메뉴 건너뛰기




Volumn 159, Issue , 2020, Pages

A lightweight neural network with strong robustness for bearing fault diagnosis

Author keywords

Fault diagnosis; Fault severity; Lightweight neural network; Robustness; Rolling bearing

Indexed keywords

CONVOLUTION; CONVOLUTIONAL NEURAL NETWORKS; FAILURE ANALYSIS; ROBUSTNESS (CONTROL SYSTEMS); ROLLER BEARINGS;

EID: 85082957418     PISSN: 02632241     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.measurement.2020.107756     Document Type: Article
Times cited : (115)

References (33)
  • 1
    • 85042710783 scopus 로고    scopus 로고
    • EEMD-based steady-state indexes and their applications to condition monitoring and fault diagnosis of railway axle bearings
    • Yi, C., Wang, D., Fan, W., Tsui, K., Lin, J., EEMD-based steady-state indexes and their applications to condition monitoring and fault diagnosis of railway axle bearings. Sensors, 18(3), 2018, 704, 10.3390/s18030704.
    • (2018) Sensors , vol.18 , Issue.3 , pp. 704
    • Yi, C.1    Wang, D.2    Fan, W.3    Tsui, K.4    Lin, J.5
  • 2
    • 84929380611 scopus 로고    scopus 로고
    • Observing early stage rail axle bearing damage
    • Symonds, N., Corni, I., Wood, R., Wasenczuk, A., Vincent, D., Observing early stage rail axle bearing damage. Eng. Fail. Anal. 56 (2015), 216–232, 10.1016/j.engfailanal.2015.02.008.
    • (2015) Eng. Fail. Anal. , vol.56 , pp. 216-232
    • Symonds, N.1    Corni, I.2    Wood, R.3    Wasenczuk, A.4    Vincent, D.5
  • 3
    • 85029714673 scopus 로고    scopus 로고
    • Train axle bearing fault detection using a feature selection scheme based multi-scale morphological filter
    • Li, Y., Liang, X., Lin, J., Chen, Y., Liu, J., Train axle bearing fault detection using a feature selection scheme based multi-scale morphological filter. Mech. Syst. Signal Process 101 (2018), 435–448, 10.1016/j.ymssp.2017.09.007.
    • (2018) Mech. Syst. Signal Process , vol.101 , pp. 435-448
    • Li, Y.1    Liang, X.2    Lin, J.3    Chen, Y.4    Liu, J.5
  • 4
    • 85061698670 scopus 로고    scopus 로고
    • Monitoring and modelling of false brinelling for railway bearings
    • Fallahnezhad, K., Liu, S., Brinji, S., Marker, M., Meehan, P., Monitoring and modelling of false brinelling for railway bearings. Wear 424–425 (2019), 151–164, 10.1016/j.wear.2019.02.004.
    • (2019) Wear , vol.424-425 , pp. 151-164
    • Fallahnezhad, K.1    Liu, S.2    Brinji, S.3    Marker, M.4    Meehan, P.5
  • 5
    • 85049345703 scopus 로고    scopus 로고
    • A novel optimized SVM classification algorithm with multi-domain feature and its application to fault diagnosis of rolling bearing
    • Yan, X., Jia, M., A novel optimized SVM classification algorithm with multi-domain feature and its application to fault diagnosis of rolling bearing. Neurocomputing 60 (2018), 47–64, 10.1016/j.neucom.2018.05.002.
    • (2018) Neurocomputing , vol.60 , pp. 47-64
    • Yan, X.1    Jia, M.2
  • 6
    • 85037807717 scopus 로고    scopus 로고
    • Scattering transform and LSPTSVM based fault diagnosis of rotating machinery
    • Ma, S., Cheng, B., Shang, Z., Liu, G., Scattering transform and LSPTSVM based fault diagnosis of rotating machinery. Mech. Syst. Signal Process 104 (2018), 155–174, 10.1016/j.ymssp.2017.10.026.
    • (2018) Mech. Syst. Signal Process , vol.104 , pp. 155-174
    • Ma, S.1    Cheng, B.2    Shang, Z.3    Liu, G.4
  • 7
    • 85070725189 scopus 로고    scopus 로고
