-
1
-
-
85011897383
-
The secret life of tethers: the role of tethering factors in SNARE complex regulation
-
Dubuke, M. L. & Munson, M. The secret life of tethers: the role of tethering factors in SNARE complex regulation. Front. Cell. Dev. Biol. 4, 42 (2016)
-
(2016)
Front. Cell. Dev. Biol.
, vol.4
, pp. 42
-
-
Dubuke, M.L.1
Munson, M.2
-
2
-
-
84911118605
-
Are all multisubunit tethering complexes bona fide tethers?
-
COI: 1:CAS:528:DC%2BC2cXhslKgtbjM
-
Brunet, S. & Sacher, M. Are all multisubunit tethering complexes bona fide tethers? Traffic 15, 1282–1287 (2014)
-
(2014)
Traffic
, vol.15
, pp. 1282-1287
-
-
Brunet, S.1
Sacher, M.2
-
3
-
-
84978674897
-
CATCHR, HOPS and CORVET tethering complexes share a similar architecture
-
COI: 1:CAS:528:DC%2BC28Xht1KmurjL
-
Chou, H. T., Dukovski, D., Chambers, M. G., Reinisch, K. M. & Walz, T. CATCHR, HOPS and CORVET tethering complexes share a similar architecture. Nat. Struct. Mol. Biol. 23, 761–763 (2016)
-
(2016)
Nat. Struct. Mol. Biol.
, vol.23
, pp. 761-763
-
-
Chou, H.T.1
Dukovski, D.2
Chambers, M.G.3
Reinisch, K.M.4
Walz, T.5
-
4
-
-
23044502309
-
Cog1p plays a central role in the organization of the yeast conserved oligomeric Golgi complex
-
COI: 1:CAS:528:DC%2BD2MXmsVyqt7w%3D
-
Fotso, P., Koryakina, Y., Pavliv, O., Tsiomenko, A. B. & Lupashin, V. V. Cog1p plays a central role in the organization of the yeast conserved oligomeric Golgi complex. J. Biol. Chem. 280, 27613–27623 (2005)
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 27613-27623
-
-
Fotso, P.1
Koryakina, Y.2
Pavliv, O.3
Tsiomenko, A.B.4
Lupashin, V.V.5
-
5
-
-
25444486756
-
Subunit architecture of the conserved oligomeric Golgi complex
-
COI: 1:CAS:528:DC%2BD2MXhtVWiur%2FE
-
Ungar, D., Oka, T., Vasile, E., Krieger, M. & Hughson, F. M. Subunit architecture of the conserved oligomeric Golgi complex. J. Biol. Chem. 280, 32729–32735 (2005)
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 32729-32735
-
-
Ungar, D.1
Oka, T.2
Vasile, E.3
Krieger, M.4
Hughson, F.M.5
-
6
-
-
84875886094
-
COG complexes form spatial landmarks for distinct SNARE complexes
-
Willett, R. et al. COG complexes form spatial landmarks for distinct SNARE complexes. Nat. Commun. 4, 1553 (2013)
-
(2013)
Nat. Commun.
, vol.4
-
-
Willett, R.1
-
7
-
-
84862268931
-
Exorcising the exocyst complex
-
COI: 1:CAS:528:DC%2BC38XhtFaitbnM
-
Heider, M. R. & Munson, M. Exorcising the exocyst complex. Traffic 13, 898–907 (2012)
-
(2012)
Traffic
, vol.13
, pp. 898-907
-
-
Heider, M.R.1
Munson, M.2
-
8
-
-
84939543428
-
The exocyst at a glance
-
COI: 1:CAS:528:DC%2BC28XhvVWqtL4%3D
-
Wu, B. & Guo, W. The exocyst at a glance. J. Cell Sci. 128, 2957–2964 (2015)
-
(2015)
J. Cell Sci.
, vol.128
, pp. 2957-2964
-
-
Wu, B.1
Guo, W.2
-
9
-
-
0029843493
-
The exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae
-
COI: 1:CAS:528:DyaK2sXht1Ort7k%3D
-
TerBush, D. R., Maurice, T., Roth, D. & Novick, P. The exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. EMBO J. 15, 6483–6494 (1996)
-
(1996)
EMBO J.
