-
1
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Nov.
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition, " in Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998.
-
(1998)
Proc. IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
2
-
-
84876231242
-
ImageNet classi-fication with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classi-fication with deep convolutional neural networks, " in Proc. 25th Int. Conf. Neural Inf. Process. Syst., 2013, pp. 1097-1105.
-
(2013)
Proc. 25th Int. Conf. Neural Inf. Process. Syst.
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
3
-
-
84906347546
-
-
arXiv: 1312.6229
-
P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun, "OverFeat: Integrated recognition, localization and detection using convolutional networks, " arXiv:1312.6229, 2013.
-
(2013)
OverFeat: Integrated Recognition, Localization and Detection Using Convolutional Networks
-
-
Sermanet, P.1
Eigen, D.2
Zhang, X.3
Mathieu, M.4
Fergus, R.5
LeCun, Y.6
-
6
-
-
84959218210
-
Modeling local and global deformations in deep learning: Epitomic convolution, multiple instance learning, and sliding window detection
-
G. Papandreou, I. Kokkinos, and P.-A. Savalle, "Modeling local and global deformations in deep learning: Epitomic convolution, multiple instance learning, and sliding window detection, " in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2015, pp. 390-399.
-
(2015)
Proc. IEEE Conf. Comput. Vis. Pattern Recog.
, pp. 390-399
-
-
Papandreou, G.1
Kokkinos, I.2
Savalle, P.-A.3
-
7
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Rich feature hierarchies for accurate object detection and semantic segmentation, " in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2014, pp. 580-587.
-
(2014)
Proc. IEEE Conf. Comput. Vis. Pattern Recog.
, pp. 580-587
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
8
-
-
84911443425
-
Scalable object detection using deep neural networks
-
D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov, "Scalable object detection using deep neural networks, " in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2014, pp. 2155-2162.
-
(2014)
Proc. IEEE Conf. Comput. Vis. Pattern Recog.
, pp. 2155-2162
-
-
Erhan, D.1
Szegedy, C.2
Toshev, A.3
Anguelov, D.4
-
10
-
-
84960980241
-
Faster R-CNN: Towards real-time object detection with region proposal networks
-
S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-CNN: Towards real-time object detection with region proposal networks, " in Proc. 28th Int. Conf. Neural Inf. Process. Syst., 2015, pp. 91-99.
-
(2015)
Proc. 28th Int. Conf. Neural Inf. Process. Syst.
, pp. 91-99
-
-
Ren, S.1
He, K.2
Girshick, R.3
Sun, J.4
-
11
-
-
84958589374
-
-
arXiv: 1512.03385
-
K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition, " arXiv:1512.03385, 2015.
-
(2015)
Deep Residual Learning for Image Recognition
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
12
-
-
85011302702
-
-
arXiv: 1512.02325
-
W. Liu, D. Anguelov, D. Erhan, C. Szegedy, and S. Reed, "SSD: Single shot multibox detector, " arXiv:1512.02325, 2015.
-
(2015)
SSD: Single Shot Multibox Detector
-
-
Liu, W.1
Anguelov, D.2
Erhan, D.3
Szegedy, C.4
Reed, S.5
-
13
-
-
84906489074
-
Visualizing and understanding convolutional networks
-
M. D. Zeiler and R. Fergus, "Visualizing and understanding convolutional networks, " in Proc. Eur. Conf. Comput. Vis., 2014, pp. 818-833.
-
(2014)
Proc. Eur. Conf. Comput. Vis.
, pp. 818-833
-
-
Zeiler, M.D.1
Fergus, R.2
-
15
-
-
0000698134
-
A real-time algorithm for signal analysis with the help of the wavelet transform
-
M. Holschneider, R. Kronland-Martinet, J. Morlet, and P. Tcha-mitchian, "A real-time algorithm for signal analysis with the help of the wavelet transform, " in Proc. Wavelets: Time-Frequency Methods Phase Space, 1989, pp. 289-297.
-
(1989)
Proc. Wavelets: Time-Frequency Methods Phase Space
, pp. 289-297
-
-
Holschneider, M.1
Kronland-Martinet, R.2
Morlet, J.3
Tcha-Mitchian, P.4
-
16
-
-
84897769461
-
Fast image scanning with deep max-pooling convolutional neural networks
-
A. Giusti, D. Ciresan, J. Masci, L. Gambardella, and J. Schmid-huber, "Fast image scanning with deep max-pooling convolutional neural networks, " in Proc. IEEE Int. Conf. Image Process., 2013, pp. 4034-4038.
-
(2013)
Proc. IEEE Int. Conf. Image Process.
