메뉴 건너뛰기




Volumn 1, Issue 1, 2017, Pages

Inorganic semiconducting materials for flexible and stretchable electronics

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85088046233     PISSN: None     EISSN: 23974621     Source Type: Journal    
DOI: 10.1038/s41528-017-0003-z     Document Type: Review
Times cited : (163)

References (100)
  • 1
    • 79953225209 scopus 로고    scopus 로고
    • Substrates for flexible electronics: A practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties
    • Zardetto, V., Brown, T. M., Reale, A. & Di Carlo, A. Substrates for flexible electronics: A practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties. J. Polym. Sci. Part B: Polym. Phys. 49, 638–648 (2011). DOI: 10.1002/polb.22227
    • (2011) J. Polym. Sci. Part B: Polym. Phys. , vol.49 , pp. 638-648
    • Zardetto, V.1    Brown, T.M.2    Reale, A.3    Di Carlo, A.4
  • 2
    • 3042831924 scopus 로고    scopus 로고
    • A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications
    • Someya, T. et al. A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc. Natl Acad. Sci. USA 101, 9966–9970 (2004). DOI: 10.1073/pnas.0401918101
    • (2004) Proc. Natl Acad. Sci. USA , vol.101 , pp. 9966-9970
    • Someya, T.1
  • 3
    • 54949116488 scopus 로고    scopus 로고
    • Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs
    • Yoon, J. et al. Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. Nat. Mater. 7, 907–915 (2008). DOI: 10.1038/nmat2287
    • (2008) Nat. Mater. , vol.7 , pp. 907-915
    • Yoon, J.1
  • 4
    • 33845691203 scopus 로고    scopus 로고
    • Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials
    • Ahn, J.-H. et al. Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials. Science 314, 1754–1757 (2006). DOI: 10.1126/science.1132394
    • (2006) Science , vol.314 , pp. 1754-1757
    • Ahn, J.-H.1
  • 5
    • 84881168392 scopus 로고    scopus 로고
    • An ultra-lightweight design for imperceptible plastic electronics
    • Kaltenbrunner, M. et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 499, 458–463 (2013). DOI: 10.1038/nature12314
    • (2013) Nature , vol.499 , pp. 458-463
    • Kaltenbrunner, M.1
  • 6
    • 85016162901 scopus 로고    scopus 로고
    • The rise of plastic bioelectronics
    • Someya, T., Bao, Z. & Malliaras, G. G. The rise of plastic bioelectronics. Nature 540, 379–385 (2016). DOI: 10.1038/nature21004
    • (2016) Nature , vol.540 , pp. 379-385
    • Someya, T.1    Bao, Z.2    Malliaras, G.G.3
  • 7
    • 42549116193 scopus 로고    scopus 로고
    • Stretchable and foldable silicon integrated circuits
    • Kim, D.-H. et al. Stretchable and foldable silicon integrated circuits. Science 320, 507–511 (2008). DOI: 10.1126/science.1154367
    • (2008) Science , vol.320 , pp. 507-511
    • Kim, D.-H.1
  • 8
    • 80051607518 scopus 로고    scopus 로고
    • Epidermal electronics
    • Kim, D.-H. et al. Epidermal electronics. Science 333, 838–843 (2011). DOI: 10.1126/science.1206157
    • (2011) Science , vol.333 , pp. 838-843
    • Kim, D.-H.1
  • 9
    • 57749117387 scopus 로고    scopus 로고
    • Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations
    • Kim, D.-H. et al. Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc. Natl Acad. Sci. 105, 18675–18680 (2008). DOI: 10.1073/pnas.0807476105
    • (2008) Proc. Natl Acad. Sci. , vol.105 , pp. 18675-18680
    • Kim, D.-H.1
  • 10
    • 82255186762 scopus 로고    scopus 로고
    • Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo
    • Viventi, J. et al. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat. Neurosci. 14, 1599–1605 (2011). DOI: 10.1038/nn.2973
    • (2011) Nat. Neurosci. , vol.14 , pp. 1599-1605
    • Viventi, J.1
  • 11
    • 84984801633 scopus 로고    scopus 로고
    • Ultraflexible organic photonic skin
    • Yokota, T. et al. Ultraflexible organic photonic skin. Sci. Adv. 2, e1501856 (2016). DOI: 10.1126/sciadv.1501856
    • (2016) Sci. Adv. , vol.2
    • Yokota, T.1
  • 12
    • 77950214388 scopus 로고    scopus 로고
    • Materials and mechanics for stretchable electronics
    • Rogers, J. A., Someya, T. & Huang, Y. Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010). DOI: 10.1126/science.1182383
    • (2010) Science , vol.327 , pp. 1603-1607
    • Rogers, J.A.1    Someya, T.2    Huang, Y.3
  • 13
    • 67349198513 scopus 로고    scopus 로고
    • Stretchable active-matrix organic light-emitting diode display using printable elastic conductors
    • Sekitani, T. et al. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat. Mater. 8, 494–499 (2009). DOI: 10.1038/nmat2459
