-
1
-
-
85019172761
-
Learning to learn by gradient descent by gradient descent
-
2
-
M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau, T. Schaul, and N. de Freitas. Learning to learn by gradient descent by gradient descent. In Advances in Neural Information Processing Systems, pages 3981-3989, 2016. 2
-
(2016)
Advances in Neural Information Processing Systems
, pp. 3981-3989
-
-
Andrychowicz, M.1
Denil, M.2
Gomez, S.3
Hoffman, M.W.4
Pfau, D.5
Schaul, T.6
De Freitas, N.7
-
6
-
-
84897558007
-
Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures
-
2
-
J. Bergstra, D. Yamins, and D. D. Cox. Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures. International Conference on Machine Learning, 2013. 2
-
(2013)
International Conference on Machine Learning
-
-
Bergstra, J.1
Yamins, D.2
Cox, D.D.3
-
8
-
-
85038368230
-
-
5, 7
-
Y. Chen, J. Li, H. Xiao, X. Jin, S. Yan, and J. Feng. Dual path networks. ArXiv preprint arXiv: 1707. 01083, 2017. 5, 7
-
(2017)
Dual Path Networks
-
-
Chen, Y.1
Li, J.2
Xiao, H.3
Jin, X.4
Yan, S.5
Feng, J.6
-
11
-
-
72249100259
-
Imagenet: A large-scale hierarchical image database
-
1, 12
-
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image database. In IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2009. 1, 12
-
(2009)
IEEE Conference on Computer Vision and Pattern Recognition. IEEE
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.-J.4
Li, K.5
Fei-Fei, L.6
-
13
-
-
84904482223
-
Decaf: A deep convolutional activation feature for generic visual recognition
-
6
-
J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. Decaf: A deep convolutional activation feature for generic visual recognition. In International Conference on Machine Learning, volume 32, pages 647-655, 2014. 6
-
(2014)
International Conference on Machine Learning
, vol.32
, pp. 647-655
-
-
Donahue, J.1
Jia, Y.2
Vinyals, O.3
Hoffman, J.4
Zhang, N.5
Tzeng, E.6
Darrell, T.7
-
14
-
-
85028473985
-
-
2
-
Y. Duan, J. Schulman, X. Chen, P. L. Bartlett, I. Sutskever, and P. Abbeel. RL2: Fast reinforcement learning via slow reinforcement learning. ArXiv preprint arXiv: 1611. 02779, 2016. 2
-
(2016)
RL2: Fast Reinforcement Learning Via Slow Reinforcement Learning
-
-
Duan, Y.1
Schulman, J.2
Chen, X.3
Bartlett, P.L.4
Sutskever, I.5
Abbeel, P.6
-
17
-
-
27744522225
-
A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
-
1
-
K. Fukushima. A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, page 93202, 1980. 1
-
(1980)
Biological Cybernetics
, pp. 93202
-
-
Fukushima, K.1
-
20
-
-
84986274465
-
Deep residual learning for image recognition
-
1, 2, 3, 4
-
K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In IEEE Conference on Computer Vision and Pattern Recognition, 2016. 1, 2, 3, 4
-
(2016)
IEEE Conference on Computer Vision and Pattern Recognition
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
24
-
-
85030212949
-
-
2, 5, 7, 8, 11
-
A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam. Mobilenets: Efficient convolutional neural networks for mobile vision applications. ArXiv preprint arXiv: 1704. 04861, 2017. 2, 5, 7, 8, 11
-
(2017)
Mobilenets: Efficient Convolutional Neural Networks for Mobile Vision Applications
-
-
Howard, A.G.1
Zhu, M.2
Chen, B.3
Kalenichenko, D.4
Wang, W.5
Weyand, T.6
Andreetto, M.7
Adam, H.8
-
27
-
-
84984824417
-
Deep networks with stochastic depth
-
11
-
G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Weinberger. Deep networks with stochastic depth. In European Conference on Computer Vision, 2016. 11
-
(2016)
European Conference on Computer Vision
-
-
Huang, G.1
Sun, Y.2
Liu, Z.3
Sedra, D.4
Weinberger, K.5
-
28
-
-
85041891404
-
Speed/accuracy trade-offs for modern convolutional object detectors
-
6, 7, 8, 14
-
J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer, Z. Wojna, Y. Song, S. Guadarrama, et al. Speed/accuracy trade-offs for modern convolutional object detectors. In IEEE Conference on Computer Vision and Pattern Recognition, 2017. 6, 7, 8, 14
-
(2017)
IEEE Conference on Computer Vision and Pattern Recognition
-
-
Huang, J.1
Rathod, V.2
Sun, C.3
Zhu, M.4
Korattikara, A.5
Fathi, A.6
Fischer, I.7
Wojna, Z.8
Song, Y.9
Guadarrama, S.10
-
29
-
-
84969584486
-
Batch normalization: Accelerating deep network training by reducing internal covariate shift
-
2, 5, 7, 8
-