, pp. 4034-4038
-
-
Giusti, A.1
Ciresan, D.2
Masci, J.3
Gambardella, L.4
Schmid-Huber, J.5
-
17
-
-
84986244054
-
Attention to scale: Scale-aware semantic image segmentation
-
L.-C. Chen, Y. Yang, J. Wang, W. Xu, and A. L. Yuille, "Attention to scale: Scale-aware semantic image segmentation, " in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2016.
-
(2016)
Proc. IEEE Conf. Comput. Vis. Pattern Recog.
-
-
Chen, L.-C.1
Yang, Y.2
Wang, J.3
Xu, W.4
Yuille, A.L.5
-
18
-
-
85083952789
-
Pushing the boundaries of boundary detection using deep learning
-
I. Kokkinos, "Pushing the boundaries of boundary detection using deep learning, " in Proc. Int. Conf. Learn. Representations, 2016.
-
(2016)
Proc. Int. Conf. Learn. Representations
-
-
Kokkinos, I.1
-
19
-
-
33845572523
-
Beyond bags of features: Spatial pyramid matching for recognizing natural scene catego-ries
-
S. Lazebnik, C. Schmid, and J. Ponce, "Beyond bags of features: Spatial pyramid matching for recognizing natural scene catego-ries, " in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recog., 2006, pp. 2169-2178.
-
(2006)
Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recog.
, pp. 2169-2178
-
-
Lazebnik, S.1
Schmid, C.2
Ponce, J.3
-
20
-
-
84906508687
-
Spatial pyramid pooling in deep convolutional networks for visual recognition
-
K. He, X. Zhang, S. Ren, and J. Sun, "Spatial pyramid pooling in deep convolutional networks for visual recognition, " in Proc. Eur. Conf. Comput. Vis., 2014, pp. 346-361.
-
(2014)
Proc. Eur. Conf. Comput. Vis.
, pp. 346-361
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
21
-
-
84959236250
-
Hypercolumns for object segmentation and fine-grained local-ization
-
B. Hariharan, P. Arbelaez, R. Girshick, and J. Malik, "Hypercolumns for object segmentation and fine-grained local-ization, " in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2015, pp. 447-456.
-
(2015)
Proc. IEEE Conf. Comput. Vis. Pattern Recog.
, pp. 447-456
-
-
Hariharan, B.1
Arbelaez, P.2
Girshick, R.3
Malik, J.4
-
22
-
-
85162351107
-
Efficient inference in fully con-nected CRFs with Gaussian edge potentials
-
P. Krahenbuhl and V. Koltun, "Efficient inference in fully con-nected CRFs with Gaussian edge potentials, " in Proc. Advances Neural Inf. Process. Syst., 2011, pp. 109-117
-
(2011)
Proc. Advances Neural Inf. Process. Syst.
, pp. 109-117
-
-
Krahenbuhl, P.1
Koltun, V.2
-
23
-
-
12844262766
-
GrabCut: Interactive foreground extraction using iterated graph cuts
-
C. Rother, V. Kolmogorov, and A. Blake, "GrabCut: Interactive foreground extraction using iterated graph cuts, " in Proc. ACM SIGGRAPH, 2004, pp. 309-314.
-
(2004)
Proc. ACM SIGGRAPH
, pp. 309-314
-
-
Rother, C.1
Kolmogorov, V.2
Blake, A.3
-
24
-
-
58149151266
-
Textonboost for image understanding: Multi-class object recognition and segmentation by jointly modeling texture, layout, and context
-
J. Shotton, J. Winn, C. Rother, and A. Criminisi, "Textonboost for image understanding: Multi-class object recognition and segmentation by jointly modeling texture, layout, and context, " Int. J. Comput. Vis., vol. 81, pp. 2-23, 2009.
-
(2009)
Int. J. Comput. Vis.
, vol.81
, pp. 2-23
-
-
Shotton, J.1
Winn, J.2
Rother, C.3
Criminisi, A.4
-
25
-
-
84863059942
-
Are spatial and global constraints really necessary for segmentation?
-
A. Lucchi, Y. Li, X. Boix, K. Smith, and P. Fua, "Are spatial and global constraints really necessary for segmentation?" in Proc. Int. Conf. Comput. Vis., 2011, pp. 9-16.
-
(2011)
Proc. Int. Conf. Comput. Vis.
, pp. 9-16
-
-
Lucchi, A.1
Li, Y.2
Boix, X.3
Smith, K.4
Fua, P.5
-
26
-
-
5044223520
-
Multiscale conditional random fields for image labeling
-
X. He, R. S. Zemel, and M. Carreira-Perpindn, "Multiscale conditional random fields for image labeling, " in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recog., 2004, pp. 695-703.
-
(2004)
Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recog.