, vol.15
, pp. 6483-6494
-
-
TerBush, D.R.1
Maurice, T.2
Roth, D.3
Novick, P.4
-
10
-
-
0033551705
-
Exo84p is an exocyst protein essential for secretion
-
COI: 1:CAS:528:DyaK1MXltlKmsro%3D
-
Guo, W., Grant, A. & Novick, P. Exo84p is an exocyst protein essential for secretion. J. Biol. Chem. 274, 23558–23564 (1999)
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 23558-23564
-
-
Guo, W.1
Grant, A.2
Novick, P.3
-
11
-
-
38349030651
-
Membrane association and functional regulation of Sec3 by phospholipids and Cdc42
-
COI: 1:CAS:528:DC%2BD1cXnsFyltg%3D%3D
-
Zhang, X. et al. Membrane association and functional regulation of Sec3 by phospholipids and Cdc42. J. Cell Biol. 180, 145–158 (2008)
-
(2008)
J. Cell Biol.
, vol.180
, pp. 145-158
-
-
Zhang, X.1
-
12
-
-
34648823113
-
Exo70 interacts with phospholipids and mediates the targeting of the exocyst to the plasma membrane
-
COI: 1:CAS:528:DC%2BD2sXhtVKiu77L
-
He, B., Xi, F., Zhang, X., Zhang, J. & Guo, W. Exo70 interacts with phospholipids and mediates the targeting of the exocyst to the plasma membrane. EMBO J. 26, 4053–4065 (2007)
-
(2007)
EMBO J.
, vol.26
, pp. 4053-4065
-
-
He, B.1
Xi, F.2
Zhang, X.3
Zhang, J.4
Guo, W.5
-
13
-
-
68149175212
-
A phosphatidylinositol-transfer protein and phosphatidylinositol-4-phosphate 5-kinase control Cdc42 to regulate the actin cytoskeleton and secretory pathway in yeast
-
COI: 1:CAS:528:DC%2BD1MXhsVClt73M
-
Yakir-Tamang, L. & Gerst, J. E. A phosphatidylinositol-transfer protein and phosphatidylinositol-4-phosphate 5-kinase control Cdc42 to regulate the actin cytoskeleton and secretory pathway in yeast. Mol. Biol. Cell 20, 3583–3597 (2009)
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 3583-3597
-
-
Yakir-Tamang, L.1
Gerst, J.E.2
-
14
-
-
77951227637
-
Structure-function study of the N-terminal domain of exocyst subunit Sec3
-
COI: 1:CAS:528:DC%2BC3cXjvFajtb8%3D
-
Baek, K. et al. Structure-function study of the N-terminal domain of exocyst subunit Sec3. J. Biol. Chem. 285, 10424–10433 (2010)
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 10424-10433
-
-
Baek, K.1
-
15
-
-
84911361850
-
The role of Sec3p in secretory vesicle targeting and exocyst complex assembly
-
Luo, G., Zhang, J. & Guo, W. The role of Sec3p in secretory vesicle targeting and exocyst complex assembly. Mol. Biol. Cell 25, 3813–3822 (2014)
-
(2014)
Mol. Biol. Cell
, vol.25
, pp. 3813-3822
-
-
Luo, G.1
Zhang, J.2
Guo, W.3
-
16
-
-
84908371646
-
Bem1p contributes to secretory pathway polarization through a direct interaction with Exo70p
-
Liu, D. & Novick, P. Bem1p contributes to secretory pathway polarization through a direct interaction with Exo70p. J. Cell Biol. 207, 59–72 (2014)
-
(2014)