    • A deep capsule neural network with stochastic delta rule for bearing fault diagnosis on raw vibration signals
    • Chen, T., Wang, Z., Yang, X., Jiang, K., A deep capsule neural network with stochastic delta rule for bearing fault diagnosis on raw vibration signals. Measurement, 148, 2019, 106857, 10.1016/j.measurement.2019.106857.
    • (2019) Measurement , vol.148
    • Chen, T.1    Wang, Z.2    Yang, X.3    Jiang, K.4
  • 8
    • 85035767656 scopus 로고    scopus 로고
    • Quantitative and localization diagnosis of a defective ball bearing based on vertical-horizontal synchronization signal analysis
    • Cui, L., Huang, J., Zhang, F., Quantitative and localization diagnosis of a defective ball bearing based on vertical-horizontal synchronization signal analysis. IEEE Trans. Ind. Electron. 64 (2017), 8695–8706, 10.1109/Tie.2017.2698359.
    • (2017) IEEE Trans. Ind. Electron. , vol.64 , pp. 8695-8706
    • Cui, L.1    Huang, J.2    Zhang, F.3
  • 9
    • 85048280939 scopus 로고    scopus 로고
    • Deep learning and its applications to machine health monitoring
    • Zhao, R., Yan, R., Chen, Z., Mao, K., Wang, P., Gao, R., Deep learning and its applications to machine health monitoring. Mech. Syst. Signal Process 115 (2019), 213–237, 10.1016/j.ymssp.2018.05.050.
    • (2019) Mech. Syst. Signal Process , vol.115 , pp. 213-237
    • Zhao, R.1    Yan, R.2    Chen, Z.3    Mao, K.4    Wang, P.5    Gao, R.6
  • 10
    • 85076673386 scopus 로고    scopus 로고
    • Data-driven fault diagnosis method based on compressed sensing and improved multi-scale network
    • Hu, Z., Wang, Y., Ge, M., Liu, J., Data-driven fault diagnosis method based on compressed sensing and improved multi-scale network. IEEE Trans. Ind. Electron. 67 (2019), 3216–3225, 10.1109/TIE.2019.2912763.
    • (2019) IEEE Trans. Ind. Electron. , vol.67 , pp. 3216-3225
    • Hu, Z.1    Wang, Y.2    Ge, M.3    Liu, J.4
  • 11
    • 85059345433 scopus 로고    scopus 로고
    • An intelligent fault diagnosis approach based on transfer learning from laboratory bearings to locomotive bearings
    • Yang, B., Lei, Y., Jia, F., Xing, S., An intelligent fault diagnosis approach based on transfer learning from laboratory bearings to locomotive bearings. Mech. Syst. Signal Process 122 (2019), 692–706, 10.1016/j.ymssp.2018.12.051.
    • (2019) Mech. Syst. Signal Process , vol.122 , pp. 692-706
    • Yang, B.1    Lei, Y.2    Jia, F.3    Xing, S.4
  • 12
    • 85062273887 scopus 로고    scopus 로고
    • Transfer learning with neural networks for bearing fault diagnosis in changing working conditions
    • Qian, W., Li, S., Yi, P., Zhang, K., Transfer learning with neural networks for bearing fault diagnosis in changing working conditions. Measurement 138 (2019), 514–525, 10.1016/j.measurement.2019.02.073.
    • (2019) Measurement , vol.138 , pp. 514-525
    • Qian, W.1    Li, S.2    Yi, P.3    Zhang, K.4
  • 13
    • 85077771567 scopus 로고    scopus 로고
    • Online fault diagnosis method based on transfer convolutional neural networks
    • Xu, G., Liu, M., Jiang, Z., Shen, W., Huang, C., Online fault diagnosis method based on transfer convolutional neural networks. IEEE Trans. Instrum. Meas., 2019, 10.1109/TIM.2019.2902003.
    • (2019) IEEE Trans. Instrum. Meas.
    • Xu, G.1    Liu, M.2    Jiang, Z.3    Shen, W.4    Huang, C.5
  • 14
    • 85054866826 scopus 로고    scopus 로고
    • Fault diagnosis of wind turbine based on Long Short-term memory networks