, pp. 695-703
-
-
He, X.1
Zemel, R.S.2
Carreira-Perpindn, M.3
-
27
-
-
77953225585
-
Associative hier-archical CRFs for object class image segmentation
-
L. Ladicky, C. Russell, P. Kohli, and P. H. Torr, "Associative hier-archical CRFs for object class image segmentation, " in Proc. Int. Conf. Comput. Vis., 2009, pp. 739-746.
-
(2009)
Proc. Int. Conf. Comput. Vis.
, pp. 739-746
-
-
Ladicky, L.1
Russell, C.2
Kohli, P.3
Torr, P.H.4
-
28
-
-
85162364539
-
Pylon model for semantic segmentation
-
V. Lempitsky, A. Vedaldi, and A. Zisserman, "Pylon model for semantic segmentation, " in Proc. Advances Neural Inf. Process. Syst., 2011, pp. 1485-1493.
-
(2011)
Proc. Advances Neural Inf. Process. Syst.
, pp. 1485-1493
-
-
Lempitsky, V.1
Vedaldi, A.2
Zisserman, A.3
-
29
-
-
84855348351
-
Fast approxi-mate energy minimization with label costs
-
A. Delong, A. Osokin, H. N. Isack, and Y. Boykov, "Fast approxi-mate energy minimization with label costs, " Int. J. Comput. Vis., vol. 96, pp. 1-27, 2012.
-
(2012)
Int. J. Comput. Vis.
, vol.96
, pp. 1-27
-
-
Delong, A.1
Osokin, A.2
Isack, H.N.3
Boykov, Y.4
-
30
-
-
77955998994
-
Harmony potentials for joint classification and segmentation
-
J. M. Gonfaus, X. Boix, J. Van de Weijer, A. D. Bagdanov, J. Serrat, and J. Gonzalez, "Harmony potentials for joint classification and segmentation, " in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2010.
-
(2010)
Proc. IEEE Conf. Comput. Vis. Pattern Recog.
-
-
Gonfaus, J.M.1
Boix, X.2
Van de Weijer, J.3
Bagdanov, A.D.4
Serrat, J.5
Gonzalez, J.6
-
31
-
-
61349174704
-
Robust higher order potentials for enforcing label consistency
-
P. Kohli, P. H. Torr, and L. Ladick, "Robust higher order potentials for enforcing label consistency, " Int. J. Comput. Vis., vol. 82, no. 3, pp. 302-324, 2009.
-
(2009)
Int. J. Comput. Vis.
, vol.82
, Issue.3
, pp. 302-324
-
-
Kohli, P.1
Torr, P.H.2
Ladick, L.3
-
32
-
-
84898816122
-
Learning a dictionary of shape epitomes with applications to image labeling
-
L.-C. Chen, G Papandreou, and A. Yuille, "Learning a dictionary of shape epitomes with applications to image labeling, " in Proc. IEEE Int. Conf. Comput. Vis., 2013, pp. 337-344.
-
(2013)
Proc. IEEE Int. Conf. Comput. Vis.
, pp. 337-344
-
-
Chen, L.-C.1
Papandreou, G.2
Yuille, A.3
-
33
-
-
84959184033
-
Towards unified depth and semantic prediction from a single image
-
P. Wang, X. Shen, Z. Lin, S. Cohen, B. Price, and A. Yuille, "Towards unified depth and semantic prediction from a single image, " in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2015, pp. 2800-2809.
-
(2015)
Proc. IEEE Conf. Comput. Vis. Pattern Recog.
, pp. 2800-2809
-
-
Wang, P.1
Shen, X.2
Lin, Z.3
Cohen, S.4
Price, B.5
Yuille, A.6
-
34
-
-
84952007662
-
The PASCAL visual object classes challenge a retrospective
-
M. Everingham, S. M. A. Eslami, L. V. Gool, C. K. I. Williams, J. Winn, and A. Zisserma, "The PASCAL visual object classes challenge a retrospective, " Int. J. Comput. Vis., 2014.
-
(2014)
Int. J. Comput. Vis.
-
-
Everingham, M.1
Eslami, S.M.A.2
Gool, L.V.3
Williams, C.K.I.4
Winn, J.5
Zisserma, A.6
-
35
-
-
84911444024
-
The role of context for object detection and semantic segmentation in the wild
-
R. Mottaghi, et al., "The role of context for object detection and semantic segmentation in the wild, " in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2014, pp. 891-898.
-
(2014)
Proc. IEEE Conf. Comput. Vis. Pattern Recog.
, pp. 891-898
-
-
Mottaghi, R.1
-
36
-
-
84911421600
-
Detect what you can: Detecting and representing objects using holistic models and body parts
-
X. Chen, R. Mottaghi, X. Liu, S. Fidler, R. Urtasun, and A. Yuille, "Detect what you can: Detecting and representing objects using holistic models and body parts, " in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2014.