    • (2009) Nat. Mater. , vol.8 , pp. 494-499
    • Sekitani, T.1
  • 14
    • 78649976514 scopus 로고    scopus 로고
    • Flexible organic transistors and circuits with extreme bending stability
    • Sekitani, T., Zschieschang, U., Klauk, H. & Someya, T. Flexible organic transistors and circuits with extreme bending stability. Nat. Mater. 9, 1015–1022 (2010). DOI: 10.1038/nmat2896
    • (2010) Nat. Mater. , vol.9 , pp. 1015-1022
    • Sekitani, T.1    Zschieschang, U.2    Klauk, H.3    Someya, T.4
  • 15
    • 84996565506 scopus 로고    scopus 로고
    • Intrinsically stretchable and healable semiconducting polymer for organic transistors
    • Oh, J. Y. et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature 539, 411–415 (2016). DOI: 10.1038/nature20102
    • (2016) Nature , vol.539 , pp. 411-415
    • Oh, J.Y.1
  • 16
    • 84973165856 scopus 로고    scopus 로고
    • Mechanically durable and highly stretchable transistors employing carbon nanotube semiconductor and electrodes
    • Chortos, A. et al. Mechanically durable and highly stretchable transistors employing carbon nanotube semiconductor and electrodes. Adv. Mater. 28, 4441–4448 (2016). DOI: 10.1002/adma.201501828
    • (2016) Adv. Mater. , vol.28 , pp. 4441-4448
    • Chortos, A.1
  • 17
    • 84944453491 scopus 로고    scopus 로고
    • A skin-inspired organic digital mechanoreceptor
    • Tee, B. C.-K. et al. A skin-inspired organic digital mechanoreceptor. Science 350, 313–316 (2015). DOI: 10.1126/science.aaa9306
    • (2015) Science , vol.350 , pp. 313-316
    • Tee, B.C.-K.1
  • 18
    • 84907331623 scopus 로고    scopus 로고
    • Rugged and breathable forms of stretchable electronics with adherent composite substrates for transcutaneous monitoring
    • Jang, K.-I. et al. Rugged and breathable forms of stretchable electronics with adherent composite substrates for transcutaneous monitoring. Nat. Commun. 5, 4779 (2014). DOI: 10.1038/ncomms5779
    • (2014) Nat. Commun. , vol.5
    • Jang, K.-I.1
  • 19
    • 84971280378 scopus 로고    scopus 로고
    • A wearable chemical–electrophysiological hybrid biosensing system for real-time health and fitness monitoring
    • Imani, S. et al. A wearable chemical–electrophysiological hybrid biosensing system for real-time health and fitness monitoring. Nat. Commun. 7, 11650 (2016). DOI: 10.1038/ncomms11650
    • (2016) Nat. Commun. , vol.7
    • Imani, S.1
  • 20
    • 84904510440 scopus 로고    scopus 로고
    • Technology advances in flexible displays and substrates
    • Chen, J. & Liu, C. T. Technology advances in flexible displays and substrates. IEEE Access 1, 150–158 (2013). DOI: 10.1109/ACCESS.2013.2260792
    • (2013) IEEE Access , vol.1 , pp. 150-158
    • Chen, J.1    Liu, C.T.2
  • 21
    • 84960298096 scopus 로고    scopus 로고
    • Flexible displays: low-power flexible organic light-emitting diode display device (Adv. Mater. 31/2011)
    • Kim, S. et al. Flexible displays: low-power flexible organic light-emitting diode display device (Adv. Mater. 31/2011). Adv. Mater. 23, 3475–3475 (2011). DOI: 10.1002/adma.201190120
    • (2011) Adv. Mater. , vol.23 , pp. 3475
    • Kim, S.1
  • 22
    • 0035942286 scopus 로고    scopus 로고
    • Paper-like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks
    • Rogers, J. A. et al. Paper-like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proc. Natl Acad. Sci. 98, 4835–4840 (2001). DOI: 10.1073/pnas.091588098
    • (2001) Proc. Natl Acad. Sci. , vol.98 , pp. 4835-4840
    • Rogers, J.A.1
  • 23
    • 84878731954 scopus 로고    scopus 로고
    • Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring
    • Schwartz, G. et al. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat. Commun. 4, 1859 (2013). DOI: 10.1038/ncomms2832
    • (2013) Nat. Commun. , vol.4
    • Schwartz, G.1
  • 24
    • 84964200317 scopus 로고    scopus 로고
    • Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis
    • Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016). DOI: 10.1038/nature16521
    • (2016) Nature , vol.529 , pp. 509-514
    • Gao, W.1
  • 25
    • 84961392109 scopus 로고    scopus 로고
    • A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy
    • Lee, H. et al. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nano 11, 566–572 (2016). DOI: 10.1038/nnano.2016.38
    • (2016) Nat. Nano , vol.11 , pp. 566-572
    • Lee, H.1
  • 26
    • 84997771406 scopus 로고    scopus 로고
    • A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat
    • Koh, A. et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci. Transl. Med. 8, 366ra165–366ra165 (2016). DOI: 10.1126/scitranslmed.aaf2593
    • (2016) Sci. Transl. Med. , vol.8 , pp. 366ra165
    • Koh, A.1
  • 27
    • 84958156088 scopus 로고    scopus 로고
    • Flexible electronics: integration processes for organic and inorganic semiconductor-based thin-film transistors
    • Vidor, F., Meyers, T. & Hilleringmann, U. Flexible electronics: integration processes for organic and inorganic semiconductor-based thin-film transistors. Electronics 4, 480 (2015). DOI: 10.3390/electronics4030480
    • (2015) Electronics , vol.4
    • Vidor, F.1    Meyers, T.2    Hilleringmann, U.3
  • 28
    • 84991666709 scopus 로고    scopus 로고
    • Ultrathin, transferred layers of thermally grown silicon dioxide as biofluid barriers for biointegrated flexible electronic systems
    • Fang, H. et al. Ultrathin, transferred layers of thermally grown silicon dioxide as biofluid barriers for biointegrated flexible electronic systems. Proc. Natl Acad. Sci. 113, 11682–11687 (2016). DOI: 10.1073/pnas.1605269113
    • (2016) Proc. Natl Acad. Sci. , vol.113 , pp. 11682-11687
    • Fang, H.1
  • 29
    • 79960063423 scopus 로고    scopus 로고
    • Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays
    • Lee, J.-S., Kovalenko, M. V., Huang, J., Chung, D. S. & Talapin, D. V. Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays. Nat. Nano 6, 348–352 (2011). DOI: 10.1038/nnano.2011.46
    • (2011) Nat. Nano , vol.6 , pp. 348-352
    • Lee, J.-S.1    Kovalenko, M.V.2    Huang, J.3    Chung, D.S.4    Talapin, D.V.5
  • 30
    • 84907015354 scopus 로고    scopus 로고
    • High mobility single-crystalline-like GaAs thin films on inexpensive flexible metal substrates by metal-organic chemical vapor deposition
    • Dutta, P. et al. High mobility single-crystalline-like GaAs thin films on inexpensive flexible metal substrates by metal-organic chemical vapor deposition. Appl. Phys. Lett. 105, 092104 (2014). DOI: 10.1063/1.4895388
    • (2014) Appl. Phys. Lett. , vol.105
    • Dutta, P.1
  • 31
    • 77952993872 scopus 로고    scopus 로고
    • Stretchable, curvilinear electronics based on inorganic materials
    • Kim, D.-H., Xiao, J., Song, J., Huang, Y. & Rogers, J. A. Stretchable, curvilinear electronics based on inorganic materials. Adv. Mater. 22, 2108–2124 (2010). DOI: 10.1002/adma.200902927
    • (2010) Adv. Mater. , vol.22 , pp. 2108-2124
    • Kim, D.-H.1    Xiao, J.2    Song, J.3    Huang, Y.4    Rogers, J.A.5
  • 32
    • 84957537126 scopus 로고    scopus 로고
    • Bioresorbable silicon electronic sensors for the brain
    • Kang, S.-K. et al. Bioresorbable silicon electronic sensors for the brain. Nature 530, 71–76 (2016). DOI: 10.1038/nature16492
    • (2016) Nature , vol.530 , pp. 71-76
    • Kang, S.-K.1
  • 33
    • 53849087163 scopus 로고    scopus 로고
    • Theoretical and experimental studies of bending of inorganic electronic materials on plastic substrates
    • Park, S.-I. et al. Theoretical and experimental studies of bending of inorganic electronic materials on plastic substrates. Adv. Funct. Mater. 18, 2673–2684 (2008). DOI: 10.1002/adfm.200800306
    • (2008) Adv. Funct. Mater. , vol.18 , pp. 2673-2684
    • Park, S.-I.1
  • 34
    • 80052413216 scopus 로고    scopus 로고
    • Synthesis, assembly and applications of semiconductor nanomembranes
    • Rogers, J. A., Lagally, M. G. & Nuzzo, R. G. Synthesis, assembly and applications of semiconductor nanomembranes. Nature 477, 45–53 (2011). DOI: 10.1038/nature10381
    • (2011) Nature , vol.477 , pp. 45-53
    • Rogers, J.A.1    Lagally, M.G.2    Nuzzo, R.G.3
  • 35
    • 0035831290 scopus 로고    scopus 로고
    • Nanobelts of semiconducting oxides
    • Pan, Z. W., Dai, Z. R. & Wang, Z. L. Nanobelts of semiconducting oxides. Science 291, 1947–1949 (2001). DOI: 10.1126/science.1058120
    • (2001) Science , vol.291 , pp. 1947-1949
    • Pan, Z.W.1    Dai, Z.R.2    Wang, Z.L.3
  • 36
    • 59649099717 scopus 로고    scopus 로고
    • Large-scale pattern growth of graphene films for stretchable transparent electrodes
    • Kim, K. S. et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009). DOI: 10.1038/nature07719
    • (2009) Nature , vol.457 , pp. 706-710
    • Kim, K.S.1
  • 37
    • 84898016894 scopus 로고    scopus 로고
    • 25th anniversary article: semiconductor nanowires—synthesis, characterization, and applications
