-
1
-
-
85042943940
-
Artificial intelligence for fault diagnosis of rotating machinery: A review
-
Liu, R.; Yang, B.; Zio, E.; Chen, X. Artificial intelligence for fault diagnosis of rotating machinery: A review. Mech. Syst. Signal Process. 2018, 108, 33–47. [CrossRef]
-
(2018)
Mech. Syst. Signal Process.
, vol.108
, pp. 33-47
-
-
Liu, R.1
Yang, B.2
Zio, E.3
Chen, X.4
-
2
-
-
85028727944
-
A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load
-
Zhang, W.; Li, C.; Peng, G.; Chen, Y.; Zhang, Z. A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load. Mech. Syst. Signal Process. 2018, 100, 439–453. [CrossRef]
-
(2018)
Mech. Syst. Signal Process.
, vol.100
, pp. 439-453
-
-
Zhang, W.1
Li, C.2
Peng, G.3
Chen, Y.4
Zhang, Z.5
-
3
-
-
85032874032
-
A novel method for intelligent fault diagnosis of rolling bearings using ensemble deep auto-encoders
-
Shao, H.; Jiang, H.; Ying, L.; Li, X. A novel method for intelligent fault diagnosis of rolling bearings using ensemble deep auto-encoders. Mech. Syst. Signal Process. 2018, 102, 278–297. [CrossRef]
-
(2018)
Mech. Syst. Signal Process.
, vol.102
, pp. 278-297
-
-
Shao, H.1
Jiang, H.2
Ying, L.3
Li, X.4
-
4
-
-
85028941380
-
Fault diagnosis for rotating machinery using multiple sensors and convolutional neural networks
-
Xia, M.; Li, T.; Xu, L.; Liu, L.; de Silva, C.W. Fault diagnosis for rotating machinery using multiple sensors and convolutional neural networks. IEEE/ASME Trans. Mech. 2018, 23, 101–110. [CrossRef]
-
(2018)
IEEE/ASME Trans. Mech.
, vol.23
, pp. 101-110
-
-
Xia, M.1
Li, T.2
Xu, L.3
Liu, L.4
de Silva, C.W.5
-
5
-
-
84949999884
-
A deep learning-based method for machinery health monitoring with big data
-
Lei, Y.; Jia, F.; Zhou, X.; Lin, J. A deep learning-based method for machinery health monitoring with big data. J. Mech. Eng. 2015, 51, 49–56. [CrossRef]
-
(2015)
J. Mech. Eng.
, vol.51
, pp. 49-56
-
-
Lei, Y.1
Jia, F.2
Zhou, X.3
Lin, J.4
-
6
-
-
84988420204
-
A review of data driven-based incipient fault diagnosis
-
Wen, C.; Lv, F.; Bao, Z.; Liu, M. A review of data driven-based incipient fault diagnosis. Acta Autom. Sin. 2016, 42, 1285–1299.
-
(2016)
Acta Autom. Sin.
, vol.42
, pp. 1285-1299
-
-
Wen, C.1
Lv, F.2
Bao, Z.3
Liu, M.4
-
7
-
-
84919933755
-
Vibration spectrum imaging: A novel bearing fault classification approach
-
Amar, M.; Gondal, I.; Wilson, C. Vibration spectrum imaging: A novel bearing fault classification approach. IEEE Trans. Ind. Electron. 2015, 62, 494–502. [CrossRef]
-
(2015)
IEEE Trans. Ind. Electron.
, vol.62
, pp. 494-502
-
-
Amar, M.1
Gondal, I.2
Wilson, C.3
-
8
-
-
84920120340
-
Incipient fault detection and diagnosis based on Kullback-Leibler divergence using principal component analysis: Part II
-
Harmouche, J.; Delpha, C.; Diallo, D. Incipient fault detection and diagnosis based on Kullback-Leibler divergence using principal component analysis: Part II. Signal Process. 2015, 109, 334–344. [CrossRef]
-
(2015)
Signal Process
, vol.109
, pp. 334-344
-
-
Harmouche, J.1
Delpha, C.2
Diallo, D.3
-
9
-
-
84988407562
-
Incipient faults identification in gearbox by combining kurtogram and independent component analysis
-
Yu, G.; Xing, W.; Jing, N.; Rong, F.F. Incipient faults identification in gearbox by combining kurtogram and independent component analysis. Appl. Mech. Mater. 2015, 764, 309–313.
-
(2015)
Appl. Mech. Mater.