-
(2014)
Proc. IEEE Conf. Comput. Vis. Pattern Recog.
-
-
Chen, X.1
Mottaghi, R.2
Liu, X.3
Fidler, S.4
Urtasun, R.5
Yuille, A.6
-
37
-
-
84986255616
-
The cityscapes dataset for semantic urban scene understanding
-
M. Cordts, et al., "The cityscapes dataset for semantic urban scene understanding, " in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2016.
-
(2016)
Proc. IEEE Conf. Comput. Vis. Pattern Recog.
-
-
Cordts, M.1
-
38
-
-
85083954148
-
Semantic image segmentation with deep convolutional nets and fully connected CRFs
-
L.-C. Chen, G Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, "Semantic image segmentation with deep convolutional nets and fully connected CRFs, " in Proc. Int. Conf. Learn. Represen-tations, 2015.
-
(2015)
Proc. Int. Conf. Learn. Represen-tations
-
-
Chen, L.-C.1
Papandreou, G.2
Kokkinos, I.3
Murphy, K.4
Yuille, A.L.5
-
39
-
-
84876258641
-
Learning hierarchical features for scene labeling
-
Aug.
-
C. Farabet, C. Couprie, L. Najman, and Y. LeCun, "Learning hierarchical features for scene labeling, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1915-1929, Aug. 2013.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.35
, Issue.8
, pp. 1915-1929
-
-
Farabet, C.1
Couprie, C.2
Najman, L.3
LeCun, Y.4
-
42
-
-
77956051102
-
Auto-context and its application to high-level vision tasks and 3D brain image segmentation
-
Oct.
-
Z. Tu and X. Bai, "Auto-context and its application to high-level vision tasks and 3D brain image segmentation, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 10, pp. 1744-1757, Oct. 2010.
-
(2010)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.32
, Issue.10
, pp. 1744-1757
-
-
Tu, Z.1
Bai, X.2
-
43
-
-
51949114829
-
Semantic texton forests for image categorization and segmentation
-
J. Shotton, M. Johnson, and R. Cipolla, "Semantic texton forests for image categorization and segmentation, " in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2008, pp. 1-8.
-
(2008)
Proc. IEEE Conf. Comput. Vis. Pattern Recog.
, pp. 1-8
-
-
Shotton, J.1
Johnson, M.2
Cipolla, R.3
-
44
-
-
85078986900
-
Class segmentation and object localization with superpixel neighborhoods
-
B. Fulkerson, A. Vedaldi, and S. Soatto, "Class segmentation and object localization with superpixel neighborhoods, " in Proc. IEEE 12th Int. Conf. Comput. Vis., 2009, pp. 670-677.
-
(2009)
Proc. IEEE 12th Int. Conf. Comput. Vis.
, pp. 670-677
-
-
Fulkerson, B.1
Vedaldi, A.2
Soatto, S.3
-
45
-
-
84867872703
-
Semantic segmentation with second-order pooling
-
J. Carreira, R. Caseiro, J. Batista, and C. Sminchisescu, "Semantic segmentation with second-order pooling, " in Proc. Eur. Conf. Comput. Vis., 2012, pp. 430-443.
-
(2012)
Proc. Eur. Conf. Comput. Vis.
, pp. 430-443
-
-
Carreira, J.1
Caseiro, R.2
Batista, J.3
Sminchisescu, C.4
-
46
-
-
84861335581
-
CPMC: Automatic object seg-mentation using constrained parametric min-cuts
-
Jul.
-
J. Carreira and C. Sminchisescu, "CPMC: Automatic object seg-mentation using constrained parametric min-cuts, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 7, pp. 1312-1328, Jul. 2012.
-
(2012)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.34
, Issue.7
, pp. 1312-1328
-
-
Carreira, J.1
Sminchisescu, C.2
-
47
-
-
84911417279
-
Multiscale combinatorial grouping
-
P. Arbelaez, J. Pont-Tuset, J. T. Barron, F. Marques, and J. Malik, "Multiscale combinatorial grouping, " in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2014, pp. 328-335.
-
(2014)
Proc. IEEE Conf. Comput. Vis. Pattern Recog.
, pp. 328-335
-
-
Arbelaez, P.1
Pont-Tuset, J.2
Barron, J.T.3
Marques, F.4
Malik, J.5
-
48
-
-
84881160857
-
Selective search for object recognition
-
J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders, "Selective search for object recognition, " Int. J. Comput. Vis., vol. 104, pp. 154-171, 2013.
-
(2013)
Int. J. Comput. Vis.