J. Cell Biol.
, vol.207
, pp. 59-72
-
-
Liu, D.1
Novick, P.2
-
17
-
-
85043606068
-
Two subunits of the exocyst, Sec3p and Exo70p, can function exclusively on the plasma membrane
-
COI: 1:CAS:528:DC%2BC1cXhslKks7nM
-
Liu, D., Li, X., Shen, D. & Novick, P. Two subunits of the exocyst, Sec3p and Exo70p, can function exclusively on the plasma membrane. Mol. Biol. Cell 29, 736–750 (2018)
-
(2018)
Mol. Biol. Cell
, vol.29
, pp. 736-750
-
-
Liu, D.1
Li, X.2
Shen, D.3
Novick, P.4
-
18
-
-
10344263403
-
Vesicles carry most exocyst subunits to exocytic sites marked by the remaining two subunits, Sec3p and Exo70p
-
COI: 1:CAS:528:DC%2BD2cXhtVOlsbvM
-
Boyd, C., Hughes, T., Pypaert, M. & Novick, P. Vesicles carry most exocyst subunits to exocytic sites marked by the remaining two subunits, Sec3p and Exo70p. J. Cell Biol. 167, 889–901 (2004)
-
(2004)
J. Cell Biol.
, vol.167
, pp. 889-901
-
-
Boyd, C.1
Hughes, T.2
Pypaert, M.3
Novick, P.4
-
19
-
-
84954386257
-
Subunit connectivity, assembly determinants and architecture of the yeast exocyst complex
-
COI: 1:CAS:528:DC%2BC2MXhvFOmtb%2FL
-
Heider, M. R. et al. Subunit connectivity, assembly determinants and architecture of the yeast exocyst complex. Nat. Struct. Mol. Biol. 23, 59–66 (2016)
-
(2016)
Nat. Struct. Mol. Biol.
, vol.23
, pp. 59-66
-
-
Heider, M.R.1
-
20
-
-
84867667224
-
Myosin-V is activated by binding secretory cargo and released in coordination with Rab/exocyst function
-
COI: 1:CAS:528:DC%2BC38XhsFWiu7fP
-
Donovan, K. W. & Bretscher, A. Myosin-V is activated by binding secretory cargo and released in coordination with Rab/exocyst function. Dev. Cell. 23, 769–781 (2012)
-
(2012)
Dev. Cell.
, vol.23
, pp. 769-781
-
-
Donovan, K.W.1
Bretscher, A.2
-
21
-
-
84957667091
-
Tracking individual secretory vesicles during exocytosis reveals an ordered and regulated process
-
COI: 1:CAS:528:DC%2BC2MXht12qurjI
-
Donovan, K. W. & Bretscher, A. Tracking individual secretory vesicles during exocytosis reveals an ordered and regulated process. J. Cell Biol. 210, 181–189 (2015)
-
(2015)
J. Cell Biol.
, vol.210
, pp. 181-189
-
-
Donovan, K.W.1
Bretscher, A.2
-
22
-
-
0346154744
-
Ral GTPases regulate exocyst assembly through dual subunit interactions
-
COI: 1:CAS:528:DC%2BD3sXpslOgtrw%3D
-
Moskalenko, S. et al. Ral GTPases regulate exocyst assembly through dual subunit interactions. J. Biol. Chem. 278, 51743–51748 (2003)
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 51743-51748
-
-
Moskalenko, S.1
-
23
-
-
76349093365
-
Structural basis for the Rho- and phosphoinositide-dependent localization of the exocyst subunit Sec3
-
COI: 1:CAS:528:DC%2BC3cXjsVegtw%3D%3D
-
Yamashita, M. et al. Structural basis for the Rho- and phosphoinositide-dependent localization of the exocyst subunit Sec3. Nat. Struct. Mol. Biol. 17, 180–186 (2010)
-
(2010)
Nat. Struct. Mol. Biol.
