메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 4792-4800

Studying very low resolution recognition using deep networks

Author keywords

[No Author keywords available]

Indexed keywords

COMPLEX NETWORKS; COMPUTER VISION; IMAGE SEGMENTATION; LEARNING SYSTEMS; PROBLEM SOLVING;

EID: 84986331470     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.518     Document Type: Conference Paper
Times cited : (264)

References (39)
  • 2
    • 0036709429 scopus 로고    scopus 로고
    • Limits on super-resolution and how to break them
    • S. Baker and T. Kanade. Limits on super-resolution and how to break them. TPAMI, 2002.
    • (2002) TPAMI
    • Baker, S.1    Kanade, T.2
  • 5
    • 84866679588 scopus 로고    scopus 로고
    • Image denoising: Can plain neural networks compete with bm3d?
    • IEEE
    • H. C. Burger, C. J. Schuler, and S. Harmeling. Image denoising: Can plain neural networks compete with bm3d? In CVPR. IEEE, 2012.
    • (2012) CVPR
    • Burger, H.C.1    Schuler, C.J.2    Harmeling, S.3
  • 8
    • 84921971467 scopus 로고    scopus 로고
    • Learning a deep convolutional network for image super-resolution
    • C. Dong, C. C. Loy, K. He, and X. Tang. Learning a deep convolutional network for image super-resolution. In ECCV. 2014.
    • (2014) ECCV.
    • Dong, C.1    Loy, C.C.2    He, K.3    Tang, X.4
  • 9
    • 73249147663 scopus 로고    scopus 로고
    • The difficulty of training deep architectures and the effect of unsupervised pre-training
    • D. Erhan, P.-A. Manzagol, Y. Bengio, S. Bengio, and P. Vincent. The difficulty of training deep architectures and the effect of unsupervised pre-training. In AISTATS, 2009.
    • (2009) AISTATS
    • Erhan, D.1    Manzagol, P.-A.2    Bengio, Y.3    Bengio, S.4    Vincent, P.5
  • 10
    • 80053443013 scopus 로고    scopus 로고
    • Domain adaptation for large-scale sentiment classification: A deep learning approach
    • X. Glorot, A. Bordes, and Y. Bengio. Domain adaptation for large-scale sentiment classification: A deep learning approach. In ICML, 2011.
    • (2011) ICML
    • Glorot, X.1    Bordes, A.2    Bengio, Y.3
  • 12
    • 51949116030 scopus 로고    scopus 로고
    • Simultaneous super-resolution and feature extraction for recognition of low-resolution faces
    • IEEE
    • P. H. Hennings-Yeomans, S. Baker, and B. V. Kumar. Simultaneous super-resolution and feature extraction for recognition of low-resolution faces. In CVPR. IEEE, 2008.
    • (2008) CVPR
    • Hennings-Yeomans, P.H.1    Baker, S.2    Kumar, B.V.3
  • 15
    • 33947398434 scopus 로고    scopus 로고
    • Text recognition of low-resolution document images
    • IEEE
    • C. Jacobs, P. Y. Simard, P. Viola, and J. Rinker. Text recognition of low-resolution document images. In ICDAR. IEEE, 2005.
    • (2005) ICDAR
    • Jacobs, C.1    Simard, P.Y.2    Viola, P.3    Rinker, J.4
  • 18
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 19
    • 77953185711 scopus 로고    scopus 로고
    • Attribute and simile classifiers for face verification
    • IEEE
    • N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K. Nayar. Attribute and simile classifiers for face verification. In ICCV. IEEE, 2009.
    • (2009) ICCV
    • Kumar, N.1    Berg, A.C.2    Belhumeur, P.N.3    Nayar, S.K.4
  • 20
    • 33745903120 scopus 로고    scopus 로고
    • Coupled space learning of image style transformation
    • IEEE
    • D. Lin and X. Tang. Coupled space learning of image style transformation. In ICCV. IEEE, 2005.
    • (2005) ICCV
    • Lin, D.1    Tang, X.2
  • 21
    • 0742321109 scopus 로고    scopus 로고
    • Fundamental limits of reconstruction-based superresolution algorithms under local translation