, vol.104
, pp. 154-171
-
-
Uijlings, J.1
Van de Sande, K.2
Gevers, T.3
Smeulders, A.4
-
49
-
-
84906342998
-
Simultaneous detection and segmentation
-
B. Hariharan, P. Arbelaez, R. Girshick, and J. Malik, "Simultaneous detection and segmentation, " in Proc. Eur. Conf. Comput. Vis., 2014, pp. 297-312.
-
(2014)
Proc. Eur. Conf. Comput. Vis.
, pp. 297-312
-
-
Hariharan, B.1
Arbelaez, P.2
Girshick, R.3
Malik, J.4
-
50
-
-
84959207702
-
Feedforward semantic segmentation with zoom-out features
-
M. Mostajabi, P. Yadollahpour, and G Shakhnarovich, "Feedforward semantic segmentation with zoom-out features, " in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2015, pp. 3376-3385.
-
(2015)
Proc. IEEE Conf. Comput. Vis. Pattern Recog.
, pp. 3376-3385
-
-
Mostajabi, M.1
Yadollahpour, P.2
Shakhnarovich, G.3
-
53
-
-
84986305007
-
-
arXiv: 1412.4313
-
M. Cogswell, X. Lin, S. Purushwalkam, and D. Batra, "Combining the best of graphical models and convnets for semantic segmentation, " arXiv:1412.4313, 2014.
-
(2014)
Combining the Best of Graphical Models and Convnets for Semantic Segmentation
-
-
Cogswell, M.1
Lin, X.2
Purushwalkam, S.3
Batra, D.4
-
54
-
-
0026151642
-
Parallel and deterministic algorithms from MRFs: Surface reconstruction
-
May
-
D. Geiger and F. Girosi, "Parallel and deterministic algorithms from MRFs: Surface reconstruction, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 13, no. 5, pp. 401-412, May 1991.
-
(1991)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.13
, Issue.5
, pp. 401-412
-
-
Geiger, D.1
Girosi, F.2
-
55
-
-
0026201666
-
A common framework for image segmentation
-
D. Geiger and A. Yuille, "A common framework for image segmentation, " Int. J. Comput. Vis., vol. 6, no. 3, pp. 227-243, 1991.
-
(1991)
Int. J. Comput. Vis.
, vol.6
, Issue.3
, pp. 227-243
-
-
Geiger, D.1
Yuille, A.2
-
56
-
-
44649169686
-
Computational analysis and learning for a biologically motivated model of boundary detection
-
I. Kokkinos, R. Deriche, O. Faugeras, and P. Maragos, "Computational analysis and learning for a biologically motivated model of boundary detection, " Neurocomputing, vol. 71, no. 10, pp. 1798-1812, 2008.
-
(2008)
Neurocomputing
, vol.71
, Issue.10
, pp. 1798-1812
-
-
Kokkinos, I.1
Deriche, R.2
Faugeras, O.3
Maragos, P.4
-
57
-
-
84962478162
-
-
arXiv: 1412.0623
-
S. Bell, P. Upchurch, N. Snavely, and K. Bala, "Material recogni-tion in the wild with the materials in context database, " arXiv:1412.0623, 2014.
-
(2014)
Material Recogni-tion in the Wild with the Materials in Context Database
-
-
Bell, S.1
Upchurch, P.2
Snavely, N.3
Bala, K.4
-
58
-
-
84973863204
-
Weakly-and semi-supervised learning of a DCNN for semantic image segmentation
-
G Papandreou, L.-C. Chen, K. Murphy, and A. L. Yuille, "Weakly-and semi-supervised learning of a DCNN for semantic image segmentation, " in Proc. IEEE Int. Conf. Comput. Vis., 2015, pp. 1742-1750.
-
(2015)
Proc. IEEE Int. Conf. Comput. Vis.
, pp. 1742-1750
-
-
Papandreou, G.1
Chen, L.-C.2
Murphy, K.3
Yuille, A.L.4
-
59
-
-
84973861983
-
Conditional random fields as recurrent neural networks
-
S. Zheng, et al., "Conditional random fields as recurrent neural networks, " in Proc. IEEE Int. Conf. Comput. Vis., 2015, pp. 1529-1537.
-
(2015)
Proc. IEEE Int. Conf. Comput. Vis.
, pp. 1529-1537
-
-
Zheng, S.1
-
60
-
-
84973890848
-
Boxsup: Exploiting bounding boxes to supervise convolutional networks for semantic segmentation
-
J. Dai, K. He, and J. Sun, "Boxsup: Exploiting bounding boxes to supervise convolutional networks for semantic segmentation, " in Proc. Int. Conf. Comput. Vis., 2015.
-
(2015)
Proc. Int. Conf. Comput. Vis.
