-
1
-
-
85042710783
-
EEMD-based steady-state indexes and their applications to condition monitoring and fault diagnosis of railway axle bearings
-
Yi, C., Wang, D., Fan, W., Tsui, K., Lin, J., EEMD-based steady-state indexes and their applications to condition monitoring and fault diagnosis of railway axle bearings. Sensors, 18(3), 2018, 704, 10.3390/s18030704.
-
(2018)
Sensors
, vol.18
, Issue.3
, pp. 704
-
-
Yi, C.1
Wang, D.2
Fan, W.3
Tsui, K.4
Lin, J.5
-
2
-
-
84929380611
-
Observing early stage rail axle bearing damage
-
Symonds, N., Corni, I., Wood, R., Wasenczuk, A., Vincent, D., Observing early stage rail axle bearing damage. Eng. Fail. Anal. 56 (2015), 216–232, 10.1016/j.engfailanal.2015.02.008.
-
(2015)
Eng. Fail. Anal.
, vol.56
, pp. 216-232
-
-
Symonds, N.1
Corni, I.2
Wood, R.3
Wasenczuk, A.4
Vincent, D.5
-
3
-
-
85029714673
-
Train axle bearing fault detection using a feature selection scheme based multi-scale morphological filter
-
Li, Y., Liang, X., Lin, J., Chen, Y., Liu, J., Train axle bearing fault detection using a feature selection scheme based multi-scale morphological filter. Mech. Syst. Signal Process 101 (2018), 435–448, 10.1016/j.ymssp.2017.09.007.
-
(2018)
Mech. Syst. Signal Process
, vol.101
, pp. 435-448
-
-
Li, Y.1
Liang, X.2
Lin, J.3
Chen, Y.4
Liu, J.5
-
4
-
-
85061698670
-
Monitoring and modelling of false brinelling for railway bearings
-
Fallahnezhad, K., Liu, S., Brinji, S., Marker, M., Meehan, P., Monitoring and modelling of false brinelling for railway bearings. Wear 424–425 (2019), 151–164, 10.1016/j.wear.2019.02.004.
-
(2019)
Wear
, vol.424-425
, pp. 151-164
-
-
Fallahnezhad, K.1
Liu, S.2
Brinji, S.3
Marker, M.4
Meehan, P.5
-
5
-
-
85049345703
-
A novel optimized SVM classification algorithm with multi-domain feature and its application to fault diagnosis of rolling bearing
-
Yan, X., Jia, M., A novel optimized SVM classification algorithm with multi-domain feature and its application to fault diagnosis of rolling bearing. Neurocomputing 60 (2018), 47–64, 10.1016/j.neucom.2018.05.002.
-
(2018)
Neurocomputing
, vol.60
, pp. 47-64
-
-
Yan, X.1
Jia, M.2
-
6
-
-
85037807717
-
Scattering transform and LSPTSVM based fault diagnosis of rotating machinery
-
Ma, S., Cheng, B., Shang, Z., Liu, G., Scattering transform and LSPTSVM based fault diagnosis of rotating machinery. Mech. Syst. Signal Process 104 (2018), 155–174, 10.1016/j.ymssp.2017.10.026.
-
(2018)
Mech. Syst. Signal Process
, vol.104
, pp. 155-174
-
-
Ma, S.1
Cheng, B.2
Shang, Z.3
Liu, G.4
-
7
-
-
85070725189
-
A deep capsule neural network with stochastic delta rule for bearing fault diagnosis on raw vibration signals
-
Chen, T., Wang, Z., Yang, X., Jiang, K., A deep capsule neural network with stochastic delta rule for bearing fault diagnosis on raw vibration signals. Measurement, 148, 2019, 106857, 10.1016/j.measurement.2019.106857.