, vol.764
, pp. 309-313
-
-
Yu, G.1
Xing, W.2
Jing, N.3
Rong, F.F.4
-
10
-
-
85027970690
-
Model-based diagnosis and rul estimation of induction machines under inter-turn fault
-
Nguyen, V.H.; Seshadrinath, J.; Wang, D.; Nadarajan, S.; Vaiyapuri, V. Model-based diagnosis and rul estimation of induction machines under inter-turn fault. IEEE Trans. Ind. Appl. 2017, 53, 2690–2701. [CrossRef]
-
(2017)
IEEE Trans. Ind. Appl.
, vol.53
, pp. 2690-2701
-
-
Nguyen, V.H.1
Seshadrinath, J.2
Wang, D.3
Nadarajan, S.4
Vaiyapuri, V.5
-
11
-
-
85035107471
-
A new convolutional neural network-based data-driven fault diagnosis method
-
Wen, L.; Li, X.; Gao, L.; Zhang, Y. A new convolutional neural network-based data-driven fault diagnosis method. IEEE Trans. Ind. Electron. 2018, 65, 5990–5998. [CrossRef]
-
(2018)
IEEE Trans. Ind. Electron.
, vol.65
, pp. 5990-5998
-
-
Wen, L.1
Li, X.2
Gao, L.3
Zhang, Y.4
-
12
-
-
84995595621
-
Application analysis on vibration monitoring system of three gorges hydropower plant
-
Du, X.; Li, Z.; Chen, G.; Hu, J.; Hu, D. Application analysis on vibration monitoring system of three gorges hydropower plant. J. Hydroelectr. Eng. 2016, 35, 77–92.
-
(2016)
J. Hydroelectr. Eng.
, vol.35
, pp. 77-92
-
-
Du, X.1
Li, Z.2
Chen, G.3
Hu, J.4
Hu, D.5
-
13
-
-
0035273597
-
Application of the envelope and wavelet transform analyses for the diagnosis of incipient faults in ball bearings
-
Rubini, R.; Meneghetti, U. Application of the envelope and wavelet transform analyses for the diagnosis of incipient faults in ball bearings. Mech. Syst. Signal Process. 2001, 15, 287–302. [CrossRef]
-
(2001)
Mech. Syst. Signal Process.
, vol.15
, pp. 287-302
-
-
Rubini, R.1
Meneghetti, U.2
-
14
-
-
84870442060
-
Roller element bearing fault diagnosis using singular spectrum analysis
-
Muruganatham, B.; Sanjith, M.A.; Krishnakumar, B.; Murty, S.A.V.S. Roller element bearing fault diagnosis using singular spectrum analysis. Mech. Syst. Signal Process. 2013, 35, 150–166. [CrossRef]
-
(2013)
Mech. Syst. Signal Process.
, vol.35
, pp. 150-166
-
-
Muruganatham, B.1
Sanjith, M.A.2
Krishnakumar, B.3
Murty, S.A.V.S.4
-
15
-
-
0033690512
-
New method for nonlinear and nonstationary time series analysis: Empirical mode decomposition and Hilbert spectral analysis
-
Huang, N.E. New method for nonlinear and nonstationary time series analysis: Empirical mode decomposition and Hilbert spectral analysis. Proc. SPIE 2000, 4056, 197–209.
-
(2000)
Proc. SPIE
, vol.4056
, pp. 197-209
-
-
Huang, N.E.1
-
16
-
-
85057871275
-
Fault diagnosis method for rolling bearings based on short-time Fourier transform and convolution neural network
-
Li, H.; Zhang, Q.; Qin, X.; Sun, Y. Fault diagnosis method for rolling bearings based on short-time Fourier transform and convolution neural network. J. Vib. Shock 2018, 37, 124–131.
-
(2018)
J. Vib. Shock
, vol.37
, pp. 124-131
-
-
Li, H.1
Zhang, Q.2
Qin, X.3
Sun, Y.4
-
17
-
-
33646519024
-
A roller bearing fault diagnosis method based on EMD energy entropy and ANN
-
Yu, Y.; Yu, D.; Cheng, J. A roller bearing fault diagnosis method based on EMD energy entropy and ANN. J. Sound Vib. 2006, 294, 269–277. [CrossRef]
-
(2006)
J. Sound Vib.
, vol.294
, pp. 269-277
-
-
Yu, Y.1
Yu, D.2
Cheng, J.3
-
18
-
-
84922888685
-
Fault diagnosis of automobile hydraulic brake system using statistical features and support vector machines
-
Jegadeeshwaran, R.; Sugumaran, V. Fault diagnosis of automobile hydraulic brake system using statistical features and support vector machines. Mech. Syst. Signal Process. 2015, 52, 436–446. [CrossRef]
-
(2015)
Mech. Syst. Signal Process.