-
-
Dai, J.1
He, K.2
Sun, J.3
-
61
-
-
84973879016
-
Learning deconvolution network for semantic segmentation
-
H. Noh, S. Hong, and B. Han, "Learning deconvolution network for semantic segmentation, " in Proc. IEEE Int. Conf. Comput. Vis., 2015, pp. 1520-1528.
-
(2015)
Proc. IEEE Int. Conf. Comput. Vis.
, pp. 1520-1528
-
-
Noh, H.1
Hong, S.2
Han, B.3
-
62
-
-
84973860883
-
Semantic image segmentation via deep parsing network
-
Z. Liu, X. Li, P. Luo, C. C. Loy, and X. Tang, "Semantic image segmentation via deep parsing network, " in Proc. Int. Conf. Comput. Vis., 2015, pp. 1377-1385.
-
(2015)
Proc. Int. Conf. Comput. Vis.
, pp. 1377-1385
-
-
Liu, Z.1
Li, X.2
Luo, P.3
Loy, C.C.4
Tang, X.5
-
63
-
-
84986275144
-
Semantic image segmentation with task-specific edge detection using cnns and a discriminatively trained domain transform
-
L.-C. Chen, J. T. Barron, G. Papandreou, K. Murphy, and A. L. Yuille, "Semantic image segmentation with task-specific edge detection using cnns and a discriminatively trained domain transform, " in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2016, pp. 4545-4554.
-
(2016)
Proc. IEEE Conf. Comput. Vis. Pattern Recog.
, pp. 4545-4554
-
-
Chen, L.-C.1
Barron, J.T.2
Papandreou, G.3
Murphy, K.4
Yuille, A.L.5
-
64
-
-
84969930631
-
Learning deep structured models
-
L.-C. Chen, A. Schwing, A. Yuille, and R. Urtasun, "Learning deep structured models, " in Proc. 32nd Int. Conf. Int. Conf. Mach. Learn., 2015, pp. 1785-1794.
-
(2015)
Proc. 32nd Int. Conf. Int. Conf. Mach. Learn.
, pp. 1785-1794
-
-
Chen, L.-C.1
Schwing, A.2
Yuille, A.3
Urtasun, R.4
-
67
-
-
80051902233
-
Domain transform for edge-aware image and video processing
-
E. S. L. Gastal and M. M. Oliveira, "Domain transform for edge-aware image and video processing, " in Proc. ACM SIGGRAPH, 2011, Art. no. 69.
-
(2011)
Proc. ACM SIGGRAPH
, pp. 69
-
-
Gastal, E.S.L.1
Oliveira, M.M.2
-
68
-
-
84973888826
-
High-for-low and low-for-high: Efficient boundary detection from deep object features and its applications to high-level vision
-
G Bertasius, J. Shi, and L. Torresani, "High-for-low and low-for-high: Efficient boundary detection from deep object features and its applications to high-level vision, " in Proc. IEEE Int. Conf. Comput. Vis., 2015.
-
(2015)
Proc. IEEE Int. Conf. Comput. Vis.
-
-
Bertasius, G.1
Shi, J.2
Torresani, L.3
-
71
-
-
84965099276
-
Decoupled deep neural network for semi-supervised semantic segmentation
-
S. Hong, H. Noh, and B. Han, "Decoupled deep neural network for semi-supervised semantic segmentation, " in Proc. 28th Int. Conf. Neural Inf. Process. Syst., 2015, pp. 1495-1503.
-
(2015)
Proc. 28th Int. Conf. Neural Inf. Process. Syst.
, pp. 1495-1503
-
-
Hong, S.1
Noh, H.2
Han, B.3
-
72
-
-
84856684049
-
Weakly super-vised semantic segmentation with a multi-image model
-
A. Vezhnevets, V. Ferrari, and J. M. Buhmann, "Weakly super-vised semantic segmentation with a multi-image model, " in Proc. Int. Conf. Comput. Vis., 2011, pp. 643-650.
-
(2011)
Proc. Int. Conf. Comput. Vis.
, pp. 643-650
-
-
Vezhnevets, A.1
Ferrari, V.2
Buhmann, J.M.3
-
73
-
-
84984900285
-
-
arXiv: 1509.02636
-
X. Liang, Y. Wei, X. Shen, J. Yang, L. Lin, and S. Yan, "Proposal-free network for instance-level object segmentation, " arXiv:1509.02636, 2015.
-
(2015)
Proposal-free Network for Instance-level Object Segmentation
-
-
Liang, X.1
Wei, Y.2
Shen, X.3
Yang, J.4
Lin, L.5
Yan, S.6
-
74
-
-
27644560241
-
The redundant discrete wavelet transform and additive noise
-
Sep.
-
J. E. Fowler, "The redundant discrete wavelet transform and additive noise, " IEEE Signal Process. Lett., vol. 12, no. 9, pp. 629-632, Sep. 2005.