S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International Conference on Learning Representations, 2015. 2, 5, 7, 8
-
(2015)
International Conference on Learning Representations
-
-
Ioffe, S.1
Szegedy, C.2
-
36
-
-
85041898381
-
Feature pyramid networks for object detection
-
7
-
T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017. 7
-
(2017)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
-
-
Lin, T.-Y.1
Dollár, P.2
Girshick, R.3
He, K.4
Hariharan, B.5
Belongie, S.6
-
37
-
-
85048072726
-
-
7, 8
-
T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal loss for dense object detection. ArXiv preprint arXiv: 1708. 02002, 2017. 7, 8
-
(2017)
Focal Loss for Dense Object Detection
-
-
Lin, T.-Y.1
Goyal, P.2
Girshick, R.3
He, K.4
Dollár, P.5
-
38
-
-
84906493406
-
Microsoft coco: Com-mon objects in context
-
Springer, 7
-
T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick. Microsoft coco: Com-mon objects in context. In European Conference on Computer Vision, pages 740-755. Springer, 2014. 7
-
(2014)
European Conference on Computer Vision
, pp. 740-755
-
-
Lin, T.-Y.1
Maire, M.2
Belongie, S.3
Hays, J.4
Perona, P.5
Ramanan, D.6
Dollár, P.7
Zitnick, C.L.8
-
40
-
-
85037035573
-
Towards automatically-tuned neural networks
-
2
-
H. Mendoza, A. Klein, M. Feurer, J. T. Springenberg, and F. Hutter. Towards automatically-tuned neural networks. In Proceedings of the 2016 Workshop on Automatic Machine Learning, pages 58-65, 2016. 2
-
(2016)
Proceedings of the 2016 Workshop on Automatic Machine Learning
, pp. 58-65
-
-
Mendoza, H.1
Klein, A.2
Feurer, M.3
Springenberg, J.T.4
Hutter, F.5
-
42
-
-
85020496584
-
-
2
-
R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink, O. Francon, B. Raju, A. Navruzyan, N. Duffy, and B. Hodjat. Evolving deep neural networks. ArXiv preprint arXiv: 1703. 00548, 2017. 2
-
(2017)
Evolving Deep Neural Networks
-
-
Miikkulainen, R.1
Liang, J.2
Meyerson, E.3
Rawal, A.4
Fink, D.5
Francon, O.6
Raju, B.7
Navruzyan, A.8
Duffy, N.9
Hodjat, B.10
-
44
-
-
73449129720
-
A highthroughput screening approach to discovering good forms of biologically inspired visual representation
-
2
-
N. Pinto, D. Doukhan, J. J. DiCarlo, and D. D. Cox. A highthroughput screening approach to discovering good forms of biologically inspired visual representation. PLoS Computational Biology, 5 (11): E1000579, 2009. 2
-
(2009)
PLoS Computational Biology
, vol.5
, Issue.11
, pp. e1000579
-
-
Pinto, N.1
Doukhan, D.2
DiCarlo, J.J.3
Cox, D.D.4
-
46
-
-
85048592974
-
Large-scale evolution of image classifiers
-
2
-
E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, Q. Le, and A. Kurakin. Large-scale evolution of image classifiers. In International Conference on Machine Learning, 2017. 2
-
(2017)
International Conference on Machine Learning
-
-
Real, E.1
Moore, S.2
Selle, A.3
Saxena, S.4
Suematsu, Y.L.5
Le, Q.6
Kurakin, A.7
-
47
-
-
84960980241
-
Faster r-cnn: Towards real-time object detection with region proposal networks
-
2, 6, 7
-
S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-time object detection with region proposal networks. In Advances in Neural Information Processing Systems, pages 91-99, 2015. 2, 6, 7
-
(2015)
Advances in Neural Information Processing Systems
, pp. 91-99
-
-
Ren, S.1
He, K.2
Girshick, R.3
Sun, J.4
-
51
-
-
85041194636
-
-
4, 11
-
J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization algorithms. ArXiv preprint arXiv: 1707. 06347, 2017. 4, 11
-
(2017)
Proximal Policy Optimization Algorithms
-
-
Schulman, J.1
Wolski, F.2
Dhariwal, P.3
Radford, A.4
Klimov, O.5
-
52
-
-
85041919970
-
-
7, 8
-
A. Shrivastava, R. Sukthankar, J. Malik, and A. Gupta. Beyond skip connections: Top-down modulation for object detection. ArXiv preprint arXiv: 1612. 06851, 2016. 7, 8
-
(2016)
Beyond Skip Connections: Top-down Modulation for Object Detection
-
-
Shrivastava, A.1
Sukthankar, R.2
Malik, J.3
Gupta, A.4
-
55
-
-
84970022032
-
Scalable Bayesian optimization using deep neural networks
-
2
-
J. Snoek, O. Rippel, K. Swersky, R. Kiros, N. Satish, N. Sundaram, M. Patwary, M. Ali, R. P. Adams, et al. Scalable Bayesian optimization using deep neural networks. In International Conference on Machine Learning, 2015. 2
-
(2015)
International Conference on Machine Learning
-
-
Snoek, J.1
Rippel, O.2
Swersky, K.3
Kiros, R.4
Satish, N.5
Sundaram, N.6
Patwary, M.7
Ali, M.8
Adams, R.P.9
-
56
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