, vol.52
, pp. 436-446
-
-
Jegadeeshwaran, R.1
Sugumaran, V.2
-
19
-
-
85051398540
-
Railway rolling bearing fault diagnosis based on muti-scale IMF permutation entropy and SA-SVM Classifier
-
Yao, D.; Yang, J.; Cheng, X.; Wang, X. Railway rolling bearing fault diagnosis based on muti-scale IMF permutation entropy and SA-SVM Classifier. J. Mech. Eng. 2018, 54, 168–176. [CrossRef]
-
(2018)
J. Mech. Eng.
, vol.54
, pp. 168-176
-
-
Yao, D.1
Yang, J.2
Cheng, X.3
Wang, X.4
-
20
-
-
85006802950
-
Incipient fault diagnosis in power transformers by clustering and adapted KNN
-
Brisbane, Australia, 25–28 September 2016
-
Islam, M.; Lee, G.; Hettiwatte, S. Incipient fault diagnosis in power transformers by clustering and adapted KNN. In Proceedings of the 2016 Australasian Universities Power Engineering Conference, Brisbane, Australia, 25–28 September 2016; pp. 1–5.
-
Proceedings of the 2016 Australasian Universities Power Engineering Conference
, pp. 1-5
-
-
Islam, M.1
Lee, G.2
Hettiwatte, S.3
-
21
-
-
85059507164
-
Adaptive fault diagnosis algorithm for rolling bearings based on one-dimensional convolutional neural network
-
Qu, J.; Yu, L.; Yuan, T.; Tian, Y.; Gao, F. Adaptive fault diagnosis algorithm for rolling bearings based on one-dimensional convolutional neural network. Chin. J. Sci. Instrum. 2018, 39, 134–143.
-
(2018)
Chin. J. Sci. Instrum.
, vol.39
, pp. 134-143
-
-
Qu, J.1
Yu, L.2
Yuan, T.3
Tian, Y.4
Gao, F.5
-
22
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
Hinton, G.; Salakhutdinov, R. Reducing the dimensionality of data with neural networks. Science 2006, 313, 504–507. [CrossRef]
-
(2006)
Science
, vol.313
, pp. 504-507
-
-
Hinton, G.1
Salakhutdinov, R.2
-
23
-
-
84944735469
-
-
MA, USA
-
Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
-
(2016)
Deep Learning; MIT Press: Cambridge
-
-
Goodfellow, I.1
Bengio, Y.2
Courville, A.3
-
24
-
-
84910651844
-
Deep learning in neural networks: An overview
-
Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [CrossRef]
-
(2015)
Neural Netw
, vol.61
, pp. 85-117
-
-
Schmidhuber, J.1
-
25
-
-
84939956018
-
Audio-visual speech recognition using deep learning
-
Noda, K.; Yamaguchi, Y.; Nakadai, K.; Okuno, H.G.; Ogata, T. Audio-visual speech recognition using deep learning. Appl. Intell. 2015, 42, 722–737. [CrossRef]
-
(2015)
Appl. Intell.
, vol.42
, pp. 722-737
-
-
Noda, K.1
Yamaguchi, Y.2
Nakadai, K.3
Okuno, H.G.4
Ogata, T.5
-
26
-
-
85030174593
-
Image based fruit category classification by 13-layer deep convolutional neural network and data augmentation
-
Zhang, Y.; Dong, Z.; Chen, X.; Jia, W.; Du, S.; Muhammad, K.; Wang, S. Image based fruit category classification by 13-layer deep convolutional neural network and data augmentation. Multimedia Tools Appl. 2019, 78, 3613–3632. [CrossRef]
-
(2019)
Multimedia Tools Appl
, vol.78
, pp. 3613-3632
-
-
Zhang, Y.1
Dong, Z.2
Chen, X.3
Jia, W.4
Du, S.5
Muhammad, K.6
Wang, S.7
-
27
-
-
85051085274
-
Recent trends in deep learning based natural language processing
-
Young, T.; Hazarika, D.; Poria, S.; Cambria, E. Recent trends in deep learning based natural language processing. IEEE Comput. Intell. Mag. 2018, 13, 55–75. [CrossRef]
-
(2018)
IEEE Comput. Intell. Mag.
, vol.13
, pp. 55-75
-
-
Young, T.1
Hazarika, D.2
Poria, S.3
Cambria, E.4
-
28
-
-
84955693855
-
Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data
-
Jiao, F.; Lei, Y.; Lin, J. Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data. Mech. Syst. Signal Process. 2016, 72, 303–315. [CrossRef]
-
(2016)
Mech. Syst. Signal Process.