    • Z. Lin and H.-Y. Shum. Fundamental limits of reconstruction-based superresolution algorithms under local translation. PAMI, 2004.
    • (2004) PAMI
    • Lin, Z.1    Shum, H.-Y.2
  • 25
    • 85009924226 scopus 로고    scopus 로고
    • Large scale unconstrained open set face database
    • A. Sapkota and T. Boult. Large scale unconstrained open set face database. In IEEE BTAS, pages 1-8, 2013.
    • (2013) IEEE BTAS , pp. 1-8
    • Sapkota, A.1    Boult, T.2
  • 26
    • 85009858483 scopus 로고    scopus 로고
    • Synthesis-based robust low resolution face recognition
    • S. Shekhar, V. M. Patel, and R. Chellappa. Synthesis-based robust low resolution face recognition. IEEE TIP, 2014.
    • (2014) IEEE TIP
    • Shekhar, S.1    Patel, V.M.2    Chellappa, R.3
  • 27
    • 4544292940 scopus 로고    scopus 로고
    • The cmu pose, illumination, and expression (pie) database
    • IEEE
    • T. Sim, S. Baker, and M. Bsat. The cmu pose, illumination, and expression (pie) database. In FG. IEEE, 2002.
    • (2002) FG
    • Sim, T.1    Baker, S.2    Bsat, M.3
  • 28
    • 85062350797 scopus 로고    scopus 로고
    • Deep learning face representation from predicting 10,000 classes
    • Y. Sun, X. Wang, and X. Tang. Deep learning face representation from predicting 10,000 classes. In IEEE CVPR, 2014.
    • (2014) IEEE CVPR
    • Sun, Y.1    Wang, X.2    Tang, X.3
  • 29
    • 54749092170 scopus 로고    scopus 로고
    • 80 million tiny images: A large data set for nonparametric object and scene recognition
    • A. Torralba, R. Fergus, and W. T. Freeman. 80 million tiny images: A large data set for nonparametric object and scene recognition. TPAMI, 2008.
    • (2008) TPAMI
    • Torralba, A.1    Fergus, R.2    Freeman, W.T.3
  • 30
    • 84866652383 scopus 로고    scopus 로고
    • Semi-coupled dictionary learning with applications in image super-resolution and photo-sketch synthesis
    • IEEE
    • S. Wang, L. Zhang, L. Y., and Q. Pan. Semi-coupled dictionary learning with applications in image super-resolution and photo-sketch synthesis. In CVPR. IEEE, 2012.
    • (2012) CVPR
    • Wang, S.1    Zhang, L.L.Y.2    Pan, Q.3
  • 32
    • 84973897612 scopus 로고    scopus 로고
    • Deep networks for image super-resolution with sparse prior
    • Z. Wang, D. Liu, J. Yang, W. Han, and T. Huang. Deep networks for image super-resolution with sparse prior. ICCV, 2015.
    • (2015) ICCV
    • Wang, Z.1    Liu, D.2    Yang, J.3    Han, W.4    Huang, T.5
  • 36
    • 84939788770 scopus 로고    scopus 로고
    • Learning super-resolution jointly from external and internal examples
    • Z. Wang, Y. Yang, Z. Wang, S. Chang, J. Yang, and T. S. Huang. Learning super-resolution jointly from external and internal examples. TIP, 2015.
    • (2015) TIP
    • Wang, Z.1    Yang, Y.2    Wang, Z.3    Chang, S.4    Yang, J.5    Huang, T.S.6
  • 37
    • 84937878882 scopus 로고    scopus 로고
    • Deep convolutional neural network for image deconvolution
    • L. Xu, J. S. Ren, C. Liu, and J. Jia. Deep convolutional neural network for image deconvolution. In NIPS, 2014.
    • (2014) NIPS
    • Xu, L.1    Ren, J.S.2    Liu, C.3    Jia, J.4
  • 38
    • 78049312324 scopus 로고    scopus 로고
    • Image superresolution via sparse representation
    • J. Yang, J. Wright, T. S. Huang, and Y. Ma. Image superresolution via sparse representation. IEEE TIP, 2010.
    • (2010) IEEE TIP
    • Yang, J.1    Wright, J.2    Huang, T.S.3    Ma, Y.4
  • 39
    • 85009848353 scopus 로고    scopus 로고
    • Very low resolution face recognition problem
    • W. W. Zou and P. C. Yuen. Very low resolution face recognition problem. TIP, 2012.
    • (2012) TIP
    • Zou, W.W.1    Yuen, P.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.