-
1
-
-
79953225209
-
Substrates for flexible electronics: A practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties
-
Zardetto, V., Brown, T. M., Reale, A. & Di Carlo, A. Substrates for flexible electronics: A practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties. J. Polym. Sci. Part B: Polym. Phys. 49, 638–648 (2011). DOI: 10.1002/polb.22227
-
(2011)
J. Polym. Sci. Part B: Polym. Phys.
, vol.49
, pp. 638-648
-
-
Zardetto, V.1
Brown, T.M.2
Reale, A.3
Di Carlo, A.4
-
2
-
-
3042831924
-
A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications
-
Someya, T. et al. A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc. Natl Acad. Sci. USA 101, 9966–9970 (2004). DOI: 10.1073/pnas.0401918101
-
(2004)
Proc. Natl Acad. Sci. USA
, vol.101
, pp. 9966-9970
-
-
Someya, T.1
-
3
-
-
54949116488
-
Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs
-
Yoon, J. et al. Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. Nat. Mater. 7, 907–915 (2008). DOI: 10.1038/nmat2287
-
(2008)
Nat. Mater.
, vol.7
, pp. 907-915
-
-
Yoon, J.1
-
4
-
-
33845691203
-
Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials
-
Ahn, J.-H. et al. Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials. Science 314, 1754–1757 (2006). DOI: 10.1126/science.1132394
-
(2006)
Science
, vol.314
, pp. 1754-1757
-
-
Ahn, J.-H.1
-
5
-
-
84881168392
-
An ultra-lightweight design for imperceptible plastic electronics
-
Kaltenbrunner, M. et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 499, 458–463 (2013). DOI: 10.1038/nature12314
-
(2013)
Nature
, vol.499
, pp. 458-463
-
-
Kaltenbrunner, M.1
-
6
-
-
85016162901
-
The rise of plastic bioelectronics
-
Someya, T., Bao, Z. & Malliaras, G. G. The rise of plastic bioelectronics. Nature 540, 379–385 (2016). DOI: 10.1038/nature21004
-
(2016)
Nature
, vol.540
, pp. 379-385
-
-
Someya, T.1
Bao, Z.2
Malliaras, G.G.3
-
7
-
-
42549116193
-
Stretchable and foldable silicon integrated circuits
-
Kim, D.-H. et al. Stretchable and foldable silicon integrated circuits. Science 320, 507–511 (2008). DOI: 10.1126/science.1154367
-
(2008)
Science
, vol.320
, pp. 507-511
-
-
Kim, D.-H.1
-
8
-
-
80051607518
-
Epidermal electronics
-
Kim, D.-H. et al. Epidermal electronics. Science 333, 838–843 (2011). DOI: 10.1126/science.1206157
-
(2011)
Science
, vol.333
, pp. 838-843
-
-
Kim, D.-H.1
-
9
-
-
57749117387
-
Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations
-
Kim, D.-H. et al. Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc. Natl Acad. Sci. 105, 18675–18680 (2008). DOI: 10.1073/pnas.0807476105
-
(2008)
Proc. Natl Acad. Sci.
, vol.105
, pp. 18675-18680
-
-
Kim, D.-H.1
-
10
-
-
82255186762
-
Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo
-
Viventi, J. et al. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat. Neurosci. 14, 1599–1605 (2011). DOI: 10.1038/nn.2973
-
(2011)
Nat. Neurosci.
, vol.14
, pp. 1599-1605
-
-
Viventi, J.1
-
11
-
-
84984801633
-
Ultraflexible organic photonic skin
-
Yokota, T. et al. Ultraflexible organic photonic skin. Sci. Adv. 2, e1501856 (2016). DOI: 10.1126/sciadv.1501856
-
(2016)
Sci. Adv.
, vol.2
-
-
Yokota, T.1
-
12
-
-
77950214388
-
Materials and mechanics for stretchable electronics
-
Rogers, J. A., Someya, T. & Huang, Y. Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010). DOI: 10.1126/science.1182383
-
(2010)
Science
, vol.327
, pp. 1603-1607
-
-
Rogers, J.A.1
Someya, T.2
Huang, Y.3
-
13
-
-
67349198513
-
Stretchable active-matrix organic light-emitting diode display using printable elastic conductors
-
Sekitani, T. et al. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat. Mater. 8, 494–499 (2009). DOI: 10.1038/nmat2459
-
(2009)
Nat. Mater.
, vol.8
, pp. 494-499
-
-
Sekitani, T.1
-
14
-
-
78649976514
-
Flexible organic transistors and circuits with extreme bending stability
-
Sekitani, T., Zschieschang, U., Klauk, H. & Someya, T. Flexible organic transistors and circuits with extreme bending stability. Nat. Mater. 9, 1015–1022 (2010). DOI: 10.1038/nmat2896
-
(2010)
Nat. Mater.