11
-
N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15 (1): 1929-1958, 2014. 11
-
(2014)
Journal of Machine Learning Research
, vol.15
, Issue.1
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.E.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
57
-
-
67650188046
-
A hypercube-based encoding for evolving large-scale neural networks
-
2
-
K. O. Stanley, D. B. D'Ambrosio, and J. Gauci. A hypercube-based encoding for evolving large-scale neural networks. Artificial Life, 2009. 2
-
(2009)
Artificial Life
-
-
Stanley, K.O.1
D'Ambrosio, D.B.2
Gauci, J.3
-
58
-
-
84983383396
-
Inceptionv4, inception-resnet and the impact of residual connections on learning
-
1, 2, 3, 4, 7
-
C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi. Inceptionv4, Inception-Resnet and the impact of residual connections on learning. In International Conference on Learning Representations Workshop Track, 2016. 1, 2, 3, 4, 7
-
(2016)
International Conference on Learning Representations Workshop Track
-
-
Szegedy, C.1
Ioffe, S.2
Vanhoucke, V.3
Alemi, A.4
-
59
-
-
84937522268
-
Going deeper with convolutions
-
1, 2, 3, 4, 7
-
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In IEEE Conference on Computer Vision and Pattern Recognition, 2015. 1, 2, 3, 4, 7
-
(2015)
IEEE Conference on Computer Vision and Pattern Recognition
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
60
-
-
84986296808
-
Rethinking the inception architecture for computer vision
-
1, 2, 3, 4, 5, 7, 8, 12
-
C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the Inception architecture for computer vision. In IEEE Conference on Computer Vision and Pattern Recognition, 2016. 1, 2, 3, 4, 5, 7, 8, 12
-
(2016)
IEEE Conference on Computer Vision and Pattern Recognition
-
-
Szegedy, C.1
Vanhoucke, V.2
Ioffe, S.3
Shlens, J.4
Wojna, Z.5
-
62
-
-
85028474927
-
-
2
-
J. X. Wang, Z. Kurth-Nelson, D. Tirumala, H. Soyer, J. Z. Leibo, R. Munos, C. Blundell, D. Kumaran, and M. Botvinick. Learning to reinforcement learn. ArXiv preprint arXiv: 1611. 05763, 2016. 2
-
(2016)
Learning to Reinforcement Learn
-
-
Wang, J.X.1
Kurth-Nelson, Z.2
Tirumala, D.3
Soyer, H.4
Leibo, J.Z.5
Munos, R.6
Blundell, C.7
Kumaran, D.8
Botvinick, M.9
-
64
-
-
85051516459
-
-
2
-
O. Wichrowska, N. Maheswaranathan, M. W. Hoffman, S. G. Colmenarejo, M. Denil, N. de Freitas, and J. Sohl-Dickstein. Learned optimizers that scale and generalize. ArXiv preprint arXiv: 1703. 04813, 2017. 2
-
(2017)
Learned Optimizers That Scale and Generalize
-
-
Wichrowska, O.1
Maheswaranathan, N.2
Hoffman, M.W.3
Colmenarejo, S.G.4
Denil, M.5
De Freitas, N.6
Sohl-Dickstein, J.7
-
66
-
-
0000337576
-
Simple statistical gradient-following algorithms for connectionist reinforcement learning
-
11
-
R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. In Machine Learning, 1992. 11
-
(1992)
Machine Learning
-
-
Williams, R.J.1
-
68
-
-
85043777453
-
Aggregated residual transformations for deep neural networks
-
1, 2, 7
-
S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He. Aggregated residual transformations for deep neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017. 1, 2, 7
-
(2017)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
-
-
Xie, S.1
Girshick, R.2
Dollár, P.3
Tu, Z.4
He, K.5
-
69
-
-
85024481282
-
Polynet: A pursuit of structural diversity in very deep networks
-
5, 7, 8, 11
-
X. Zhang, Z. Li, C. C. Loy, and D. Lin. Polynet: A pursuit of structural diversity in very deep networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017. 5, 7, 8, 11
-
(2017)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
-
-
Zhang, X.1
Li, Z.2
Loy, C.C.3
Lin, D.4
-
70
-
-
85034831310
-
-
2, 5, 7, 8
-
X. Zhang, X. Zhou, L. Mengxiao, and J. Sun. Shufflenet: An extremely efficient convolutional neural network for mobile devices. ArXiv preprint arXiv: 1707. 01083, 2017. 2, 5, 7, 8
-
(2017)
Shufflenet: An Extremely Efficient Convolutional Neural Network for Mobile Devices
-
-
Zhang, X.1
Zhou, X.2
Mengxiao, L.3
Sun, J.4
-
71
-
-
85068717703
-
Neural architecture search with reinforcement learning
-
1, 2, 4, 6, 11
-
B. Zoph and Q. V. Le. Neural architecture search with reinforcement learning. In International Conference on Learning Representations, 2017. 1, 2, 4, 6, 11
-
(2017)
International Conference on Learning Representations
-
-
Zoph, B.1
Le, Q.V.2
|