-
1
-
-
85019172761
-
Learning to learn by gradient descent by gradient descent
-
3
-
M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau, T. Schaul, and N. de Freitas. Learning to learn by gradient descent by gradient descent. In Advances in Neural Information Processing Systems, pages 3981-3989, 2016. 3
-
(2016)
Advances in Neural Information Processing Systems
, pp. 3981-3989
-
-
Andrychowicz, M.1
Denil, M.2
Gomez, S.3
Hoffman, M.W.4
Pfau, D.5
Schaul, T.6
De Freitas, N.7
-
2
-
-
85079594941
-
Designing neural network architectures using reinforcement learning
-
1, 2, 4, 5, 6, 7, 8
-
B. Baker, O. Gupta, N. Naik, and R. Raskar. Designing neural network architectures using reinforcement learning. In 6th International Conference on Learning Representations, 2017. 1, 2, 4, 5, 6, 7, 8
-
(2017)
6th International Conference on Learning Representations
-
-
Baker, B.1
Gupta, O.2
Naik, N.3
Raskar, R.4
-
3
-
-
85162384813
-
Algorithms for hyper-parameter optimization
-
3
-
J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter optimization. In Advances in Neural Information Processing Systems, pages 2546-2554, 2011. 3
-
(2011)
Advances in Neural Information Processing Systems
, pp. 2546-2554
-
-
Bergstra, J.S.1
Bardenet, R.2
Bengio, Y.3
Kégl, B.4
-
5
-
-
84877760312
-
Large scale distributed deep networks
-
5
-
J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior, P. Tucker, K. Yang, Q. V. Le, et al. Large scale distributed deep networks. In Advances in neural information processing systems, pages 1223-1231, 2012. 5
-
(2012)
Advances in Neural Information Processing Systems
, pp. 1223-1231
-
-
Dean, J.1
Corrado, G.2
Monga, R.3
Chen, K.4
Devin, M.5
Mao, M.6
Senior, A.7
Tucker, P.8
Yang, K.9
Le, Q.V.10
-
6
-
-
85198028989
-
Imagenet: A large-scale hierarchical image database
-
IEEE 2
-
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 248-255. IEEE, 2009. 2
-
(2009)
Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on
, pp. 248-255
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.-J.4
Li, K.5
Fei-Fei, L.6
-
7
-
-
84949921865
-
Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of learning curves
-
2
-
T. Domhan, J. T. Springenberg, and F. Hutter. Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of learning curves. In IJCAI, pages 3460-3468, 2015. 2
-
(2015)
IJCAI
, pp. 3460-3468
-
-
Domhan, T.1
Springenberg, J.T.2
Hutter, F.3
-
9
-
-
84973911419
-
Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
-
6
-
K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE international conference on computer vision, pages 1026-1034, 2015. 6
-
(2015)
Proceedings of the IEEE International Conference on Computer Vision
, pp. 1026-1034
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
10
-
-
84986274465
-
Deep residual learning for image recognition
-
1, 2, 7
-
K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770-778, 2016. 1, 2, 7
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 770-778
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
11
-
-
84990050094
-
Identity mappings in deep residual networks
-
Springer 1, 2, 3, 7, 8
-
K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in deep residual networks. In European Conference on Computer Vision, pages 630-645. Springer, 2016. 1, 2, 3, 7, 8
-
(2016)
European Conference on Computer Vision
, pp. 630-645
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
14
-
-
84969584486
-
Batch normalization: Accelerating deep network training by reducing internal covariate shift
-
1, 2, 8
-
S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International Conference on Machine Learning, pages 448-456, 2015. 1, 2, 8
-
(2015)
International Conference on Machine Learning
, pp. 448-456
-
-
Ioffe, S.1
Szegedy, C.2
-
17
-
-
84930630277
-
Deep learning
-
1
-
Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436-444, 2015. 1
-
(2015)
Nature
, vol.521
, Issue.7553
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
18
-
-
84937960701
-
Parameter server for distributed machine learning
-
5
-
M. Li, L. Zhou, Z. Yang, A. Li, F. Xia, D. G. Andersen, and A. Smola. Parameter server for distributed machine learning. In Big Learning NIPS Workshop, volume 6, page 2, 2013. 5