    • Dasgupta, N. P. et al. 25th anniversary article: semiconductor nanowires—synthesis, characterization, and applications. Adv. Mater. 26, 2137–2184 (2014). DOI: 10.1002/adma.201305929
    • (2014) Adv. Mater. , vol.26 , pp. 2137-2184
    • Dasgupta, N.P.1
  • 38
    • 84984920092 scopus 로고    scopus 로고
    • Building devices from colloidal quantum dots
    • Kagan, C. R., Lifshitz, E., Sargent, E. H. & Talapin, D. V. Building devices from colloidal quantum dots. Science 353, aac5523 (2016). DOI: 10.1126/science.aac5523
    • (2016) Science , vol.353
    • Kagan, C.R.1    Lifshitz, E.2    Sargent, E.H.3    Talapin, D.V.4
  • 39
    • 84867888184 scopus 로고    scopus 로고
    • Macroporous nanowire nanoelectronic scaffolds for synthetic tissues
    • Tian, B. et al. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat. Mater. 11, 986–994 (2012). DOI: 10.1038/nmat3404
    • (2012) Nat. Mater. , vol.11 , pp. 986-994
    • Tian, B.1
  • 40
    • 84955267706 scopus 로고    scopus 로고
    • Intrinsically stretchable and transparent thin-film transistors based on printable silver nanowires, carbon nanotubes and an elastomeric dielectric
    • Liang, J. et al. Intrinsically stretchable and transparent thin-film transistors based on printable silver nanowires, carbon nanotubes and an elastomeric dielectric. Nat. Commun. 6, 7647 (2015). DOI: 10.1038/ncomms8647
    • (2015) Nat. Commun. , vol.6
    • Liang, J.1
  • 41
    • 84979598459 scopus 로고    scopus 로고
    • A nanomesh scaffold for supramolecular nanowire optoelectronic devices
    • Zhang, L. et al. A nanomesh scaffold for supramolecular nanowire optoelectronic devices. Nat. Nano 11, 900–906 (2016). DOI: 10.1038/nnano.2016.125
    • (2016) Nat. Nano , vol.11 , pp. 900-906
    • Zhang, L.1
  • 42
    • 84877300547 scopus 로고    scopus 로고
    • A nanoscale combing technique for the large-scale assembly of highly aligned nanowires
    • Yao, J., Yan, H. & Lieber, C. M. A nanoscale combing technique for the large-scale assembly of highly aligned nanowires. Nat. Nano 8, 329–335 (2013). DOI: 10.1038/nnano.2013.55
    • (2013) Nat. Nano , vol.8 , pp. 329-335
    • Yao, J.1    Yan, H.2    Lieber, C.M.3
  • 43
    • 35748932911 scopus 로고    scopus 로고
    • Nanoelectronics from the bottom up
    • Lu, W. & Lieber, C. M. Nanoelectronics from the bottom up. Nat. Mater. 6, 841–850 (2007). DOI: 10.1038/nmat2028
    • (2007) Nat. Mater. , vol.6 , pp. 841-850
    • Lu, W.1    Lieber, C.M.2
  • 44
    • 84916918502 scopus 로고    scopus 로고
    • Flexible electronics based on inorganic nanowires
    • Liu, Z., Xu, J., Chen, D. & Shen, G. Flexible electronics based on inorganic nanowires. Chem. Soc. Rev. 44, 161–192 (2015). DOI: 10.1039/C4CS00116H
    • (2015) Chem. Soc. Rev. , vol.44 , pp. 161-192
    • Liu, Z.1    Xu, J.2    Chen, D.3    Shen, G.4
  • 45
    • 84910121533 scopus 로고    scopus 로고
    • Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics
    • Cheng, R. et al. Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics. Nat. Commun. 5, 5143 (2014). DOI: 10.1038/ncomms6143
    • (2014) Nat. Commun. , vol.5
    • Cheng, R.1
  • 46
    • 84939126247 scopus 로고    scopus 로고
    • Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics
    • Wu, W. et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 514, 470–474 (2014). DOI: 10.1038/nature13792
    • (2014) Nature , vol.514 , pp. 470-474
    • Wu, W.1
  • 47
    • 84920846601 scopus 로고    scopus 로고
    • Electronics based on two-dimensional materials
    • Fiori, G. et al. Electronics based on two-dimensional materials. Nat. Nano 9, 768–779 (2014). DOI: 10.1038/nnano.2014.207
    • (2014) Nat. Nano , vol.9 , pp. 768-779
    • Fiori, G.1
  • 48
    • 84928789264 scopus 로고    scopus 로고
    • High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity
    • Kang, K. et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015). DOI: 10.1038/nature14417
    • (2015) Nature , vol.520 , pp. 656-660
    • Kang, K.1
  • 49
    • 84877575887 scopus 로고    scopus 로고
    • A general method for transferring graphene onto soft surfaces
    • Song, J. et al. A general method for transferring graphene onto soft surfaces. Nat. Nano 8, 356–362 (2013). DOI: 10.1038/nnano.2013.63
    • (2013) Nat. Nano , vol.8 , pp. 356-362
    • Song, J.1
  • 50
    • 77956430820 scopus 로고    scopus 로고
    • Roll-to-roll production of 30-inch graphene films for transparent electrodes
    • Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nano 5, 574–578 (2010). DOI: 10.1038/nnano.2010.132