-
(2005)
IEEE Signal Process. Lett.
, vol.12
, Issue.9
, pp. 629-632
-
-
Fowler, J.E.1
-
75
-
-
0025244687
-
Multirate digital filters, filter banks, polyphase networks, and applications: A tutorial
-
Jan.
-
P. P. Vaidyanathan, "Multirate digital filters, filter banks, polyphase networks, and applications: a tutorial, " Proc. IEEE, vol. 78, no. 1, pp. 56-93, Jan. 1990.
-
(1990)
Proc. IEEE
, vol.78
, Issue.1
, pp. 56-93
-
-
Vaidyanathan, P.P.1
-
77
-
-
84990048734
-
-
arXiv: 1605.06409
-
J. Dai, Y. Li, K. He, and J. Sun, "R-FCN: Object detection via region-based fully convolutional networks, " arXiv:1605.06409, 2016.
-
(2016)
R-FCN: Object Detection Via Region-based Fully Convolutional Networks
-
-
Dai, J.1
Li, Y.2
He, K.3
Sun, J.4
-
78
-
-
85041931014
-
-
arXiv: 1603.08678
-
J. Dai, K. He, Y. Li, S. Ren, and J. Sun, "Instance-sensitive fully convolutional networks, " arXiv:1603.08678, 2016.
-
(2016)
Instance-sensitive Fully Convolutional Networks
-
-
Dai, J.1
He, K.2
Li, Y.3
Ren, S.4
Sun, J.5
-
79
-
-
84986262382
-
-
arXiv: 1511.05960
-
K. Chen, J. Wang, L.-C. Chen, H. Gao, W. Xu, and R. Nevatia, "ABC-CNN: An attention based convolutional neural network for visual question answering, " arXiv:1511.05960, 2015.
-
(2015)
ABC-CNN: An Attention Based Convolutional Neural Network for Visual Question Answering
-
-
Chen, K.1
Wang, J.2
Chen, L.-C.3
Gao, H.4
Xu, W.5
Nevatia, R.6
-
80
-
-
85040584195
-
-
arXiv: 1603.03911
-
L. Sevilla-Lara, D. Sun, V. Jampani, and M. J. Black, "Optical flow with semantic segmentation and localized layers, " arXiv:1603.03911, 2016.
-
(2016)
Optical Flow with Semantic Segmentation and Localized Layers
-
-
Sevilla-Lara, L.1
Sun, D.2
Jampani, V.3
Black, M.J.4
-
82
-
-
0026938667
-
The discrete wavelet transform: Wedding the a trous and Mallat algorithms
-
Oct.
-
M. J. Shensa, "The discrete wavelet transform: Wedding the a trous and Mallat algorithms, " IEEE Trans. Signal Process., vol. 40, no. 10, pp. 2464-2482, Oct. 1992.
-
(1992)
IEEE Trans. Signal Process.
, vol.40
, Issue.10
, pp. 2464-2482
-
-
Shensa, M.J.1
-
84
-
-
77952844108
-
Fast high-dimensional filtering using the permutohedral lattice
-
A. Adams, J. Baek, and M. A. Davis, "Fast high-dimensional filtering using the permutohedral lattice, " in Eurographics, vol. 29, pp. 753-762, 2010.
-
(2010)
Eurographics
, vol.29
, pp. 753-762
-
-
Adams, A.1
Baek, J.2
Davis, M.A.3
-
85
-
-
84856686500
-
Semantic contours from inverse detectors
-
B. Hariharan, P. Arbelaez, L. Bourdev, S. Maji, and J. Malik, "Semantic contours from inverse detectors, " in Proc. IEEE Int. Conf. Comput. Vis., 2011, pp. 991-998.
-
(2011)
Proc. IEEE Int. Conf. Comput. Vis.
, pp. 991-998
-
-
Hariharan, B.1
Arbelaez, P.2
Bourdev, L.3
Maji, S.4
Malik, J.5
-
87
-
-
84906493406
-
Microsoft COCO: Common objects in context
-
T.-Y. Lin, et al., "Microsoft COCO: Common objects in context, " in Proc. Eur. Conf. Comput. Vis., 2014, pp. 740-755.
-
(2014)
Proc. Eur. Conf. Comput. Vis.
, pp. 740-755
-
-
Lin, T.-Y.1
-
88
-
-
84986278382
-
Gaussian conditional random field network for semantic segmentation
-
R. Vemulapalli, O. Tuzel, M.-Y. Liu, and R. Chellappa, "Gaussian conditional random field network for semantic segmentation, " in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2016, pp. 3224-3233.
-
(2016)
Proc. IEEE Conf. Comput. Vis. Pattern Recog.