, vol.72
, pp. 303-315
-
-
Jiao, F.1
Lei, Y.2
Lin, J.3
-
29
-
-
84875848937
-
Failure diagnosis using deep belief learning based health state classification
-
Tamilselvan, P.; Wang, P. Failure diagnosis using deep belief learning based health state classification. Reliab. Eng. Syst. Saf. 2013, 115, 124–135. [CrossRef]
-
(2013)
Reliab. Eng. Syst. Saf.
, vol.115
, pp. 124-135
-
-
Tamilselvan, P.1
Wang, P.2
-
30
-
-
84969220093
-
Bearing fault identification based on deep belief network
-
Li, W.; Shan, W.; Zeng, X. Bearing fault identification based on deep belief network. J. Vib. Eng. 2016, 29, 340–347.
-
(2016)
J. Vib. Eng.
, vol.29
, pp. 340-347
-
-
Li, W.1
Shan, W.2
Zeng, X.3
-
31
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [CrossRef]
-
(1998)
Proc. IEEE
, vol.86
, pp. 2278-2324
-
-
Lecun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
32
-
-
85037847842
-
Deep learning enabled fault diagnosis using time-frequency image analysis of rolling element bearings
-
David, V.; Ferrada, A.; Droguett, E.; Viviana, M.; Mohammad, M. Deep learning enabled fault diagnosis using time-frequency image analysis of rolling element bearings. Shock Vib. 2017, 2017, 1–17.
-
(2017)
Shock Vib
, vol.2017
, pp. 1-17
-
-
David, V.1
Ferrada, A.2
Droguett, E.3
Viviana, M.4
Mohammad, M.5
-
33
-
-
85065759453
-
Bearings fault diagnosis based on convolutional neural networks with 2-D representation of vibration signals as input
-
Shanghai, China, 21–23 October 2016
-
Zhang, W.; Peng, G.; Li, C. Bearings fault diagnosis based on convolutional neural networks with 2-D representation of vibration signals as input. In Proceedings of the 2016 the 3rd International Conference on Mechatronics and Mechanical Engineering (ICMME 2016), Shanghai, China, 21–23 October 2016; pp. 1–5.
-
Proceedings of the 2016 the 3Rd International Conference on Mechatronics and Mechanical Engineering (ICMME 2016)
, pp. 1-5
-
-
Zhang, W.1
Peng, G.2
Li, C.3
-
34
-
-
85083953135
-
Network in network
-
Banff, AB, Canada, 14–16 April 2014
-
Lin, M.; Chen, Q.; Yan, S. Network in network. In Proceedings of the International Conference on Learning Representations, Banff, AB, Canada, 14–16 April 2014; pp. 1–10.
-
Proceedings of the International Conference on Learning Representations
, pp. 1-10
-
-
Lin, M.1
Chen, Q.2
Yan, S.3
-
35
-
-
84930630277
-
Deep learning
-
Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
Lecun, Y.1
Bengio, Y.2
Hinton, G.3
-
36
-
-
84903724014
-
Deep learning: Methods and applications
-
Deng, L.; Yu, D. Deep learning: methods and applications. Found. Trends Signal Process. 2014, 7, 197–387. [CrossRef]
-
(2014)
Found. Trends Signal Process
, vol.7
, pp. 197-387
-
-
Deng, L.1
Yu, D.2
-
37
-
-
77955998889
-
Convolutional networks and applications in vision
-
Paris, France, 30 May–2 June 2010
-
LeCun, Y.; Kavukcuoglu, K.; Farabet, C. Convolutional networks and applications in vision. In Proceedings of the 2010 IEEE International Symposium on Circuits and Systems, Paris, France, 30 May–2 June 2010; pp. 253–256.
-
Proceedings of the 2010 IEEE International Symposium on Circuits and Systems
, pp. 253-256
-
-
Lecun, Y.1
Kavukcuoglu, K.2
Farabet, C.3
-
38
-
-
85065790386
-
A probabilistic framework for nonlinearities in stochastic neural networks
-
Long Island, NY, USA, 4–9 December 2017
-
Su, Q.; Liao, X.; Carin, L. A probabilistic framework for nonlinearities in stochastic neural networks. In Proceedings of the 31st Conference on Neural Information Processing Systems, Long Island, NY, USA, 4–9 December 2017; pp. 1–10.
