299.
    • (2016) Acta Autom. Sin. , vol.42 , pp. 1285-1299
    • Wen, C.1    Lv, F.2    Bao, Z.3    Liu, M.4
  • 7
    • 84919933755 scopus 로고    scopus 로고
    • Vibration spectrum imaging: A novel bearing fault classification approach
    • Amar, M.; Gondal, I.; Wilson, C. Vibration spectrum imaging: A novel bearing fault classification approach. IEEE Trans. Ind. Electron. 2015, 62, 494–502. [CrossRef]
    • (2015) IEEE Trans. Ind. Electron. , vol.62 , pp. 494-502
    • Amar, M.1    Gondal, I.2    Wilson, C.3
  • 8
    • 84920120340 scopus 로고    scopus 로고
    • Incipient fault detection and diagnosis based on Kullback-Leibler divergence using principal component analysis: Part II
    • Harmouche, J.; Delpha, C.; Diallo, D. Incipient fault detection and diagnosis based on Kullback-Leibler divergence using principal component analysis: Part II. Signal Process. 2015, 109, 334–344. [CrossRef]
    • (2015) Signal Process , vol.109 , pp. 334-344
    • Harmouche, J.1    Delpha, C.2    Diallo, D.3
  • 9
    • 84988407562 scopus 로고    scopus 로고
    • Incipient faults identification in gearbox by combining kurtogram and independent component analysis
    • Yu, G.; Xing, W.; Jing, N.; Rong, F.F. Incipient faults identification in gearbox by combining kurtogram and independent component analysis. Appl. Mech. Mater. 2015, 764, 309–313.
    • (2015) Appl. Mech. Mater. , vol.764 , pp. 309-313
    • Yu, G.1    Xing, W.2    Jing, N.3    Rong, F.F.4
  • 10
    • 85027970690 scopus 로고    scopus 로고
    • Model-based diagnosis and rul estimation of induction machines under inter-turn fault
    • Nguyen, V.H.; Seshadrinath, J.; Wang, D.; Nadarajan, S.; Vaiyapuri, V. Model-based diagnosis and rul estimation of induction machines under inter-turn fault. IEEE Trans. Ind. Appl. 2017, 53, 2690–2701. [CrossRef]
    • (2017) IEEE Trans. Ind. Appl. , vol.53 , pp. 2690-2701
    • Nguyen, V.H.1    Seshadrinath, J.2    Wang, D.3    Nadarajan, S.4    Vaiyapuri, V.5
  • 11
    • 85035107471 scopus 로고    scopus 로고
    • A new convolutional neural network-based data-driven fault diagnosis method
    • Wen, L.; Li, X.; Gao, L.; Zhang, Y. A new convolutional neural network-based data-driven fault diagnosis method. IEEE Trans. Ind. Electron. 2018, 65, 5990–5998. [CrossRef]
    • (2018) IEEE Trans. Ind. Electron. , vol.65 , pp. 5990-5998
    • Wen, L.1    Li, X.2    Gao, L.3    Zhang, Y.4
  • 12
    • 84995595621 scopus 로고    scopus 로고
    • Application analysis on vibration monitoring system of three gorges hydropower plant
    • Du, X.; Li, Z.; Chen, G.; Hu, J.; Hu, D. Application analysis on vibration monitoring system of three gorges hydropower plant. J. Hydroelectr. Eng. 2016, 35, 77–92.
    • (2016) J. Hydroelectr. Eng. , vol.35 , pp. 77-92
    • Du, X.1    Li, Z.2    Chen, G.3    Hu, J.4    Hu, D.5
  • 13
    • 0035273597 scopus 로고    scopus 로고
    • Application of the envelope and wavelet transform analyses for the diagnosis of incipient faults in ball bearings
    • Rubini, R.; Meneghetti, U. Application of the envelope and wavelet transform analyses for the diagnosis of incipient faults in ball bearings. Mech. Syst. Signal Process. 2001, 15, 287–302. [CrossRef]
    • (2001) Mech. Syst. Signal Process. , vol.15 , pp. 287-302
    • Rubini, R.1    Meneghetti, U.2
  • 15
    • 0033690512 scopus 로고    scopus 로고
    • New method for nonlinear and nonstationary time series analysis: Empirical mode decomposition and Hilbert spectral analysis
    • Huang, N.E. New method for nonlinear and nonstationary time series analysis: Empirical mode decomposition and Hilbert spectral analysis. Proc. SPIE 2000, 4056, 197–209.