, vol.9
, pp. 1015-1022
-
-
Sekitani, T.1
Zschieschang, U.2
Klauk, H.3
Someya, T.4
-
15
-
-
84996565506
-
Intrinsically stretchable and healable semiconducting polymer for organic transistors
-
Oh, J. Y. et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature 539, 411–415 (2016). DOI: 10.1038/nature20102
-
(2016)
Nature
, vol.539
, pp. 411-415
-
-
Oh, J.Y.1
-
16
-
-
84973165856
-
Mechanically durable and highly stretchable transistors employing carbon nanotube semiconductor and electrodes
-
Chortos, A. et al. Mechanically durable and highly stretchable transistors employing carbon nanotube semiconductor and electrodes. Adv. Mater. 28, 4441–4448 (2016). DOI: 10.1002/adma.201501828
-
(2016)
Adv. Mater.
, vol.28
, pp. 4441-4448
-
-
Chortos, A.1
-
17
-
-
84944453491
-
A skin-inspired organic digital mechanoreceptor
-
Tee, B. C.-K. et al. A skin-inspired organic digital mechanoreceptor. Science 350, 313–316 (2015). DOI: 10.1126/science.aaa9306
-
(2015)
Science
, vol.350
, pp. 313-316
-
-
Tee, B.C.-K.1
-
18
-
-
84907331623
-
Rugged and breathable forms of stretchable electronics with adherent composite substrates for transcutaneous monitoring
-
Jang, K.-I. et al. Rugged and breathable forms of stretchable electronics with adherent composite substrates for transcutaneous monitoring. Nat. Commun. 5, 4779 (2014). DOI: 10.1038/ncomms5779
-
(2014)
Nat. Commun.
, vol.5
-
-
Jang, K.-I.1
-
19
-
-
84971280378
-
A wearable chemical–electrophysiological hybrid biosensing system for real-time health and fitness monitoring
-
Imani, S. et al. A wearable chemical–electrophysiological hybrid biosensing system for real-time health and fitness monitoring. Nat. Commun. 7, 11650 (2016). DOI: 10.1038/ncomms11650
-
(2016)
Nat. Commun.
, vol.7
-
-
Imani, S.1
-
20
-
-
84904510440
-
Technology advances in flexible displays and substrates
-
Chen, J. & Liu, C. T. Technology advances in flexible displays and substrates. IEEE Access 1, 150–158 (2013). DOI: 10.1109/ACCESS.2013.2260792
-
(2013)
IEEE Access
, vol.1
, pp. 150-158
-
-
Chen, J.1
Liu, C.T.2
-
21
-
-
84960298096
-
Flexible displays: low-power flexible organic light-emitting diode display device (Adv. Mater. 31/2011)
-
Kim, S. et al. Flexible displays: low-power flexible organic light-emitting diode display device (Adv. Mater. 31/2011). Adv. Mater. 23, 3475–3475 (2011). DOI: 10.1002/adma.201190120
-
(2011)
Adv. Mater.
, vol.23
, pp. 3475
-
-
Kim, S.1
-
22
-
-
0035942286
-
Paper-like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks
-
Rogers, J. A. et al. Paper-like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proc. Natl Acad. Sci. 98, 4835–4840 (2001). DOI: 10.1073/pnas.091588098
-
(2001)
Proc. Natl Acad. Sci.
, vol.98
, pp. 4835-4840
-
-
Rogers, J.A.1
-
23
-
-
84878731954
-
Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring
-
Schwartz, G. et al. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat. Commun. 4, 1859 (2013). DOI: 10.1038/ncomms2832
-
(2013)
Nat. Commun.
, vol.4
-
-
Schwartz, G.1
-
24
-
-
84964200317
-
Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis
-
Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016). DOI: 10.1038/nature16521
-
(2016)
Nature
, vol.529
, pp. 509-514
-
-
Gao, W.1
-
25
-
-
84961392109
-
A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy
-
Lee, H. et al. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nano 11, 566–572 (2016). DOI: 10.1038/nnano.2016.38
-
(2016)
Nat. Nano
, vol.11
, pp. 566-572
-
-
Lee, H.1
-
26
-
-
84997771406
-
A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat
-
Koh, A. et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci. Transl. Med. 8, 366ra165–366ra165 (2016). DOI: 10.1126/scitranslmed.aaf2593
-
(2016)
Sci. Transl. Med.
, vol.8
, pp. 366ra165
-
-
Koh, A.1
-
27
-
-
84958156088
-
Flexible electronics: integration processes for organic and inorganic semiconductor-based thin-film transistors
-
Vidor, F., Meyers, T. & Hilleringmann, U. Flexible electronics: integration processes for organic and inorganic semiconductor-based thin-film transistors. Electronics 4, 480 (2015). DOI: 10.3390/electronics4030480
-
(2015)
Electronics
, vol.4
-
-
Vidor, F.1
Meyers, T.2
Hilleringmann, U.3
-
28
-
-
84991666709
-
Ultrathin, transferred layers of thermally grown silicon dioxide as biofluid barriers for biointegrated flexible electronic systems
-
Fang, H. et al. Ultrathin, transferred layers of thermally grown silicon dioxide as biofluid barriers for biointegrated flexible electronic systems. Proc. Natl Acad. Sci. 113, 11682–11687 (2016). DOI: 10.1073/pnas.1605269113
-
(2016)
Proc. Natl Acad. Sci.