-
Proceedings of the 31St Conference on Neural Information Processing Systems
, pp. 1-10
-
-
Su, Q.1
Liao, X.2
Carin, L.3
-
39
-
-
85044172793
-
Asynchronous motor fault diagnosis based on convolutional neural network
-
Wang, L.; Xie, Y.; Zhou, Z. Asynchronous motor fault diagnosis based on convolutional neural network. J. Vib. Meas. Diagn. 2017, 6, 1208–1215.
-
(2017)
J. Vib. Meas. Diagn.
, vol.6
, pp. 1208-1215
-
-
Wang, L.1
Xie, Y.2
Zhou, Z.3
-
41
-
-
84974822424
-
Text classification based on deep belief network and softmax regression
-
Jiang, M.; Liang, Y.; Feng, X.; Fan, X.; Pei, Z.; Xue, Y.; Guan, R. Text classification based on deep belief network and softmax regression. Neural Comput. Appl. 2018, 29, 61–70. [CrossRef]
-
(2018)
Neural Comput. Appl.
, vol.29
, pp. 61-70
-
-
Jiang, M.1
Liang, Y.2
Feng, X.3
Fan, X.4
Pei, Z.5
Xue, Y.6
Guan, R.7
-
42
-
-
84869174596
-
-
Cambridge University Press: Cambridge, UK
-
Flach, P. Machine Learning; Cambridge University Press: Cambridge, UK, 2012.
-
(2012)
Machine Learning
-
-
Flach, P.1
-
43
-
-
84937522268
-
Going deeper with convolutions
-
Boston, MA, USA, 7–12 June 2015
-
Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1–9.
-
Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 1-9
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
44
-
-
85044258456
-
Rolling element bearing fault diagnosis using convolutional neural network and vibration image
-
Hoang, D.; Kang, H. Rolling element bearing fault diagnosis using convolutional neural network and vibration image. Cognit. Syst. Res. 2019, 53, 42–50. [CrossRef]
-
(2019)
Cognit. Syst. Res.
, vol.53
, pp. 42-50
-
-
Hoang, D.1
Kang, H.2
-
45
-
-
85065776262
-
-
Ph.D. Thesis, Ocean University of China, Shandong province, China
-
Chen, Q. Research Related to Support Vector Machines. Ph.D. Thesis, Ocean University of China, Shandong province, China, 2011.
-
(2011)
Research Related to Support Vector Machines
-
-
Chen, Q.1
-
46
-
-
85064688248
-
Alcoholism identification via convolutional neural network based on parametric ReLU, dropout, and batch normalization
-
Wang, S.; Muhammad, K.; Hong, J.; Sangaiah, A.; Zhang, Y. Alcoholism identification via convolutional neural network based on parametric ReLU, dropout, and batch normalization. Neural Comput. Appl. 2018, 6, 1–16. [CrossRef]
-
(2018)
Neural Comput. Appl.
, vol.6
, pp. 1-16
-
-
Wang, S.1
Muhammad, K.2
Hong, J.3
Sangaiah, A.4
Zhang, Y.5
-
47
-
-
85030256427
-
Training object detection and recognition CNN models using data augmentation
-
Montserrat, D.M.; Qian, L.; Allebach, J.; Delp, E. Training object detection and recognition CNN models using data augmentation. Electron. Imaging 2017, 2017, 27–36. [CrossRef]
-
(2017)
Electron. Imaging
, vol.2017
, pp. 27-36
-
-
Montserrat, D.M.1
Qian, L.2
Allebach, J.3
Delp, E.4
-
48
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.
-
(2014)
J. Mach. Learn. Res.
, vol.15
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
50
-
-
84942037542
-
Multi-objective optimization of bonding head based on sensitivity and analytic hierarchy process
-
Gong, W.; Huang, M.; Zhang, M.; Mo, Q. Multi-objective optimization of bonding head based on sensitivity and analytic hierarchy process. J. Vib. Shock 2015, 34, 128–134.
-
(2015)
J. Vib. Shock
, vol.34
, pp. 128-134
-
-
Gong, W.1
Huang, M.2
Zhang, M.3
Mo, Q.4
-
51
-
-
85065773650
-
-
Bearing Data Center. Available online: http://csegroups.case.edu/bearingdatacenter/home (accessed on 20 October 2018).
-
-
-
-
52
-
-
84979085360
-
Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis
-
Guo, X.; Chen, L.; Shen, C. Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis. Measurement 2016, 93, 490–502. [CrossRef]
-
(2016)
Measurement
, vol.93
, pp. 490-502
-
-
Guo, X.1
Chen, L.2
Shen, C.3
|