    • (2000) Proc. SPIE , vol.4056 , pp. 197-209
    • Huang, N.E.1
  • 16
    • 85057871275 scopus 로고    scopus 로고
    • Fault diagnosis method for rolling bearings based on short-time Fourier transform and convolution neural network
    • Li, H.; Zhang, Q.; Qin, X.; Sun, Y. Fault diagnosis method for rolling bearings based on short-time Fourier transform and convolution neural network. J. Vib. Shock 2018, 37, 124–131.
    • (2018) J. Vib. Shock , vol.37 , pp. 124-131
    • Li, H.1    Zhang, Q.2    Qin, X.3    Sun, Y.4
  • 17
    • 33646519024 scopus 로고    scopus 로고
    • A roller bearing fault diagnosis method based on EMD energy entropy and ANN
    • Yu, Y.; Yu, D.; Cheng, J. A roller bearing fault diagnosis method based on EMD energy entropy and ANN. J. Sound Vib. 2006, 294, 269–277. [CrossRef]
    • (2006) J. Sound Vib. , vol.294 , pp. 269-277
    • Yu, Y.1    Yu, D.2    Cheng, J.3
  • 18
    • 84922888685 scopus 로고    scopus 로고
    • Fault diagnosis of automobile hydraulic brake system using statistical features and support vector machines
    • Jegadeeshwaran, R.; Sugumaran, V. Fault diagnosis of automobile hydraulic brake system using statistical features and support vector machines. Mech. Syst. Signal Process. 2015, 52, 436–446. [CrossRef]
    • (2015) Mech. Syst. Signal Process. , vol.52 , pp. 436-446
    • Jegadeeshwaran, R.1    Sugumaran, V.2
  • 19
    • 85051398540 scopus 로고    scopus 로고
    • Railway rolling bearing fault diagnosis based on muti-scale IMF permutation entropy and SA-SVM Classifier
    • Yao, D.; Yang, J.; Cheng, X.; Wang, X. Railway rolling bearing fault diagnosis based on muti-scale IMF permutation entropy and SA-SVM Classifier. J. Mech. Eng. 2018, 54, 168–176. [CrossRef]
    • (2018) J. Mech. Eng. , vol.54 , pp. 168-176
    • Yao, D.1    Yang, J.2    Cheng, X.3    Wang, X.4
  • 21
    • 85059507164 scopus 로고    scopus 로고
    • Adaptive fault diagnosis algorithm for rolling bearings based on one-dimensional convolutional neural network
    • Qu, J.; Yu, L.; Yuan, T.; Tian, Y.; Gao, F. Adaptive fault diagnosis algorithm for rolling bearings based on one-dimensional convolutional neural network. Chin. J. Sci. Instrum. 2018, 39, 134–143.