, vol.113
, pp. 11682-11687
-
-
Fang, H.1
-
29
-
-
79960063423
-
Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays
-
Lee, J.-S., Kovalenko, M. V., Huang, J., Chung, D. S. & Talapin, D. V. Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays. Nat. Nano 6, 348–352 (2011). DOI: 10.1038/nnano.2011.46
-
(2011)
Nat. Nano
, vol.6
, pp. 348-352
-
-
Lee, J.-S.1
Kovalenko, M.V.2
Huang, J.3
Chung, D.S.4
Talapin, D.V.5
-
30
-
-
84907015354
-
High mobility single-crystalline-like GaAs thin films on inexpensive flexible metal substrates by metal-organic chemical vapor deposition
-
Dutta, P. et al. High mobility single-crystalline-like GaAs thin films on inexpensive flexible metal substrates by metal-organic chemical vapor deposition. Appl. Phys. Lett. 105, 092104 (2014). DOI: 10.1063/1.4895388
-
(2014)
Appl. Phys. Lett.
, vol.105
-
-
Dutta, P.1
-
31
-
-
77952993872
-
Stretchable, curvilinear electronics based on inorganic materials
-
Kim, D.-H., Xiao, J., Song, J., Huang, Y. & Rogers, J. A. Stretchable, curvilinear electronics based on inorganic materials. Adv. Mater. 22, 2108–2124 (2010). DOI: 10.1002/adma.200902927
-
(2010)
Adv. Mater.
, vol.22
, pp. 2108-2124
-
-
Kim, D.-H.1
Xiao, J.2
Song, J.3
Huang, Y.4
Rogers, J.A.5
-
32
-
-
84957537126
-
Bioresorbable silicon electronic sensors for the brain
-
Kang, S.-K. et al. Bioresorbable silicon electronic sensors for the brain. Nature 530, 71–76 (2016). DOI: 10.1038/nature16492
-
(2016)
Nature
, vol.530
, pp. 71-76
-
-
Kang, S.-K.1
-
33
-
-
53849087163
-
Theoretical and experimental studies of bending of inorganic electronic materials on plastic substrates
-
Park, S.-I. et al. Theoretical and experimental studies of bending of inorganic electronic materials on plastic substrates. Adv. Funct. Mater. 18, 2673–2684 (2008). DOI: 10.1002/adfm.200800306
-
(2008)
Adv. Funct. Mater.
, vol.18
, pp. 2673-2684
-
-
Park, S.-I.1
-
34
-
-
80052413216
-
Synthesis, assembly and applications of semiconductor nanomembranes
-
Rogers, J. A., Lagally, M. G. & Nuzzo, R. G. Synthesis, assembly and applications of semiconductor nanomembranes. Nature 477, 45–53 (2011). DOI: 10.1038/nature10381
-
(2011)
Nature
, vol.477
, pp. 45-53
-
-
Rogers, J.A.1
Lagally, M.G.2
Nuzzo, R.G.3
-
35
-
-
0035831290
-
Nanobelts of semiconducting oxides
-
Pan, Z. W., Dai, Z. R. & Wang, Z. L. Nanobelts of semiconducting oxides. Science 291, 1947–1949 (2001). DOI: 10.1126/science.1058120
-
(2001)
Science
, vol.291
, pp. 1947-1949
-
-
Pan, Z.W.1
Dai, Z.R.2
Wang, Z.L.3
-
36
-
-
59649099717
-
Large-scale pattern growth of graphene films for stretchable transparent electrodes
-
Kim, K. S. et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009). DOI: 10.1038/nature07719
-
(2009)
Nature
, vol.457
, pp. 706-710
-
-
Kim, K.S.1
-
37
-
-
84898016894
-
25th anniversary article: semiconductor nanowires—synthesis, characterization, and applications
-
Dasgupta, N. P. et al. 25th anniversary article: semiconductor nanowires—synthesis, characterization, and applications. Adv. Mater. 26, 2137–2184 (2014). DOI: 10.1002/adma.201305929
-
(2014)
Adv. Mater.
, vol.26
, pp. 2137-2184
-
-
Dasgupta, N.P.1
-
38
-
-
84984920092
-
Building devices from colloidal quantum dots
-
Kagan, C. R., Lifshitz, E., Sargent, E. H. & Talapin, D. V. Building devices from colloidal quantum dots. Science 353, aac5523 (2016). DOI: 10.1126/science.aac5523
-
(2016)
Science
, vol.353
-
-
Kagan, C.R.1
Lifshitz, E.2
Sargent, E.H.3
Talapin, D.V.4
-
39
-
-
84867888184
-
Macroporous nanowire nanoelectronic scaffolds for synthetic tissues
-
Tian, B. et al. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat. Mater. 11, 986–994 (2012). DOI: 10.1038/nmat3404
-
(2012)
Nat. Mater.