    • (2010) Nat. Nano , vol.5 , pp. 574-578
    • Bae, S.1
  • 51
    • 84922697328 scopus 로고    scopus 로고
    • Two-dimensional flexible nanoelectronics
    • Akinwande, D., Petrone, N. & Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 5678 (2014). DOI: 10.1038/ncomms6678
    • (2014) Nat. Commun. , vol.5
    • Akinwande, D.1    Petrone, N.2    Hone, J.3
  • 52
    • 85013071147 scopus 로고    scopus 로고
    • Two-dimensional semiconductors for transistors
    • Chhowalla, M., Jena, D. & Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1, 16052 (2016). DOI: 10.1038/natrevmats.2016.52
    • (2016) Nat. Rev. Mater. , vol.1
    • Chhowalla, M.1    Jena, D.2    Zhang, H.3
  • 53
    • 33744530680 scopus 로고    scopus 로고
    • Mechanically flexible thin-film transistors that use ultrathin ribbons of silicon derived from bulk wafers
    • Mack, S., Meitl, M. A., Baca, A. J., Zhu, Z.-T. & Rogers, J. A. Mechanically flexible thin-film transistors that use ultrathin ribbons of silicon derived from bulk wafers. Appl. Phys. Lett. 88, 213101 (2006). DOI: 10.1063/1.2206688
    • (2006) Appl. Phys. Lett. , vol.88
    • Mack, S.1    Meitl, M.A.2    Baca, A.J.3    Zhu, Z.-T.4    Rogers, J.A.5
  • 54
    • 36148942881 scopus 로고    scopus 로고
    • Printable single-crystal silicon micro/nanoscale ribbons, platelets and bars generated from bulk wafers
    • Baca, A. J. et al. Printable single-crystal silicon micro/nanoscale ribbons, platelets and bars generated from bulk wafers. Adv. Funct. Mater. 17, 3051–3062 (2007). DOI: 10.1002/adfm.200601161
    • (2007) Adv. Funct. Mater. , vol.17 , pp. 3051-3062
    • Baca, A.J.1
  • 55
    • 33750519646 scopus 로고    scopus 로고
    • Bulk quantities of single-crystal silicon micro-/nanoribbons generated from bulk wafers
    • Ko, H. C., Baca, A. J. & Rogers, J. A. Bulk quantities of single-crystal silicon micro-/nanoribbons generated from bulk wafers. Nano Lett. 6, 2318–2324 (2006). DOI: 10.1021/nl061846p
    • (2006) Nano Lett. , vol.6 , pp. 2318-2324
    • Ko, H.C.1    Baca, A.J.2    Rogers, J.A.3
  • 56
    • 84861035597 scopus 로고    scopus 로고
    • Thinning and shaping solid films into functional and integrative nanomembranes
    • Huang, G. & Mei, Y. Thinning and shaping solid films into functional and integrative nanomembranes. Adv. Mater. 24, 2517–2546 (2012). DOI: 10.1002/adma.201200574
    • (2012) Adv. Mater. , vol.24 , pp. 2517-2546
    • Huang, G.1    Mei, Y.2
  • 57
    • 30044447991 scopus 로고    scopus 로고
    • Transfer printing by kinetic control of adhesion to an elastomeric stamp
    • Meitl, M. A. et al. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat. Mater. 5, 33–38 (2006). DOI: 10.1038/nmat1532
    • (2006) Nat. Mater. , vol.5 , pp. 33-38
    • Meitl, M.A.1
  • 58
    • 0023043012 scopus 로고
    • Wafer bonding for silicon‐on‐insulator technologies
    • Lasky, J. B. Wafer bonding for silicon‐on‐insulator technologies. Appl. Phys. Lett. 48, 78–80 (1986). DOI: 10.1063/1.96768
    • (1986) Appl. Phys. Lett. , vol.48 , pp. 78-80
    • Lasky, J.B.1
  • 59
    • 78651511024 scopus 로고    scopus 로고
    • Nanomechanical architecture of semiconductor nanomembranes
    • Huang, M., Cavallo, F., Liu, F. & Lagally, M. G. Nanomechanical architecture of semiconductor nanomembranes. Nanoscale 3, 96–120 (2011). DOI: 10.1039/C0NR00648C
    • (2011) Nanoscale , vol.3 , pp. 96-120
    • Huang, M.1    Cavallo, F.2    Liu, F.3    Lagally, M.G.4
  • 61
    • 84887847901 scopus 로고    scopus 로고
    • Quantum confinement effects in transferrable silicon nanomembranes and their applications on unusual substrates
    • Jang, H. et al. Quantum confinement effects in transferrable silicon nanomembranes and their applications on unusual substrates. Nano Lett. 13, 5600–5607 (2013). DOI: 10.1021/nl403251e
    • (2013) Nano Lett. , vol.13 , pp. 5600-5607
    • Jang, H.1
  • 62
    • 32544460869 scopus 로고    scopus 로고
    • Electronic transport in nanometre-scale silicon-on-insulator membranes
    • Zhang, P. et al. Electronic transport in nanometre-scale silicon-on-insulator membranes. Nature 439, 703–706 (2006). DOI: 10.1038/nature04501
    • (2006) Nature , vol.439 , pp. 703-706
    • Zhang, P.1
  • 63
    • 33646486240 scopus 로고    scopus 로고
    • Elastically relaxed free-standing strained-silicon nanomembranes
    • Roberts, M. M. et al. Elastically relaxed free-standing strained-silicon nanomembranes. Nat. Mater. 5, 388–393 (2006). DOI: 10.1038/nmat1606
    • (2006) Nat. Mater. , vol.5 , pp. 388-393