-
(2019)
Measurement
, vol.148
-
-
Chen, T.1
Wang, Z.2
Yang, X.3
Jiang, K.4
-
8
-
-
85035767656
-
Quantitative and localization diagnosis of a defective ball bearing based on vertical-horizontal synchronization signal analysis
-
Cui, L., Huang, J., Zhang, F., Quantitative and localization diagnosis of a defective ball bearing based on vertical-horizontal synchronization signal analysis. IEEE Trans. Ind. Electron. 64 (2017), 8695–8706, 10.1109/Tie.2017.2698359.
-
(2017)
IEEE Trans. Ind. Electron.
, vol.64
, pp. 8695-8706
-
-
Cui, L.1
Huang, J.2
Zhang, F.3
-
9
-
-
85048280939
-
Deep learning and its applications to machine health monitoring
-
Zhao, R., Yan, R., Chen, Z., Mao, K., Wang, P., Gao, R., Deep learning and its applications to machine health monitoring. Mech. Syst. Signal Process 115 (2019), 213–237, 10.1016/j.ymssp.2018.05.050.
-
(2019)
Mech. Syst. Signal Process
, vol.115
, pp. 213-237
-
-
Zhao, R.1
Yan, R.2
Chen, Z.3
Mao, K.4
Wang, P.5
Gao, R.6
-
10
-
-
85076673386
-
Data-driven fault diagnosis method based on compressed sensing and improved multi-scale network
-
Hu, Z., Wang, Y., Ge, M., Liu, J., Data-driven fault diagnosis method based on compressed sensing and improved multi-scale network. IEEE Trans. Ind. Electron. 67 (2019), 3216–3225, 10.1109/TIE.2019.2912763.
-
(2019)
IEEE Trans. Ind. Electron.
, vol.67
, pp. 3216-3225
-
-
Hu, Z.1
Wang, Y.2
Ge, M.3
Liu, J.4
-
11
-
-
85059345433
-
An intelligent fault diagnosis approach based on transfer learning from laboratory bearings to locomotive bearings
-
Yang, B., Lei, Y., Jia, F., Xing, S., An intelligent fault diagnosis approach based on transfer learning from laboratory bearings to locomotive bearings. Mech. Syst. Signal Process 122 (2019), 692–706, 10.1016/j.ymssp.2018.12.051.
-
(2019)
Mech. Syst. Signal Process
, vol.122
, pp. 692-706
-
-
Yang, B.1
Lei, Y.2
Jia, F.3
Xing, S.4
-
12
-
-
85062273887
-
Transfer learning with neural networks for bearing fault diagnosis in changing working conditions
-
Qian, W., Li, S., Yi, P., Zhang, K., Transfer learning with neural networks for bearing fault diagnosis in changing working conditions. Measurement 138 (2019), 514–525, 10.1016/j.measurement.2019.02.073.
-
(2019)
Measurement
, vol.138
, pp. 514-525
-
-
Qian, W.1
Li, S.2
Yi, P.3
Zhang, K.4
-
13
-
-
85077771567
-
Online fault diagnosis method based on transfer convolutional neural networks
-
Xu, G., Liu, M., Jiang, Z., Shen, W., Huang, C., Online fault diagnosis method based on transfer convolutional neural networks. IEEE Trans. Instrum. Meas., 2019, 10.1109/TIM.2019.2902003.
-
(2019)
IEEE Trans. Instrum. Meas.
-
-
Xu, G.1
Liu, M.2
Jiang, Z.3
Shen, W.4
Huang, C.5
-
14
-
-
85054866826
-
Fault diagnosis of wind turbine based on Long Short-term memory networks
-
Lei, J., Liu, C., Jiang, D., Fault diagnosis of wind turbine based on Long Short-term memory networks. Renew. Eng 133 (2019), 422–432, 10.1016/j.renene.2018.10.031.
-
(2019)
Renew. Eng
, vol.133
, pp. 422-432
-
-
Lei, J.1
Liu, C.2
Jiang, D.3
-
15
-
-
85060549739
-
A novel hierarchical algorithm for bearing fault diagnosis based on stacked LSTM
-
Yu, L., Qu, J., Gao, F., Tian, Y., A novel hierarchical algorithm for bearing fault diagnosis based on stacked LSTM. Shock Vib., 2019, 10.1155/2019/2756284.