    • (2018) Chin. J. Sci. Instrum. , vol.39 , pp. 134-143
    • Qu, J.1    Yu, L.2    Yuan, T.3    Tian, Y.4    Gao, F.5
  • 22
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton, G.; Salakhutdinov, R. Reducing the dimensionality of data with neural networks. Science 2006, 313, 504–507. [CrossRef]
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.1    Salakhutdinov, R.2
  • 24
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: An overview
    • Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [CrossRef]
    • (2015) Neural Netw , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 25
  • 26
    • 85030174593 scopus 로고    scopus 로고
    • Image based fruit category classification by 13-layer deep convolutional neural network and data augmentation
    • Zhang, Y.; Dong, Z.; Chen, X.; Jia, W.; Du, S.; Muhammad, K.; Wang, S. Image based fruit category classification by 13-layer deep convolutional neural network and data augmentation. Multimedia Tools Appl. 2019, 78, 3613–3632. [CrossRef]
    • (2019) Multimedia Tools Appl , vol.78 , pp. 3613-3632
    • Zhang, Y.1    Dong, Z.2    Chen, X.3    Jia, W.4    Du, S.5    Muhammad, K.6    Wang, S.7
  • 27
    • 85051085274 scopus 로고    scopus 로고
    • Recent trends in deep learning based natural language processing
    • Young, T.; Hazarika, D.; Poria, S.; Cambria, E. Recent trends in deep learning based natural language processing. IEEE Comput. Intell. Mag. 2018, 13, 55–75. [CrossRef]
    • (2018) IEEE Comput. Intell. Mag. , vol.13 , pp. 55-75
    • Young, T.1    Hazarika, D.2    Poria, S.3    Cambria, E.4
  • 28
    • 84955693855 scopus 로고    scopus 로고
    • Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data
    • Jiao, F.; Lei, Y.; Lin, J. Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data. Mech. Syst. Signal Process. 2016, 72, 303–315. [CrossRef]
    • (2016) Mech. Syst. Signal Process. , vol.72 , pp. 303-315
    • Jiao, F.1    Lei, Y.2    Lin, J.3
  • 29
    • 84875848937 scopus 로고    scopus 로고
    • Failure diagnosis using deep belief learning based health state classification
    • Tamilselvan, P.; Wang, P. Failure diagnosis using deep belief learning based health state classification. Reliab. Eng. Syst. Saf. 2013, 115, 124–135. [CrossRef]
    • (2013) Reliab. Eng. Syst. Saf. , vol.115 , pp. 124-135
    • Tamilselvan, P.1    Wang, P.2
  • 30
    • 84969220093 scopus 로고    scopus 로고
    • Bearing fault identification based on deep belief network
    • Li, W.; Shan, W.; Zeng, X. Bearing fault identification based on deep belief network. J. Vib. Eng. 2016, 29, 340–347.
    • (2016) J. Vib. Eng. , vol.29 , pp. 340-347
    • Li, W.1    Shan, W.2    Zeng, X.3
  • 31
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [CrossRef]
    • (1998) Proc. IEEE , vol.86 , pp. 2278-2324
    • Lecun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 32
    • 85037847842 scopus 로고    scopus 로고
    • Deep learning enabled fault diagnosis using time-frequency image analysis of rolling element bearings
    • David, V.; Ferrada, A.; Droguett, E.; Viviana, M.; Mohammad, M. Deep learning enabled fault diagnosis using time-frequency image analysis of rolling element bearings. Shock Vib. 2017, 2017, 1–17.
    • (2017) Shock Vib , vol.2017 , pp. 1-17
    • David, V.1    Ferrada, A.2    Droguett, E.3    Viviana, M.4    Mohammad, M.5
  • 35
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
    • (2015) Nature , vol.521 , pp. 436-444
    • Lecun, Y.1    Bengio, Y.2    Hinton, G.3
  • 36
    • 84903724014 scopus 로고    scopus 로고
    • Deep learning: Methods and applications
    • Deng, L.; Yu, D. Deep learning: methods and applications. Found. Trends Signal Process. 2014, 7, 197–387. [CrossRef]
    • (2014) Found. Trends Signal Process , vol.7 , pp. 197-387
    • Deng, L.1    Yu, D.2
  • 39
    • 85044172793 scopus 로고    scopus 로고
    • Asynchronous motor fault diagnosis based on convolutional neural network
    • Wang, L.; Xie, Y.; Zhou, Z. Asynchronous motor fault diagnosis based on convolutional neural network. J. Vib. Meas. Diagn. 2017, 6, 1208–1215.