    • Roberts, M.M.1
  • 64
    • 75949122156 scopus 로고    scopus 로고
    • Semiconductors turn soft: inorganic nanomembranes
    • Cavallo, F. & Lagally, M. G. Semiconductors turn soft: inorganic nanomembranes. Soft Matter 6, 439–455 (2010). DOI: 10.1039/B916582G
    • (2010) Soft Matter , vol.6 , pp. 439-455
    • Cavallo, F.1    Lagally, M.G.2
  • 66
    • 33845445505 scopus 로고    scopus 로고
    • Microwave thin-film transistors using Si nanomembranes on flexible polymer substrate
    • Yuan, H.-C. & Ma, Z. Microwave thin-film transistors using Si nanomembranes on flexible polymer substrate. Appl. Phys. Lett. 89, 212105 (2006). DOI: 10.1063/1.2397038
    • (2006) Appl. Phys. Lett. , vol.89
    • Yuan, H.-C.1    Ma, Z.2
  • 67
    • 78649654125 scopus 로고    scopus 로고
    • 12-GHz thin-film transistors on transferrable silicon nanomembranes for high-performance flexible electronics
    • Sun, L. et al. 12-GHz thin-film transistors on transferrable silicon nanomembranes for high-performance flexible electronics. Small 6, 2553–2557 (2010). DOI: 10.1002/smll.201000522
    • (2010) Small , vol.6 , pp. 2553-2557
    • Sun, L.1
  • 68
    • 77957041269 scopus 로고    scopus 로고
    • Flexible microwave PIN diodes and switches employing transferrable single-crystal Si nanomembranes on plastic substrates
    • Guoxuan, Q., Hao-Chih, Y., George, K. C., Weidong, Z. & Zhenqiang, M. Flexible microwave PIN diodes and switches employing transferrable single-crystal Si nanomembranes on plastic substrates. J. Phys. D Appl. Phys. 42, 234006 (2009). DOI: 10.1088/0022-3727/42/23/234006
    • (2009) J. Phys. D Appl. Phys. , vol.42
    • Guoxuan, Q.1    Hao-Chih, Y.2    George, K.C.3    Weidong, Z.4    Zhenqiang, M.5
  • 69
    • 36149015973 scopus 로고
    • Intrinsic optical absorption in single-crystal germanium and silicon at silicon at 77°K and 300°K
    • Dash, W. C. & Newman, R. Intrinsic optical absorption in single-crystal germanium and silicon at silicon at 77°K and 300°K. Phys. Rev. 99, 1151–1155 (1955). DOI: 10.1103/PhysRev.99.1151
    • (1955) Phys. Rev. , vol.99 , pp. 1151-1155
    • Dash, W.C.1    Newman, R.2
  • 70
    • 58149506088 scopus 로고    scopus 로고
    • Flexible photodetectors on plastic substrates by use of printing transferred single-crystal germanium membranes
    • Yuan, H.-C. et al. Flexible photodetectors on plastic substrates by use of printing transferred single-crystal germanium membranes. Appl. Phys. Lett. 94, 013102 (2009). DOI: 10.1063/1.3062938
    • (2009) Appl. Phys. Lett. , vol.94
    • Yuan, H.-C.1
  • 71
    • 77952692175 scopus 로고    scopus 로고
    • GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies
    • Yoon, J. et al. GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies. Nature 465, 329–333 (2010). DOI: 10.1038/nature09054
    • (2010) Nature , vol.465 , pp. 329-333
    • Yoon, J.1
  • 72
    • 78149440901 scopus 로고    scopus 로고
    • Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors
    • Ko, H. et al. Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors. Nature 468, 286–289 (2010). DOI: 10.1038/nature09541
    • (2010) Nature , vol.468 , pp. 286-289
    • Ko, H.1
  • 73
    • 55749086650 scopus 로고    scopus 로고
    • Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers
    • Mei, Y. et al. Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers. Adv. Mater. 20, 4085–4090 (2008). DOI: 10.1002/adma.200801589
    • (2008) Adv. Mater. , vol.20 , pp. 4085-4090
    • Mei, Y.1
  • 74
    • 0035826219 scopus 로고    scopus 로고
    • Nanotechnology: thin solid films roll up into nanotubes
    • Schmidt, O. G. & Eberl, K. Nanotechnology: thin solid films roll up into nanotubes. Nature 410, 168–168 (2001). DOI: 10.1038/35065525
    • (2001) Nature , vol.410 , pp. 168
    • Schmidt, O.G.1    Eberl, K.2
  • 75
    • 58049149830 scopus 로고    scopus 로고
    • Stretchable electronics: materials strategies and devices
    • Kim, D.-H. & Rogers, J. A. Stretchable electronics: materials strategies and devices. Adv. Mater. 20, 4887–4892 (2008). DOI: 10.1002/adma.200801788
    • (2008) Adv. Mater. , vol.20 , pp. 4887-4892
    • Kim, D.-H.1    Rogers, J.A.2
  • 76
    • 30844433983 scopus 로고    scopus 로고
    • A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates
    • Khang, D.-Y., Jiang, H., Huang, Y. & Rogers, J. A. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 311, 208–212 (2006). DOI: 10.1126/science.1121401
    • (2006) Science , vol.311 , pp. 208-212