, vol.11
, pp. 986-994
-
-
Tian, B.1
-
40
-
-
84955267706
-
Intrinsically stretchable and transparent thin-film transistors based on printable silver nanowires, carbon nanotubes and an elastomeric dielectric
-
Liang, J. et al. Intrinsically stretchable and transparent thin-film transistors based on printable silver nanowires, carbon nanotubes and an elastomeric dielectric. Nat. Commun. 6, 7647 (2015). DOI: 10.1038/ncomms8647
-
(2015)
Nat. Commun.
, vol.6
-
-
Liang, J.1
-
41
-
-
84979598459
-
A nanomesh scaffold for supramolecular nanowire optoelectronic devices
-
Zhang, L. et al. A nanomesh scaffold for supramolecular nanowire optoelectronic devices. Nat. Nano 11, 900–906 (2016). DOI: 10.1038/nnano.2016.125
-
(2016)
Nat. Nano
, vol.11
, pp. 900-906
-
-
Zhang, L.1
-
42
-
-
84877300547
-
A nanoscale combing technique for the large-scale assembly of highly aligned nanowires
-
Yao, J., Yan, H. & Lieber, C. M. A nanoscale combing technique for the large-scale assembly of highly aligned nanowires. Nat. Nano 8, 329–335 (2013). DOI: 10.1038/nnano.2013.55
-
(2013)
Nat. Nano
, vol.8
, pp. 329-335
-
-
Yao, J.1
Yan, H.2
Lieber, C.M.3
-
43
-
-
35748932911
-
Nanoelectronics from the bottom up
-
Lu, W. & Lieber, C. M. Nanoelectronics from the bottom up. Nat. Mater. 6, 841–850 (2007). DOI: 10.1038/nmat2028
-
(2007)
Nat. Mater.
, vol.6
, pp. 841-850
-
-
Lu, W.1
Lieber, C.M.2
-
44
-
-
84916918502
-
Flexible electronics based on inorganic nanowires
-
Liu, Z., Xu, J., Chen, D. & Shen, G. Flexible electronics based on inorganic nanowires. Chem. Soc. Rev. 44, 161–192 (2015). DOI: 10.1039/C4CS00116H
-
(2015)
Chem. Soc. Rev.
, vol.44
, pp. 161-192
-
-
Liu, Z.1
Xu, J.2
Chen, D.3
Shen, G.4
-
45
-
-
84910121533
-
Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics
-
Cheng, R. et al. Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics. Nat. Commun. 5, 5143 (2014). DOI: 10.1038/ncomms6143
-
(2014)
Nat. Commun.
, vol.5
-
-
Cheng, R.1
-
46
-
-
84939126247
-
Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics
-
Wu, W. et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 514, 470–474 (2014). DOI: 10.1038/nature13792
-
(2014)
Nature
, vol.514
, pp. 470-474
-
-
Wu, W.1
-
47
-
-
84920846601
-
Electronics based on two-dimensional materials
-
Fiori, G. et al. Electronics based on two-dimensional materials. Nat. Nano 9, 768–779 (2014). DOI: 10.1038/nnano.2014.207
-
(2014)
Nat. Nano
, vol.9
, pp. 768-779
-
-
Fiori, G.1
-
48
-
-
84928789264
-
High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity
-
Kang, K. et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015). DOI: 10.1038/nature14417
-
(2015)
Nature
, vol.520
, pp. 656-660
-
-
Kang, K.1
-
49
-
-
84877575887
-
A general method for transferring graphene onto soft surfaces
-
Song, J. et al. A general method for transferring graphene onto soft surfaces. Nat. Nano 8, 356–362 (2013). DOI: 10.1038/nnano.2013.63
-
(2013)
Nat. Nano
, vol.8
, pp. 356-362
-
-
Song, J.1
-
50
-
-
77956430820
-
Roll-to-roll production of 30-inch graphene films for transparent electrodes
-
Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nano 5, 574–578 (2010). DOI: 10.1038/nnano.2010.132
-
(2010)
Nat. Nano
, vol.5
, pp. 574-578
-
-
Bae, S.1
-
51
-
-
84922697328
-
Two-dimensional flexible nanoelectronics
-
Akinwande, D., Petrone, N. & Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 5678 (2014). DOI: 10.1038/ncomms6678
-
(2014)
Nat. Commun.
, vol.5
-
-
Akinwande, D.1
Petrone, N.2
Hone, J.3
-
52
-
-
85013071147
-
Two-dimensional semiconductors for transistors
-
Chhowalla, M., Jena, D. & Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1, 16052 (2016). DOI: 10.1038/natrevmats.2016.52
-
(2016)
Nat. Rev. Mater.
, vol.1
-
-
Chhowalla, M.1
Jena, D.2
Zhang, H.3
-
53
-
-
33744530680
-
Mechanically flexible thin-film transistors that use ultrathin ribbons of silicon derived from bulk wafers
-
Mack, S., Meitl, M. A., Baca, A. J., Zhu, Z.-T. & Rogers, J. A. Mechanically flexible thin-film transistors that use ultrathin ribbons of silicon derived from bulk wafers. Appl. Phys. Lett. 88, 213101 (2006). DOI: 10.1063/1.2206688
-
(2006)
Appl. Phys. Lett.