-
(2019)
Shock Vib.
-
-
Yu, L.1
Qu, J.2
Gao, F.3
Tian, Y.4
-
16
-
-
85011676262
-
Learning to monitor machine health with convolutional bi-directional LSTM networks
-
Zhao, R., Yan, R., Wang, J., Mao, K., Learning to monitor machine health with convolutional bi-directional LSTM networks. Sensors, 17, 2017, 273, 10.3390/s17020273.
-
(2017)
Sensors
, vol.17
, pp. 273
-
-
Zhao, R.1
Yan, R.2
Wang, J.3
Mao, K.4
-
17
-
-
85062640137
-
Deep residual learning with demodulated time-frequency features for fault diagnosis of planetary gearbox under nonstationary running conditions
-
Ma, S., Chu, F., Han, Q., Deep residual learning with demodulated time-frequency features for fault diagnosis of planetary gearbox under nonstationary running conditions. Mech. Syst. Signal Process. 127 (2019), 190–201, 10.1016/j.ymssp.2019.02.055.
-
(2019)
Mech. Syst. Signal Process.
, vol.127
, pp. 190-201
-
-
Ma, S.1
Chu, F.2
Han, Q.3
-
18
-
-
85059116434
-
Deep residual learning-based fault diagnosis method for rotating machinery
-
Zhang, W., Li, X., Ding, Q., Deep residual learning-based fault diagnosis method for rotating machinery. ISA T, 2018, 10.1016/j.isatra.2018.12.025.
-
(2018)
ISA T
-
-
Zhang, W.1
Li, X.2
Ding, Q.3
-
19
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Krizhevsky, A., Sutskever, I., Hinton, G.E., Imagenet classification with deep convolutional neural networks. Adv. Neural Info. Process. Syst., 2012, 1097–1105.
-
(2012)
Adv. Neural Info. Process. Syst.
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
20
-
-
85028852181
-
Deep learning based approach for bearing fault diagnosis
-
He, M., He, D., Deep learning based approach for bearing fault diagnosis. IEEE Trans. Ind. Appl. 53 (2017), 3057–3065, 10.1109/tia.2017.2661250.
-
(2017)
IEEE Trans. Ind. Appl.
, vol.53
, pp. 3057-3065
-
-
He, M.1
He, D.2
-
21
-
-
85013801625
-
Intelligent fault diagnosis of rolling bearing using hierarchical convolutional network based health state classification
-
Lu, C., Wang, Z., Zhou, B., Intelligent fault diagnosis of rolling bearing using hierarchical convolutional network based health state classification. Adv. Eng. Inf. 32 (2017), 139–151 http://refhub.elsevier.com/S0263-2241(19)30497-X/h0145.
-
(2017)
Adv. Eng. Inf.
, vol.32
, pp. 139-151
-
-
Lu, C.1
Wang, Z.2
Zhou, B.3
-
22
-
-
85046677217
-
A novel fault diagnosis method for rotating machinery based on a convolutional neural network
-
Guo, S., Yang, T., Guo, W., Zhang, C., A novel fault diagnosis method for rotating machinery based on a convolutional neural network. Sensors 18 (2018), 1429–1445, 10.3390/s18051429.
-
(2018)
Sensors
, vol.18
, pp. 1429-1445
-
-
Guo, S.1
Yang, T.2
Guo, W.3
Zhang, C.4
-
23
-
-
85067188383
-
A deep learning method for bearing fault diagnosis through stacked residual dilated convolutions
-
Zhuang, Z., Lv, H., Xu, J., Huang, Z., Qin, W., A deep learning method for bearing fault diagnosis through stacked residual dilated convolutions. Appl. Sci, 9, 2019, 1823, 10.3390/app9091823.