    • (2017) J. Vib. Meas. Diagn. , vol.6 , pp. 1208-1215
    • Wang, L.1    Xie, Y.2    Zhou, Z.3
  • 41
    • 84974822424 scopus 로고    scopus 로고
    • Text classification based on deep belief network and softmax regression
    • Jiang, M.; Liang, Y.; Feng, X.; Fan, X.; Pei, Z.; Xue, Y.; Guan, R. Text classification based on deep belief network and softmax regression. Neural Comput. Appl. 2018, 29, 61–70. [CrossRef]
    • (2018) Neural Comput. Appl. , vol.29 , pp. 61-70
    • Jiang, M.1    Liang, Y.2    Feng, X.3    Fan, X.4    Pei, Z.5    Xue, Y.6    Guan, R.7
  • 42
    • 84869174596 scopus 로고    scopus 로고
    • Cambridge University Press: Cambridge, UK
    • Flach, P. Machine Learning; Cambridge University Press: Cambridge, UK, 2012.
    • (2012) Machine Learning
    • Flach, P.1
  • 44
    • 85044258456 scopus 로고    scopus 로고
    • Rolling element bearing fault diagnosis using convolutional neural network and vibration image
    • Hoang, D.; Kang, H. Rolling element bearing fault diagnosis using convolutional neural network and vibration image. Cognit. Syst. Res. 2019, 53, 42–50. [CrossRef]
    • (2019) Cognit. Syst. Res. , vol.53 , pp. 42-50
    • Hoang, D.1    Kang, H.2
  • 45
    • 85065776262 scopus 로고    scopus 로고
    • Ph.D. Thesis, Ocean University of China, Shandong province, China
    • Chen, Q. Research Related to Support Vector Machines. Ph.D. Thesis, Ocean University of China, Shandong province, China, 2011.
    • (2011) Research Related to Support Vector Machines
    • Chen, Q.1
  • 46
    • 85064688248 scopus 로고    scopus 로고
    • Alcoholism identification via convolutional neural network based on parametric ReLU, dropout, and batch normalization
    • Wang, S.; Muhammad, K.; Hong, J.; Sangaiah, A.; Zhang, Y. Alcoholism identification via convolutional neural network based on parametric ReLU, dropout, and batch normalization. Neural Comput. Appl. 2018, 6, 1–16. [CrossRef]
    • (2018) Neural Comput. Appl. , vol.6 , pp. 1-16
    • Wang, S.1    Muhammad, K.2    Hong, J.3    Sangaiah, A.4    Zhang, Y.5
  • 47
    • 85030256427 scopus 로고    scopus 로고
    • Training object detection and recognition CNN models using data augmentation
    • Montserrat, D.M.; Qian, L.; Allebach, J.; Delp, E. Training object detection and recognition CNN models using data augmentation. Electron. Imaging 2017, 2017, 27–36. [CrossRef]
    • (2017) Electron. Imaging , vol.2017 , pp. 27-36
    • Montserrat, D.M.1    Qian, L.2    Allebach, J.3    Delp, E.4
  • 50
    • 84942037542 scopus 로고    scopus 로고
    • Multi-objective optimization of bonding head based on sensitivity and analytic hierarchy process
    • Gong, W.; Huang, M.; Zhang, M.; Mo, Q. Multi-objective optimization of bonding head based on sensitivity and analytic hierarchy process. J. Vib. Shock 2015, 34, 128–134.
    • (2015) J. Vib. Shock , vol.34 , pp. 128-134
    • Gong, W.1    Huang, M.2    Zhang, M.3    Mo, Q.4
  • 51
    • 85065773650 scopus 로고    scopus 로고
    • Bearing Data Center. Available online: http://csegroups.case.edu/bearingdatacenter/home (accessed on 20 October 2018).
  • 52
    • 84979085360 scopus 로고    scopus 로고
    • Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis
    • Guo, X.; Chen, L.; Shen, C. Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis. Measurement 2016, 93, 490–502. [CrossRef]
    • (2016) Measurement , vol.93 , pp. 490-502
    • Guo, X.1    Chen, L.2    Shen, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.