, vol.88
-
-
Mack, S.1
Meitl, M.A.2
Baca, A.J.3
Zhu, Z.-T.4
Rogers, J.A.5
-
54
-
-
36148942881
-
Printable single-crystal silicon micro/nanoscale ribbons, platelets and bars generated from bulk wafers
-
Baca, A. J. et al. Printable single-crystal silicon micro/nanoscale ribbons, platelets and bars generated from bulk wafers. Adv. Funct. Mater. 17, 3051–3062 (2007). DOI: 10.1002/adfm.200601161
-
(2007)
Adv. Funct. Mater.
, vol.17
, pp. 3051-3062
-
-
Baca, A.J.1
-
55
-
-
33750519646
-
Bulk quantities of single-crystal silicon micro-/nanoribbons generated from bulk wafers
-
Ko, H. C., Baca, A. J. & Rogers, J. A. Bulk quantities of single-crystal silicon micro-/nanoribbons generated from bulk wafers. Nano Lett. 6, 2318–2324 (2006). DOI: 10.1021/nl061846p
-
(2006)
Nano Lett.
, vol.6
, pp. 2318-2324
-
-
Ko, H.C.1
Baca, A.J.2
Rogers, J.A.3
-
56
-
-
84861035597
-
Thinning and shaping solid films into functional and integrative nanomembranes
-
Huang, G. & Mei, Y. Thinning and shaping solid films into functional and integrative nanomembranes. Adv. Mater. 24, 2517–2546 (2012). DOI: 10.1002/adma.201200574
-
(2012)
Adv. Mater.
, vol.24
, pp. 2517-2546
-
-
Huang, G.1
Mei, Y.2
-
57
-
-
30044447991
-
Transfer printing by kinetic control of adhesion to an elastomeric stamp
-
Meitl, M. A. et al. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat. Mater. 5, 33–38 (2006). DOI: 10.1038/nmat1532
-
(2006)
Nat. Mater.
, vol.5
, pp. 33-38
-
-
Meitl, M.A.1
-
58
-
-
0023043012
-
Wafer bonding for silicon‐on‐insulator technologies
-
Lasky, J. B. Wafer bonding for silicon‐on‐insulator technologies. Appl. Phys. Lett. 48, 78–80 (1986). DOI: 10.1063/1.96768
-
(1986)
Appl. Phys. Lett.
, vol.48
, pp. 78-80
-
-
Lasky, J.B.1
-
59
-
-
78651511024
-
Nanomechanical architecture of semiconductor nanomembranes
-
Huang, M., Cavallo, F., Liu, F. & Lagally, M. G. Nanomechanical architecture of semiconductor nanomembranes. Nanoscale 3, 96–120 (2011). DOI: 10.1039/C0NR00648C
-
(2011)
Nanoscale
, vol.3
, pp. 96-120
-
-
Huang, M.1
Cavallo, F.2
Liu, F.3
Lagally, M.G.4
-
60
-
-
0025575976
-
-
San Francisco, CA
-
Colinge, J. P., Gao, M. H., Romano-Rodriguez, A., Maes, H. & Claeys, C. in Technical Digest—International Electron Devices Meeting 595–598 (San Francisco, CA, 1990).
-
(1990)
Technical Digest—International Electron Devices Meeting
, pp. 595-598
-
-
Colinge, J.P.1
Gao, M.H.2
Romano-Rodriguez, A.3
Maes, H.4
Claeys, C.5
-
61
-
-
84887847901
-
Quantum confinement effects in transferrable silicon nanomembranes and their applications on unusual substrates
-
Jang, H. et al. Quantum confinement effects in transferrable silicon nanomembranes and their applications on unusual substrates. Nano Lett. 13, 5600–5607 (2013). DOI: 10.1021/nl403251e
-
(2013)
Nano Lett.
, vol.13
, pp. 5600-5607
-
-
Jang, H.1
-
62
-
-
32544460869
-
Electronic transport in nanometre-scale silicon-on-insulator membranes
-
Zhang, P. et al. Electronic transport in nanometre-scale silicon-on-insulator membranes. Nature 439, 703–706 (2006). DOI: 10.1038/nature04501
-
(2006)
Nature
, vol.439
, pp. 703-706
-
-
Zhang, P.1
-
63
-
-
33646486240
-
Elastically relaxed free-standing strained-silicon nanomembranes
-
Roberts, M. M. et al. Elastically relaxed free-standing strained-silicon nanomembranes. Nat. Mater. 5, 388–393 (2006). DOI: 10.1038/nmat1606
-
(2006)
Nat. Mater.