    • Lei, J., Liu, C., Jiang, D., Fault diagnosis of wind turbine based on Long Short-term memory networks. Renew. Eng 133 (2019), 422–432, 10.1016/j.renene.2018.10.031.
    • (2019) Renew. Eng , vol.133 , pp. 422-432
    • Lei, J.1    Liu, C.2    Jiang, D.3
  • 15
    • 85060549739 scopus 로고    scopus 로고
    • A novel hierarchical algorithm for bearing fault diagnosis based on stacked LSTM
    • Yu, L., Qu, J., Gao, F., Tian, Y., A novel hierarchical algorithm for bearing fault diagnosis based on stacked LSTM. Shock Vib., 2019, 10.1155/2019/2756284.
    • (2019) Shock Vib.
    • Yu, L.1    Qu, J.2    Gao, F.3    Tian, Y.4
  • 16
    • 85011676262 scopus 로고    scopus 로고
    • Learning to monitor machine health with convolutional bi-directional LSTM networks
    • Zhao, R., Yan, R., Wang, J., Mao, K., Learning to monitor machine health with convolutional bi-directional LSTM networks. Sensors, 17, 2017, 273, 10.3390/s17020273.
    • (2017) Sensors , vol.17 , pp. 273
    • Zhao, R.1    Yan, R.2    Wang, J.3    Mao, K.4
  • 17
    • 85062640137 scopus 로고    scopus 로고
    • Deep residual learning with demodulated time-frequency features for fault diagnosis of planetary gearbox under nonstationary running conditions
    • Ma, S., Chu, F., Han, Q., Deep residual learning with demodulated time-frequency features for fault diagnosis of planetary gearbox under nonstationary running conditions. Mech. Syst. Signal Process. 127 (2019), 190–201, 10.1016/j.ymssp.2019.02.055.
    • (2019) Mech. Syst. Signal Process. , vol.127 , pp. 190-201
    • Ma, S.1    Chu, F.2    Han, Q.3
  • 18
    • 85059116434 scopus 로고    scopus 로고
    • Deep residual learning-based fault diagnosis method for rotating machinery
    • Zhang, W., Li, X., Ding, Q., Deep residual learning-based fault diagnosis method for rotating machinery. ISA T, 2018, 10.1016/j.isatra.2018.12.025.
    • (2018) ISA T
    • Zhang, W.1    Li, X.2    Ding, Q.3
  • 20
    • 85028852181 scopus 로고    scopus 로고
    • Deep learning based approach for bearing fault diagnosis
    • He, M., He, D., Deep learning based approach for bearing fault diagnosis. IEEE Trans. Ind. Appl. 53 (2017), 3057–3065, 10.1109/tia.2017.2661250.
    • (2017) IEEE Trans. Ind. Appl. , vol.53 , pp. 3057-3065
    • He, M.1    He, D.2
  • 21
    • 85013801625 scopus 로고    scopus 로고
    • Intelligent fault diagnosis of rolling bearing using hierarchical convolutional network based health state classification
    • Lu, C., Wang, Z., Zhou, B., Intelligent fault diagnosis of rolling bearing using hierarchical convolutional network based health state classification. Adv. Eng. Inf. 32 (2017), 139–151 http://refhub.elsevier.com/S0263-2241(19)30497-X/h0145.
    • (2017) Adv. Eng. Inf. , vol.32 , pp. 139-151
    • Lu, C.1    Wang, Z.2    Zhou, B.3
  • 22
    • 85046677217 scopus 로고    scopus 로고
    • A novel fault diagnosis method for rotating machinery based on a convolutional neural network
    • Guo, S., Yang, T., Guo, W., Zhang, C., A novel fault diagnosis method for rotating machinery based on a convolutional neural network. Sensors 18 (2018), 1429–1445, 10.3390/s18051429.
    • (2018) Sensors , vol.18 , pp. 1429-1445
    • Guo, S.1    Yang, T.2    Guo, W.3    Zhang, C.4
  • 23
    • 85067188383 scopus 로고    scopus 로고
    • A deep learning method for bearing fault diagnosis through stacked residual dilated convolutions