-
(2013)
Big Learning NIPS Workshop
, vol.6
, pp. 2
-
-
Li, M.1
Zhou, L.2
Yang, Z.3
Li, A.4
Xia, F.5
Andersen, D.G.6
Smola, A.7
-
19
-
-
0003673017
-
-
1, 6 Technical report, Carnegie-Mellon Univ Pittsburgh PA School of Computer Science
-
L.-J. Lin. Reinforcement learning for robots using neural networks. Technical report, Carnegie-Mellon Univ Pittsburgh PA School of Computer Science, 1993. 1, 6
-
(1993)
Reinforcement Learning for Robots Using Neural Networks
-
-
Lin, L.-J.1
-
21
-
-
84924051598
-
Human-level control through deep reinforcement learning
-
1, 6
-
V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep reinforcement learning. Nature, 518(7540):529-533, 2015. 1, 6
-
(2015)
Nature
, vol.518
, Issue.7540
, pp. 529-533
-
-
Mnih, V.1
Kavukcuoglu, K.2
Silver, D.3
Rusu, A.A.4
Veness, J.5
Bellemare, M.G.6
Graves, A.7
Riedmiller, M.8
Fidjeland, A.K.9
Ostrovski, G.10
-
22
-
-
0141596576
-
Policy invariance under reward transformations: Theory and application to reward shaping
-
5
-
A. Y. Ng, D. Harada, and S. Russell. Policy invariance under reward transformations: Theory and application to reward shaping. In ICML, volume 99, pages 278-287, 1999. 5
-
(1999)
ICML
, vol.99
, pp. 278-287
-
-
Ng, A.Y.1
Harada, D.2
Russell, S.3
-
24
-
-
85033056841
-
Combinations of genetic algorithms and neural networks: A survey of the state of the art
-
IEEE 2
-
J. D. Schaffer, D. Whitley, and L. J. Eshelman. Combinations of genetic algorithms and neural networks: A survey of the state of the art. In Combinations of Genetic Algorithms and Neural Networks, 1992., COGANN-92. International Workshop on, pages 1-37. IEEE, 1992. 2
-
(1992)
Combinations of Genetic Algorithms and Neural Networks, 1992., COGANN-92. International Workshop on
, pp. 1-37
-
-
Schaffer, J.D.1
Whitley, D.2
Eshelman, L.J.3
-
26
-
-
67650188046
-
A hypercube-based encoding for evolving large-scale neural networks
-
2
-
K. O. Stanley, D. B. D'Ambrosio, and J. Gauci. A hypercube-based encoding for evolving large-scale neural networks. Artificial life, 15(2):185-212, 2009. 2
-
(2009)
Artificial Life
, vol.15
, Issue.2
, pp. 185-212
-
-
Stanley, K.O.1
D'Ambrosio, D.B.2
Gauci, J.3
-
27
-
-
0036594106
-
Evolving neural networks through augmenting topologies
-
2
-
K. O. Stanley and R. Miikkulainen. Evolving neural networks through augmenting topologies. Evolutionary computation, 10(2):99-127, 2002. 2
-
(2002)
Evolutionary Computation
, vol.10
, Issue.2
, pp. 99-127
-
-
Stanley, K.O.1
Miikkulainen, R.2
-
30
-
-
84937522268
-
Going deeper with convolutions
-
1, 2, 8
-
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, pages 1-9, 2015. 1, 2, 8
-
(2015)
Proc. IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1-9
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
31
-
-
84986296808
-
Rethinking the inception architecture for computer vision
-
1, 2
-
C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2818-2826, 2016. 1, 2
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 2818-2826
-
-
Szegedy, C.1
Vanhoucke, V.2
Ioffe, S.3
Shlens, J.4
Wojna, Z.5
-
32
-
-
0036791948
-
A perspective view and survey of meta-learning
-
3
-
R. Vilalta and Y. Drissi. A perspective view and survey of meta-learning. Artificial Intelligence Review, 18(2):77-95, 2002. 3
-
(2002)
Artificial Intelligence Review
, vol.18
, Issue.2
, pp. 77-95
-
-
Vilalta, R.1
Drissi, Y.2
-
35
-
-
85043777453
-
Aggregated residual transformations for deep neural networks
-
IEEE 8
-
S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He. Aggregated residual transformations for deep neural networks. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 5987-5995. IEEE, 2017. 8
-
(2017)
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 5987-5995
-
-
Xie, S.1
Girshick, R.2
Dollár, P.3
Tu, Z.4
He, K.5
-
37
-
-
85068717703
-
Neural architecture search with reinforcement learning
-
1, 2, 5, 7, 8
-
B. Zoph and Q. V. Le. Neural architecture search with reinforcement learning. In 6th International Conference on Learning Representations, 2017. 1, 2, 5, 7, 8
-
(2017)
6th International Conference on Learning Representations
-
-
Zoph, B.1
Le, Q.V.2
|