    • Khang, D.-Y.1    Jiang, H.2    Huang, Y.3    Rogers, J.A.4
  • 77
    • 33847239980 scopus 로고    scopus 로고
    • Controlled buckling of semiconductor nanoribbons for stretchable electronics
    • Sun, Y., Choi, W. M., Jiang, H., Huang, Y. Y. & Rogers, J. A. Controlled buckling of semiconductor nanoribbons for stretchable electronics. Nat. Nano 1, 201–207 (2006). DOI: 10.1038/nnano.2006.131
    • (2006) Nat. Nano , vol.1 , pp. 201-207
    • Sun, Y.1    Choi, W.M.2    Jiang, H.3    Huang, Y.Y.4    Rogers, J.A.5
  • 78
    • 73849112041 scopus 로고    scopus 로고
    • Optimized structural designs for stretchable silicon integrated circuits
    • Kim, D.-H. et al. Optimized structural designs for stretchable silicon integrated circuits. Small 5, 2841–2847 (2009). DOI: 10.1002/smll.200900853
    • (2009) Small , vol.5 , pp. 2841-2847
    • Kim, D.-H.1
  • 79
    • 84943194466 scopus 로고    scopus 로고
    • Fractal design concepts for stretchable electronics
    • Fan, J. A. et al. Fractal design concepts for stretchable electronics. Nat. Commun. 5, 3266 (2014).
    • (2014) Nat. Commun. , vol.5
    • Fan, J.A.1
  • 80
    • 84951952995 scopus 로고    scopus 로고
    • An epidermal stimulation and sensing platform for sensorimotor prosthetic control, management of lower back exertion, and electrical muscle activation
    • Xu, B. et al. An epidermal stimulation and sensing platform for sensorimotor prosthetic control, management of lower back exertion, and electrical muscle activation. Adv. Mater. 28, 4462–4471 (2016). DOI: 10.1002/adma.201504155
    • (2016) Adv. Mater. , vol.28 , pp. 4462-4471
    • Xu, B.1
  • 81
    • 84923362347 scopus 로고    scopus 로고
    • Stretchable silicon nanoribbon electronics for skin prosthesis
    • Kim, J. et al. Stretchable silicon nanoribbon electronics for skin prosthesis. Nat. Commun. 5, 5747 (2014). DOI: 10.1038/ncomms6747
    • (2014) Nat. Commun. , vol.5
    • Kim, J.1
  • 82
    • 84897552123 scopus 로고    scopus 로고
    • Soft microfluidic assemblies of sensors, circuits, and radios for the skin
    • Xu, S. et al. Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science 344, 70–74 (2014). DOI: 10.1126/science.1250169
    • (2014) Science , vol.344 , pp. 70-74
    • Xu, S.1
  • 83
    • 85005814148 scopus 로고    scopus 로고
    • Miniaturized battery-free wireless systems for wearable pulse oximetry
    • Kim, J. et al. Miniaturized battery-free wireless systems for wearable pulse oximetry. Adv. Funct. Mater. 27, 1604373–1603280 (2017). DOI: 10.1002/adfm.201604373
    • (2017) Adv. Funct. Mater. , vol.27 , pp. 1604373-1603280
    • Kim, J.1
  • 84
    • 85014892371 scopus 로고    scopus 로고
    • Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin
    • Kim, J. et al. Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin. Sci. Adv. 2, e1600418 (2016). DOI: 10.1126/sciadv.1600418
    • (2016) Sci. Adv. , vol.2
    • Kim, J.1
  • 85
    • 84973138146 scopus 로고    scopus 로고
    • Soft, thin skin-mounted power management systems and their use in wireless thermography
    • Lee, J. W. et al. Soft, thin skin-mounted power management systems and their use in wireless thermography. Proc. Natl Acad. Sci. 113, 6131–6136 (2016). DOI: 10.1073/pnas.1605720113
    • (2016) Proc. Natl Acad. Sci. , vol.113 , pp. 6131-6136
    • Lee, J.W.1
  • 86
    • 84876310253 scopus 로고    scopus 로고
    • Injectable, cellular-scale optoelectronics with applications for wireless optogenetics
    • Kim, T.-i et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 340, 211–216 (2013). DOI: 10.1126/science.1232437
    • (2013) Science , vol.340 , pp. 211-216
    • Kim, T.-I.1
  • 87
    • 34247497682 scopus 로고    scopus 로고
    • Postoperative impairment of cognitive function in ratsa possible role for cytokine-mediated inflammation in the Hippocampus
    • Wan, M. D. Y. et al. Postoperative impairment of cognitive function in ratsa possible role for cytokine-mediated inflammation in the Hippocampus. Anesthesiology 106, 436–443 (2007). DOI: 10.1097/00000542-200703000-00007
    • (2007) Anesthesiology , vol.106 , pp. 436-443
    • Wan, M.D.Y.1
  • 88
    • 84857842368 scopus 로고    scopus 로고
    • T-maze forced alternation and left-right discrimination tasks for assessing working and reference memory in Mice
    • Shoji, H., Hagihara, H., Takao, K., Hattori, S. & Miyakawa, T. T-maze forced alternation and left-right discrimination tasks for assessing working and reference memory in Mice. J. Vis. Exp.: JoVE 60, e3300 (2012).