, vol.17
, pp. 180-186
-
-
Yamashita, M.1
-
24
-
-
76049118573
-
The Exo70 subunit of the exocyst is an effector for both Cdc42 and Rho3 function in polarized exocytosis
-
COI: 1:CAS:528:DC%2BC3cXitlCisL8%3D
-
Wu, H., Turner, C., Gardner, J., Temple, B. & Brennwald, P. The Exo70 subunit of the exocyst is an effector for both Cdc42 and Rho3 function in polarized exocytosis. Mol. Biol. Cell 21, 430–442 (2010)
-
(2010)
Mol. Biol. Cell
, vol.21
, pp. 430-442
-
-
Wu, H.1
Turner, C.2
Gardner, J.3
Temple, B.4
Brennwald, P.5
-
25
-
-
0032740682
-
The Rho GTPase Rho3 has a direct role in exocytosis that is distinct from its role in actin polarity
-
COI: 1:CAS:528:DyaK1MXnvFKqsLs%3D
-
Adamo, J. E., Rossi, G. & Brennwald, P. The Rho GTPase Rho3 has a direct role in exocytosis that is distinct from its role in actin polarity. Mol. Biol. Cell 10, 4121–4133 (1999)
-
(1999)
Mol. Biol. Cell
, vol.10
, pp. 4121-4133
-
-
Adamo, J.E.1
Rossi, G.2
Brennwald, P.3
-
26
-
-
84865078112
-
The microtubule-associated Rho activating factor GEF-H1 interacts with exocyst complex to regulate vesicle traffic
-
COI: 1:CAS:528:DC%2BC38XhtF2nt7%2FM
-
Pathak, R. et al. The microtubule-associated Rho activating factor GEF-H1 interacts with exocyst complex to regulate vesicle traffic. Dev. Cell. 23, 397–411 (2012)
-
(2012)
Dev. Cell.
, vol.23
, pp. 397-411
-
-
Pathak, R.1
-
27
-
-
79959602227
-
Rabs and the exocyst in ciliogenesis, tubulogenesis and beyond
-
COI: 1:CAS:528:DC%2BC3MXosVCksrg%3D
-
Das, A. & Guo, W. Rabs and the exocyst in ciliogenesis, tubulogenesis and beyond. Trends Cell Biol. 21, 383–386 (2011)
-
(2011)
Trends Cell Biol.
, vol.21
, pp. 383-386
-
-
Das, A.1
Guo, W.2
-
28
-
-
0035067186
-
Spatial regulation of the exocyst complex by Rho1 GTPase
-
COI: 1:CAS:528:DC%2BD3MXivVygsbk%3D
-
Guo, W., Tamanoi, F. & Novick, P. Spatial regulation of the exocyst complex by Rho1 GTPase. Nat. Cell Biol. 3, 353–360 (2001)
-
(2001)
Nat. Cell Biol.
, vol.3
, pp. 353-360
-
-
Guo, W.1
Tamanoi, F.2
Novick, P.3
-
29
-
-
0035861749
-
Cdc42 interacts with the exocyst and regulates polarized secretion
-
COI: 1:CAS:528:DC%2BD3MXpt1GnsL8%3D
-
Zhang, X. et al. Cdc42 interacts with the exocyst and regulates polarized secretion. J. Biol. Chem. 276, 46745–46750 (2001)
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 46745-46750
-
-
Zhang, X.1
-
30
-
-
85016614967
-
The Par3 polarity protein is an exocyst receptor essential for mammary cell survival
-
COI: 1:CAS:528:DC%2BC2sXlsVyrs7w%3D
-
Ahmed, S. M. & Macara, I. G. The Par3 polarity protein is an exocyst receptor essential for mammary cell survival. Nat. Commun. 8, 14867 (2017)
-
(2017)
Nat. Commun.