    • Zhuang, Z., Lv, H., Xu, J., Huang, Z., Qin, W., A deep learning method for bearing fault diagnosis through stacked residual dilated convolutions. Appl. Sci, 9, 2019, 1823, 10.3390/app9091823.
    • (2019) Appl. Sci , vol.9 , pp. 1823
    • Zhuang, Z.1    Lv, H.2    Xu, J.3    Huang, Z.4    Qin, W.5
  • 24
    • 85067299389 scopus 로고    scopus 로고
    • A lighted deep convolutional neural network based fault diagnosis of rotating machinery
    • Ma, S., Cai, W., Liu, W., Shang, Z., Liu, G., A lighted deep convolutional neural network based fault diagnosis of rotating machinery. Sensors, 19, 2019, 2381, 10.3390/s19102381.
    • (2019) Sensors , vol.19 , pp. 2381
    • Ma, S.1    Cai, W.2    Liu, W.3    Shang, Z.4    Liu, G.5
  • 26
    • 85040867636 scopus 로고    scopus 로고
    • Xception: deep learning with depthwise separable convolutions
    • Chollet, F., Xception: deep learning with depthwise separable convolutions. Comput. Sci., 2016.
    • (2016) Comput. Sci.
    • Chollet, F.1
  • 27
    • 85039920700 scopus 로고    scopus 로고
    • MobileNets: efficient convolutional neural networks for mobile vision applications
    • Howard, A., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., et al. MobileNets: efficient convolutional neural networks for mobile vision applications. Comput. Sci., 2017 https://arxiv.org/abs/1704.04861.
    • (2017) Comput. Sci.
    • Howard, A.1    Zhu, M.2    Chen, B.3    Kalenichenko, D.4    Wang, W.5    Weyand, T.6
  • 28
    • 85034831310 scopus 로고    scopus 로고
    • ShuffleNet: an extremely efficient convolutional neural network for mobile devices
    • Zhang, X., Zhou, X., Lin, M., Sun, J., ShuffleNet: an extremely efficient convolutional neural network for mobile devices. Comput. Sci., 2017.
    • (2017) Comput. Sci.
    • Zhang, X.1    Zhou, X.2    Lin, M.3    Sun, J.4
  • 29
    • 85070482569 scopus 로고    scopus 로고
    • A Low-Delay Lightweight Recurrent Neural Network (LLRNN) for Rotating Machinery Fault Diagnosis
    • Liu, W., Guo, P., Ye, L., A Low-Delay Lightweight Recurrent Neural Network (LLRNN) for Rotating Machinery Fault Diagnosis. Sensors, 19, 2019, 3109, 10.3390/s19143109.
    • (2019) Sensors , vol.19 , pp. 3109
    • Liu, W.1    Guo, P.2    Ye, L.3
  • 30
    • 85062799511 scopus 로고    scopus 로고
    • MobileNetV2: inverted residuals and linear bottlenecks
    • Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L., MobileNetV2: inverted residuals and linear bottlenecks. Comput. Sci., 2018 https://arxiv.org/abs/1801.04381.
    • (2018) Comput. Sci.
    • Sandler, M.1    Howard, A.2    Zhu, M.3    Zhmoginov, A.4    Chen, L.5
  • 31
    • 84908678178 scopus 로고    scopus 로고
    • Network in network
    • Lin, M., Chen, Q., Yan, S., Network in network. Comput. Sci., 2013 https://arxiv.org/abs/1312.4400.
    • (2013) Comput. Sci.
    • Lin, M.1    Chen, Q.2    Yan, S.3
  • 32
    • 84933585162 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • Simonyan, K., Zisserman, A., Very deep convolutional networks for large-scale image recognition. Comput. Sci., 2014.
    • (2014) Comput. Sci.
    • Simonyan, K.1    Zisserman, A.2
  • 33
    • 85082958304 scopus 로고    scopus 로고
    • Case Western University Bearing Data Center, 2012
    • K.A. Loparo, Case Western University Bearing Data Center, 2012, http://csegroups.case.edu/bearingdatacenter/home.
    • Loparo, K.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.