    • (2012) J. Vis. Exp.: Jove , vol.60
    • Shoji, H.1    Hagihara, H.2    Takao, K.3    Hattori, S.4    Miyakawa, T.5
  • 89
    • 84949777056 scopus 로고    scopus 로고
    • Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics
    • Park, S. I. et al. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nat. Biotech. 33, 1280–1286 (2015). DOI: 10.1038/nbt.3415
    • (2015) Nat. Biotech. , vol.33 , pp. 1280-1286
    • Park, S.I.1
  • 90
    • 84923786559 scopus 로고    scopus 로고
    • Materials and fabrication sequences for water soluble silicon integrated circuits at the 90 nm node
    • Yin, L., Bozler, C., Harburg, D. V., Omenetto, F. & Rogers, J. A. Materials and fabrication sequences for water soluble silicon integrated circuits at the 90 nm node. Appl. Phys. Lett. 106, 014105 (2015). DOI: 10.1063/1.4905321
    • (2015) Appl. Phys. Lett. , vol.106
    • Yin, L.1    Bozler, C.2    Harburg, D.V.3    Omenetto, F.4    Rogers, J.A.5
  • 91
    • 84895057255 scopus 로고    scopus 로고
    • Dissolvable metals for transient electronics
    • Yin, L. et al. Dissolvable metals for transient electronics. Adv. Funct. Mater. 24, 645–658 (2014). DOI: 10.1002/adfm.201301847
    • (2014) Adv. Funct. Mater. , vol.24 , pp. 645-658
    • Yin, L.1
  • 92
    • 84904667227 scopus 로고    scopus 로고
    • Dissolution behaviors and applications of silicon oxides and nitrides in transient electronics
    • Kang, S.-K. et al. Dissolution behaviors and applications of silicon oxides and nitrides in transient electronics. Adv. Funct. Mater. 24, 4427–4434 (2014). DOI: 10.1002/adfm.201304293
    • (2014) Adv. Funct. Mater. , vol.24 , pp. 4427-4434
    • Kang, S.-K.1
  • 93
    • 84902375570 scopus 로고    scopus 로고
    • High-performance biodegradable/transient electronics on biodegradable polymers
    • Hwang, S.-W. et al. High-performance biodegradable/transient electronics on biodegradable polymers. Adv. Mater. 26, 3905–3911 (2014). DOI: 10.1002/adma.201306050
    • (2014) Adv. Mater. , vol.26 , pp. 3905-3911
    • Hwang, S.-W.1
  • 94
    • 84866753558 scopus 로고    scopus 로고
    • A physically transient form of silicon electronics
    • Hwang, S.-W. et al. A physically transient form of silicon electronics. Science 337, 1640–1644 (2012). DOI: 10.1126/science.1226325
    • (2012) Science , vol.337 , pp. 1640-1644
    • Hwang, S.-W.1
  • 96
    • 78650164953 scopus 로고    scopus 로고
    • Biocompatible and biodegradable materials for organic field-effect transistors
    • Irimia-Vladu, M. et al. Biocompatible and biodegradable materials for organic field-effect transistors. Adv. Funct. Mater. 20, 4069–4076 (2010). DOI: 10.1002/adfm.201001031
    • (2010) Adv. Funct. Mater. , vol.20 , pp. 4069-4076
    • Irimia-Vladu, M.1
  • 97
    • 84992292403 scopus 로고    scopus 로고
    • Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex
    • Yu, K. J. et al. Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex. Nat. Mater. 15, 782–791 (2016). DOI: 10.1038/nmat4624
    • (2016) Nat. Mater. , vol.15 , pp. 782-791
    • Yu, K.J.1
  • 98
    • 85088021848 scopus 로고    scopus 로고
    • Roche-Posay., L. My UV Patch, http://www.laroche-posay.us/my-uv-patch?gclid=CjwKEAiA17LDBRDElqOGq8vR7m8SJAA1AC0_FOF6jd10-1Z4z41wHTvuz2UhoSfXympy5LVGxfIhyRoC9-jw_wcB (2016).
    • (2016) My UV Patch
    • Roche-Posay, L.1
  • 99
    • 85088033171 scopus 로고    scopus 로고
    • M.C. 10
    • M.C. 10, BioStamp RC. https://www.mc10inc.com/our-products/biostamprc (2016).
    • (2016) Biostamp RC
  • 100
    • 84878020774 scopus 로고    scopus 로고
    • Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging
    • Wu, W., Wen, X. & Wang, Z. L. Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging. Science 340, 952–957 (2013). DOI: 10.1126/science.1234855
    • (2013) Science , vol.340 , pp. 952-957
    • Wu, W.1    Wen, X.2    Wang, Z.L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.