, pp. 3224-3233
-
-
Vemulapalli, R.1
Tuzel, O.2
Liu, M.-Y.3
Chellappa, R.4
-
89
-
-
85016031242
-
-
arXiv: 1603.04871
-
Z. Yan, H. Zhang, Y. Jia, T. Breuel, and Y. Yu, "Combining the best of convolutional layers and recurrent layers: A hybrid network for semantic segmentation, " arXiv:1603.04871, 2016.
-
(2016)
Combining the Best of Convolutional Layers and Recurrent Layers: A Hybrid Network for Semantic Segmentation
-
-
Yan, Z.1
Zhang, H.2
Jia, Y.3
Breuel, T.4
Yu, Y.5
-
91
-
-
85011086710
-
-
arXiv: 1511.08119
-
A. Arnab, S. Jayasumana, S. Zheng, and P. Torr, "Higher order potentials in end-to-end trainable conditional random fields, " arXiv:1511.08119, 2015.
-
(2015)
Higher Order Potentials in End-to-end Trainable Conditional Random Fields
-
-
Arnab, A.1
Jayasumana, S.2
Zheng, S.3
Torr, P.4
-
94
-
-
84990068011
-
-
arXiv: 1603.05027
-
K. He, X. Zhang, S. Ren, and J. Sun, "Identity mappings in deep residual networks, " arXiv:1603.05027, 2016.
-
(2016)
Identity Mappings in Deep Residual Networks
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
95
-
-
85041899124
-
-
arXiv: 1511.06881
-
F. Xia, P. Wang, L.-C. Chen, and A. L. Yuille, "Zoom better to see clearer: Huamn part segmentation with auto zoom net, " arXiv:1511.06881, 2015.
-
(2015)
Zoom Better to See Clearer: Huamn Part Segmentation with Auto Zoom Net
-
-
Xia, F.1
Wang, P.2
Chen, L.-C.3
Yuille, A.L.4
-
96
-
-
85006140198
-
-
arXiv: 1511.04510
-
X. Liang, X. Shen, D. Xiang, J. Feng, L. Lin, and S. Yan, "Semantic object parsing with local-global long short-term memory, " arXiv:1511.04510, 2015.
-
(2015)
Semantic Object Parsing with Local-global Long Short-term Memory
-
-
Liang, X.1
Shen, X.2
Xiang, D.3
Feng, J.4
Lin, L.5
Yan, S.6
-
97
-
-
85022344526
-
-
arXiv: 1603.07063
-
X. Liang, X. Shen, J. Feng, L. Lin, and S. Yan, "Semantic object parsing with graph lstm, " arXiv:1603.07063, 2016.
-
(2016)
Semantic Object Parsing with Graph Lstm
-
-
Liang, X.1
Shen, X.2
Feng, J.3
Lin, L.4
Yan, S.5
-
98
-
-
84959238467
-
Semantic part segmentation using compositional model combining shape and appearance
-
J. Wang and A. Yuille, "Semantic part segmentation using compositional model combining shape and appearance, " in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2015.
-
(2015)
Proc. IEEE Conf. Comput. Vis. Pattern Recog.
-
-
Wang, J.1
Yuille, A.2
-
99
-
-
84973890976
-
Joint object and part segmentation using deep learned potentials
-
P. Wang, X. Shen, Z. Lin, S. Cohen, B. Price, and A. Yuille, "Joint object and part segmentation using deep learned potentials, " in Proc. IEEE Int. Conf. Comput. Vis., 2015, pp. 1573-1581.
-
(2015)
Proc. IEEE Int. Conf. Comput. Vis.
, pp. 1573-1581
-
-
Wang, P.1
Shen, X.2
Lin, Z.3
Cohen, S.4
Price, B.5
Yuille, A.6
-
101
-
-
85020190110
-
-
arXiv: 1604.05096
-
J. Uhrig, M. Cordts, U. Franke, and T. Brox, "Pixel-level encoding and depth layering for instance-level semantic labeling, " arXiv:1604.05096, 2016.
-
(2016)
Pixel-level Encoding and Depth Layering for Instance-level Semantic Labeling
-
-
Uhrig, J.1
Cordts, M.2
Franke, U.3
Brox, T.4
-
102
-
-
84951834022
-
U-net: Convolutional networks for biomedical image segmentation
-
O. Ronneberger, P. Fischer, and T. Brox, "U-net: Convolutional networks for biomedical image segmentation, " in Proc. Int. Conf. Medical Image Comput. Comput.-Assisted Intervention, 2015, pp. 234-241.
-
(2015)
Proc. Int. Conf. Medical Image Comput. Comput.-Assisted Intervention
, pp. 234-241
-
-
Ronneberger, O.1
Fischer, P.2
Brox, T.3
|