, vol.5
, pp. 388-393
-
-
Roberts, M.M.1
-
64
-
-
75949122156
-
Semiconductors turn soft: inorganic nanomembranes
-
Cavallo, F. & Lagally, M. G. Semiconductors turn soft: inorganic nanomembranes. Soft Matter 6, 439–455 (2010). DOI: 10.1039/B916582G
-
(2010)
Soft Matter
, vol.6
, pp. 439-455
-
-
Cavallo, F.1
Lagally, M.G.2
-
65
-
-
85088038144
-
-
US 6410371 B1
-
Yu, B., En, W. G., An, J. X. & Riccobene, C. E. Method of fabrication of semiconductor-on-insulator (SOI) wafer having a Si/SiGe/Si active layer, US 6410371 B1.
-
Method of Fabrication of Semiconductor-On-Insulator (SOI) Wafer Having a Si/Sige/Si Active Layer
-
-
Yu, B.1
En, W.G.2
An, J.X.3
Riccobene, C.E.4
-
66
-
-
33845445505
-
Microwave thin-film transistors using Si nanomembranes on flexible polymer substrate
-
Yuan, H.-C. & Ma, Z. Microwave thin-film transistors using Si nanomembranes on flexible polymer substrate. Appl. Phys. Lett. 89, 212105 (2006). DOI: 10.1063/1.2397038
-
(2006)
Appl. Phys. Lett.
, vol.89
-
-
Yuan, H.-C.1
Ma, Z.2
-
67
-
-
78649654125
-
12-GHz thin-film transistors on transferrable silicon nanomembranes for high-performance flexible electronics
-
Sun, L. et al. 12-GHz thin-film transistors on transferrable silicon nanomembranes for high-performance flexible electronics. Small 6, 2553–2557 (2010). DOI: 10.1002/smll.201000522
-
(2010)
Small
, vol.6
, pp. 2553-2557
-
-
Sun, L.1
-
68
-
-
77957041269
-
Flexible microwave PIN diodes and switches employing transferrable single-crystal Si nanomembranes on plastic substrates
-
Guoxuan, Q., Hao-Chih, Y., George, K. C., Weidong, Z. & Zhenqiang, M. Flexible microwave PIN diodes and switches employing transferrable single-crystal Si nanomembranes on plastic substrates. J. Phys. D Appl. Phys. 42, 234006 (2009). DOI: 10.1088/0022-3727/42/23/234006
-
(2009)
J. Phys. D Appl. Phys.
, vol.42
-
-
Guoxuan, Q.1
Hao-Chih, Y.2
George, K.C.3
Weidong, Z.4
Zhenqiang, M.5
-
69
-
-
36149015973
-
Intrinsic optical absorption in single-crystal germanium and silicon at silicon at 77°K and 300°K
-
Dash, W. C. & Newman, R. Intrinsic optical absorption in single-crystal germanium and silicon at silicon at 77°K and 300°K. Phys. Rev. 99, 1151–1155 (1955). DOI: 10.1103/PhysRev.99.1151
-
(1955)
Phys. Rev.
, vol.99
, pp. 1151-1155
-
-
Dash, W.C.1
Newman, R.2
-
70
-
-
58149506088
-
Flexible photodetectors on plastic substrates by use of printing transferred single-crystal germanium membranes
-
Yuan, H.-C. et al. Flexible photodetectors on plastic substrates by use of printing transferred single-crystal germanium membranes. Appl. Phys. Lett. 94, 013102 (2009). DOI: 10.1063/1.3062938
-
(2009)
Appl. Phys. Lett.
, vol.94
-
-
Yuan, H.-C.1
-
71
-
-
77952692175
-
GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies
-
Yoon, J. et al. GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies. Nature 465, 329–333 (2010). DOI: 10.1038/nature09054
-
(2010)
Nature
, vol.465
, pp. 329-333
-
-
Yoon, J.1
-
72
-
-
78149440901
-
Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors
-
Ko, H. et al. Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors. Nature 468, 286–289 (2010). DOI: 10.1038/nature09541
-
(2010)
Nature
, vol.468
, pp. 286-289
-
-
Ko, H.1
-
73
-
-
55749086650
-
Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers
-
Mei, Y. et al. Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers. Adv. Mater. 20, 4085–4090 (2008). DOI: 10.1002/adma.200801589
-
(2008)
Adv. Mater.
, vol.20
, pp. 4085-4090
-
-
Mei, Y.1
-
74
-
-
0035826219
-
Nanotechnology: thin solid films roll up into nanotubes
-
Schmidt, O. G. & Eberl, K. Nanotechnology: thin solid films roll up into nanotubes. Nature 410, 168–168 (2001). DOI: 10.1038/35065525
-
(2001)
Nature
, vol.410
, pp. 168
-
-
Schmidt, O.G.1
Eberl, K.2
-
75
-
-
58049149830
-
Stretchable electronics: materials strategies and devices
-
Kim, D.-H. & Rogers, J. A. Stretchable electronics: materials strategies and devices. Adv. Mater. 20, 4887–4892 (2008). DOI: 10.1002/adma.200801788
-
(2008)
Adv. Mater.
