메뉴 건너뛰기




Volumn , Issue , 2018, Pages 8697-8710

Learning Transferable Architectures for Scalable Image Recognition

Author keywords

[No Author keywords available]

Indexed keywords

CELLS; COMPUTER VISION; CONVOLUTION; CYTOLOGY; IMAGE RECOGNITION; LARGE DATASET; NETWORK ARCHITECTURE; OBJECT DETECTION;

EID: 85062864819     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2018.00907     Document Type: Conference Paper
Times cited : (5780)

References (71)
  • 6
    • 84897558007 scopus 로고    scopus 로고
    • Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures
    • 2
    • J. Bergstra, D. Yamins, and D. D. Cox. Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures. International Conference on Machine Learning, 2013. 2
    • (2013) International Conference on Machine Learning
    • Bergstra, J.1    Yamins, D.2    Cox, D.D.3
  • 17
    • 27744522225 scopus 로고
    • A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
    • 1
    • K. Fukushima. A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, page 93202, 1980. 1
    • (1980) Biological Cybernetics , pp. 93202
    • Fukushima, K.1
  • 29
    • 84969584486 scopus 로고    scopus 로고
    • Batch normalization: Accelerating deep network training by reducing internal covariate shift
    • 2, 5, 7, 8
    • S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International Conference on Learning Representations, 2015. 2, 5, 7, 8
    • (2015) International Conference on Learning Representations
    • Ioffe, S.1    Szegedy, C.2
  • 44
    • 73449129720 scopus 로고    scopus 로고
    • A highthroughput screening approach to discovering good forms of biologically inspired visual representation
    • 2
    • N. Pinto, D. Doukhan, J. J. DiCarlo, and D. D. Cox. A highthroughput screening approach to discovering good forms of biologically inspired visual representation. PLoS Computational Biology, 5 (11): E1000579, 2009. 2
    • (2009) PLoS Computational Biology , vol.5 , Issue.11 , pp. e1000579
    • Pinto, N.1    Doukhan, D.2    DiCarlo, J.J.3    Cox, D.D.4
  • 57
    • 67650188046 scopus 로고    scopus 로고
    • A hypercube-based encoding for evolving large-scale neural networks
    • 2
    • K. O. Stanley, D. B. D'Ambrosio, and J. Gauci. A hypercube-based encoding for evolving large-scale neural networks. Artificial Life, 2009. 2
    • (2009) Artificial Life
    • Stanley, K.O.1    D'Ambrosio, D.B.2    Gauci, J.3
  • 66
    • 0000337576 scopus 로고
    • Simple statistical gradient-following algorithms for connectionist reinforcement learning
    • 11
    • R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. In Machine Learning, 1992. 11
    • (1992) Machine Learning
    • Williams, R.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.