-
(2019)
Appl. Sci
, vol.9
, pp. 1823
-
-
Zhuang, Z.1
Lv, H.2
Xu, J.3
Huang, Z.4
Qin, W.5
-
24
-
-
85067299389
-
A lighted deep convolutional neural network based fault diagnosis of rotating machinery
-
Ma, S., Cai, W., Liu, W., Shang, Z., Liu, G., A lighted deep convolutional neural network based fault diagnosis of rotating machinery. Sensors, 19, 2019, 2381, 10.3390/s19102381.
-
(2019)
Sensors
, vol.19
, pp. 2381
-
-
Ma, S.1
Cai, W.2
Liu, W.3
Shang, Z.4
Liu, G.5
-
25
-
-
85016061256
-
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size
-
Landola, F., Han, S., Moskewicz, M., Ashraf, K., Dally, W., Keutzer, K., SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size. Comput. Sci., 2016.
-
(2016)
Comput. Sci.
-
-
Landola, F.1
Han, S.2
Moskewicz, M.3
Ashraf, K.4
Dally, W.5
Keutzer, K.6
-
26
-
-
85040867636
-
Xception: deep learning with depthwise separable convolutions
-
Chollet, F., Xception: deep learning with depthwise separable convolutions. Comput. Sci., 2016.
-
(2016)
Comput. Sci.
-
-
Chollet, F.1
-
27
-
-
85039920700
-
MobileNets: efficient convolutional neural networks for mobile vision applications
-
Howard, A., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., et al. MobileNets: efficient convolutional neural networks for mobile vision applications. Comput. Sci., 2017 https://arxiv.org/abs/1704.04861.
-
(2017)
Comput. Sci.
-
-
Howard, A.1
Zhu, M.2
Chen, B.3
Kalenichenko, D.4
Wang, W.5
Weyand, T.6
-
28
-
-
85034831310
-
ShuffleNet: an extremely efficient convolutional neural network for mobile devices
-
Zhang, X., Zhou, X., Lin, M., Sun, J., ShuffleNet: an extremely efficient convolutional neural network for mobile devices. Comput. Sci., 2017.
-
(2017)
Comput. Sci.
-
-
Zhang, X.1
Zhou, X.2
Lin, M.3
Sun, J.4
-
29
-
-
85070482569
-
A Low-Delay Lightweight Recurrent Neural Network (LLRNN) for Rotating Machinery Fault Diagnosis
-
Liu, W., Guo, P., Ye, L., A Low-Delay Lightweight Recurrent Neural Network (LLRNN) for Rotating Machinery Fault Diagnosis. Sensors, 19, 2019, 3109, 10.3390/s19143109.
-
(2019)
Sensors
, vol.19
, pp. 3109
-
-
Liu, W.1
Guo, P.2
Ye, L.3
-
30
-
-
85062799511
-
MobileNetV2: inverted residuals and linear bottlenecks
-
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L., MobileNetV2: inverted residuals and linear bottlenecks. Comput. Sci., 2018 https://arxiv.org/abs/1801.04381.
-
(2018)
Comput. Sci.
-
-
Sandler, M.1
Howard, A.2
Zhu, M.3
Zhmoginov, A.4
Chen, L.5
-
31
-
-
84908678178
-
Network in network
-
Lin, M., Chen, Q., Yan, S., Network in network. Comput. Sci., 2013 https://arxiv.org/abs/1312.4400.
-
(2013)
Comput. Sci.
-
-
Lin, M.1
Chen, Q.2
Yan, S.3
-
32
-
-
84933585162
-
Very deep convolutional networks for large-scale image recognition
-
Simonyan, K., Zisserman, A., Very deep convolutional networks for large-scale image recognition. Comput. Sci., 2014.
-
(2014)
Comput. Sci.
-
-
Simonyan, K.1
Zisserman, A.2
-
33
-
-
85082958304
-
-
Case Western University Bearing Data Center, 2012
-
K.A. Loparo, Case Western University Bearing Data Center, 2012, http://csegroups.case.edu/bearingdatacenter/home.
-
-
-
Loparo, K.A.1
|