, vol.20
, pp. 4887-4892
-
-
Kim, D.-H.1
Rogers, J.A.2
-
76
-
-
30844433983
-
A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates
-
Khang, D.-Y., Jiang, H., Huang, Y. & Rogers, J. A. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 311, 208–212 (2006). DOI: 10.1126/science.1121401
-
(2006)
Science
, vol.311
, pp. 208-212
-
-
Khang, D.-Y.1
Jiang, H.2
Huang, Y.3
Rogers, J.A.4
-
77
-
-
33847239980
-
Controlled buckling of semiconductor nanoribbons for stretchable electronics
-
Sun, Y., Choi, W. M., Jiang, H., Huang, Y. Y. & Rogers, J. A. Controlled buckling of semiconductor nanoribbons for stretchable electronics. Nat. Nano 1, 201–207 (2006). DOI: 10.1038/nnano.2006.131
-
(2006)
Nat. Nano
, vol.1
, pp. 201-207
-
-
Sun, Y.1
Choi, W.M.2
Jiang, H.3
Huang, Y.Y.4
Rogers, J.A.5
-
78
-
-
73849112041
-
Optimized structural designs for stretchable silicon integrated circuits
-
Kim, D.-H. et al. Optimized structural designs for stretchable silicon integrated circuits. Small 5, 2841–2847 (2009). DOI: 10.1002/smll.200900853
-
(2009)
Small
, vol.5
, pp. 2841-2847
-
-
Kim, D.-H.1
-
79
-
-
84943194466
-
Fractal design concepts for stretchable electronics
-
Fan, J. A. et al. Fractal design concepts for stretchable electronics. Nat. Commun. 5, 3266 (2014).
-
(2014)
Nat. Commun.
, vol.5
-
-
Fan, J.A.1
-
80
-
-
84951952995
-
An epidermal stimulation and sensing platform for sensorimotor prosthetic control, management of lower back exertion, and electrical muscle activation
-
Xu, B. et al. An epidermal stimulation and sensing platform for sensorimotor prosthetic control, management of lower back exertion, and electrical muscle activation. Adv. Mater. 28, 4462–4471 (2016). DOI: 10.1002/adma.201504155
-
(2016)
Adv. Mater.
, vol.28
, pp. 4462-4471
-
-
Xu, B.1
-
81
-
-
84923362347
-
Stretchable silicon nanoribbon electronics for skin prosthesis
-
Kim, J. et al. Stretchable silicon nanoribbon electronics for skin prosthesis. Nat. Commun. 5, 5747 (2014). DOI: 10.1038/ncomms6747
-
(2014)
Nat. Commun.
, vol.5
-
-
Kim, J.1
-
82
-
-
84897552123
-
Soft microfluidic assemblies of sensors, circuits, and radios for the skin
-
Xu, S. et al. Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science 344, 70–74 (2014). DOI: 10.1126/science.1250169
-
(2014)
Science
, vol.344
, pp. 70-74
-
-
Xu, S.1
-
83
-
-
85005814148
-
Miniaturized battery-free wireless systems for wearable pulse oximetry
-
Kim, J. et al. Miniaturized battery-free wireless systems for wearable pulse oximetry. Adv. Funct. Mater. 27, 1604373–1603280 (2017). DOI: 10.1002/adfm.201604373
-
(2017)
Adv. Funct. Mater.
, vol.27
, pp. 1604373-1603280
-
-
Kim, J.1
-
84
-
-
85014892371
-
Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin
-
Kim, J. et al. Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin. Sci. Adv. 2, e1600418 (2016). DOI: 10.1126/sciadv.1600418
-
(2016)
Sci. Adv.
, vol.2
-
-
Kim, J.1
-
85
-
-
84973138146
-
Soft, thin skin-mounted power management systems and their use in wireless thermography
-
Lee, J. W. et al. Soft, thin skin-mounted power management systems and their use in wireless thermography. Proc. Natl Acad. Sci. 113, 6131–6136 (2016). DOI: 10.1073/pnas.1605720113
-
(2016)
Proc. Natl Acad. Sci.
, vol.113
, pp. 6131-6136
-
-
Lee, J.W.1
-
86
-
-
84876310253
-
Injectable, cellular-scale optoelectronics with applications for wireless optogenetics
-
Kim, T.-i et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 340, 211–216 (2013). DOI: 10.1126/science.1232437
-
(2013)
Science
, vol.340
, pp. 211-216
-
-
Kim, T.-I.1
-
87
-
-
34247497682
-
Postoperative impairment of cognitive function in ratsa possible role for cytokine-mediated inflammation in the Hippocampus
-
Wan, M. D. Y. et al. Postoperative impairment of cognitive function in ratsa possible role for cytokine-mediated inflammation in the Hippocampus. Anesthesiology 106, 436–443 (2007). DOI: 10.1097/00000542-200703000-00007
-
(2007)
Anesthesiology
, vol.106
, pp. 436-443
-
-
Wan, M.D.Y.1
-
88
-
-
84857842368
-
T-maze forced alternation and left-right discrimination tasks for assessing working and reference memory in Mice
-
Shoji, H., Hagihara, H., Takao, K., Hattori, S. & Miyakawa, T. T-maze forced alternation and left-right discrimination tasks for assessing working and reference memory in Mice. J. Vis. Exp.: JoVE 60, e3300 (2012).
-
(2012)
J. Vis. Exp.: Jove
, vol.60
-
-
Shoji, H.1
Hagihara, H.2
Takao, K.3
Hattori, S.4
Miyakawa, T.5
-
89
-
-
84949777056
-
Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics
-
Park, S. I. et al. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nat. Biotech. 33, 1280–1286 (2015). DOI: 10.1038/nbt.3415
-
(2015)
Nat. Biotech.
, vol.33
, pp. 1280-1286
-
-
Park, S.I.1
-
90
-
-
84923786559
-
Materials and fabrication sequences for water soluble silicon integrated circuits at the 90 nm node
-
Yin, L., Bozler, C., Harburg, D. V., Omenetto, F. & Rogers, J. A. Materials and fabrication sequences for water soluble silicon integrated circuits at the 90 nm node. Appl. Phys. Lett. 106, 014105 (2015). DOI: 10.1063/1.4905321
-
(2015)
Appl. Phys. Lett.
, vol.106
-
-
Yin, L.1
Bozler, C.2
Harburg, D.V.3
Omenetto, F.4
Rogers, J.A.5
-
91
-
-
84895057255
-
Dissolvable metals for transient electronics
-
Yin, L. et al. Dissolvable metals for transient electronics. Adv. Funct. Mater. 24, 645–658 (2014). DOI: 10.1002/adfm.201301847
-
(2014)
Adv. Funct. Mater.
, vol.24
, pp. 645-658
-
-
Yin, L.1
-
92
-
-
84904667227
-
Dissolution behaviors and applications of silicon oxides and nitrides in transient electronics
-
Kang, S.-K. et al. Dissolution behaviors and applications of silicon oxides and nitrides in transient electronics. Adv. Funct. Mater. 24, 4427–4434 (2014). DOI: 10.1002/adfm.201304293
-
(2014)
Adv. Funct. Mater.
, vol.24
, pp. 4427-4434
-
-
Kang, S.-K.1
-
93
-
-
84902375570
-
High-performance biodegradable/transient electronics on biodegradable polymers
-
Hwang, S.-W. et al. High-performance biodegradable/transient electronics on biodegradable polymers. Adv. Mater. 26, 3905–3911 (2014). DOI: 10.1002/adma.201306050
-
(2014)
Adv. Mater.
, vol.26
, pp. 3905-3911
-
-
Hwang, S.-W.1
-
94
-
-
84866753558
-
A physically transient form of silicon electronics
-
Hwang, S.-W. et al. A physically transient form of silicon electronics. Science 337, 1640–1644 (2012). DOI: 10.1126/science.1226325
-
(2012)
Science
, vol.337
, pp. 1640-1644
-
-
Hwang, S.-W.1
-
95
-
-
84865782509
-
Green and biodegradable electronics
-
Irimia-Vladu, M., Głowacki, E. D., Voss, G., Bauer, S. & Sariciftci, N. S. Green and biodegradable electronics. Mater. Today 15, 340–346 (2012). DOI: 10.1016/S1369-7021(12)70139-6
-
(2012)
Mater. Today
, vol.15
, pp. 340-346
-
-
Irimia-Vladu, M.1
Głowacki, E.D.2
Voss, G.3
Bauer, S.4
Sariciftci, N.S.5
-
96
-
-
78650164953
-
Biocompatible and biodegradable materials for organic field-effect transistors
-
Irimia-Vladu, M. et al. Biocompatible and biodegradable materials for organic field-effect transistors. Adv. Funct. Mater. 20, 4069–4076 (2010). DOI: 10.1002/adfm.201001031
-
(2010)
Adv. Funct. Mater.
, vol.20
, pp. 4069-4076
-
-
Irimia-Vladu, M.1
-
97
-
-
84992292403
-
Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex
-
Yu, K. J. et al. Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex. Nat. Mater. 15, 782–791 (2016). DOI: 10.1038/nmat4624
-
(2016)
Nat. Mater.
, vol.15
, pp. 782-791
-
-
Yu, K.J.1
-
98
-
-
85088021848
-
-
Roche-Posay., L. My UV Patch, http://www.laroche-posay.us/my-uv-patch?gclid=CjwKEAiA17LDBRDElqOGq8vR7m8SJAA1AC0_FOF6jd10-1Z4z41wHTvuz2UhoSfXympy5LVGxfIhyRoC9-jw_wcB (2016).
-
(2016)
My UV Patch
-
-
Roche-Posay, L.1
-
99
-
-
85088033171
-
-
M.C. 10
-
M.C. 10, BioStamp RC. https://www.mc10inc.com/our-products/biostamprc (2016).
-
(2016)
Biostamp RC
-
-
-
100
-
-
84878020774
-
Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging
-
Wu, W., Wen, X. & Wang, Z. L. Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging. Science 340, 952–957 (2013). DOI: 10.1126/science.1234855
-
(2013)
Science
, vol.340
, pp. 952-957
-
-
Wu, W.1
Wen, X.2
Wang, Z.L.3
|