, vol.8
-
-
Ahmed, S.M.1
Macara, I.G.2
-
31
-
-
84878537074
-
Live-cell imaging of exocyst links its spatiotemporal dynamics to various stages of vesicle fusion
-
COI: 1:CAS:528:DC%2BC3sXovFektbw%3D
-
Rivera-Molina, F. & Toomre, D. Live-cell imaging of exocyst links its spatiotemporal dynamics to various stages of vesicle fusion. J. Cell Biol. 201, 673–680 (2013)
-
(2013)
J. Cell Biol.
, vol.201
, pp. 673-680
-
-
Rivera-Molina, F.1
Toomre, D.2
-
32
-
-
0031573811
-
The secretory protein Sec8 is required for paraxial mesoderm formation in the mouse
-
COI: 1:CAS:528:DyaK1cXkvVeqsA%3D%3D
-
Friedrich, G. A., Hildebrand, J. D. & Soriano, P. The secretory protein Sec8 is required for paraxial mesoderm formation in the mouse. Dev. Biol. 192, 364–374 (1997)
-
(1997)
Dev. Biol.
, vol.192
, pp. 364-374
-
-
Friedrich, G.A.1
Hildebrand, J.D.2
Soriano, P.3
-
33
-
-
17244373188
-
Sec6 mutations and the Drosophila exocyst complex
-
COI: 1:CAS:528:DC%2BD2MXjs1ChsL4%3D
-
Murthy, M. et al. Sec6 mutations and the Drosophila exocyst complex. J. Cell Sci. 118, 1139–1150 (2005)
-
(2005)
J. Cell Sci.
, vol.118
, pp. 1139-1150
-
-
Murthy, M.1
-
34
-
-
63049085700
-
An internal domain of Exo70p is required for actin-independent localization and mediates assembly of specific exocyst components
-
COI: 1:CAS:528:DC%2BD1MXht1Skurs%3D
-
Hutagalung, A. H., Coleman, J., Pypaert, M. & Novick, P. J. An internal domain of Exo70p is required for actin-independent localization and mediates assembly of specific exocyst components. Mol. Biol. Cell 20, 153–163 (2009)
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 153-163
-
-
Hutagalung, A.H.1
Coleman, J.2
Pypaert, M.3
Novick, P.J.4
-
35
-
-
23944480474
-
Rho GTPase regulation of exocytosis in yeast is independent of GTP hydrolysis and polarization of the exocyst complex
-
COI: 1:CAS:528:DC%2BD2MXosVakuro%3D
-
Roumanie, O. et al. Rho GTPase regulation of exocytosis in yeast is independent of GTP hydrolysis and polarization of the exocyst complex. J. Cell Biol. 170, 583–594 (2005)
-
(2005)
J. Cell Biol.
, vol.170
, pp. 583-594
-
-
Roumanie, O.1
-
36
-
-
84944548050
-
Role of the Exocyst Complex Component Sec6/8 in Genomic Stability
-
COI: 1:CAS:528:DC%2BC28XhvVWqsbg%3D
-
Torres, M. J. et al. Role of the Exocyst Complex Component Sec6/8 in Genomic Stability. Mol. Cell. Biol. 35, 3633–3645 (2015)
-
(2015)
Mol. Cell. Biol.
, vol.35
, pp. 3633-3645
-
-
Torres, M.J.1
-
37
-
-
79955626595
-
Exocyst function is regulated by effector phosphorylation
-
COI: 1:CAS:528:DC%2BC3MXlsFGmurw%3D
-
Chen, X. W. et al. Exocyst function is regulated by effector phosphorylation. Nat. Cell Biol. 13, 580–588 (2011)
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 580-588
-
-
Chen, X.W.1
-
38
-
-
33845202483
-
The Ral/exocyst effector complex counters c-Jun N-terminal kinase-dependent apoptosis in Drosophila melanogaster
-
COI: 1:CAS:528:DC%2BD28Xht1yqsLbI
-
Balakireva, M. et al. The Ral/exocyst effector complex counters c-Jun N-terminal kinase-dependent apoptosis in Drosophila melanogaster. Mol. Cell. Biol. 26, 8953–8963 (2006)
-
(2006)
Mol. Cell. Biol.
, vol.26
, pp. 8953-8963
-
-
Balakireva, M.1
-
39
-
-
1242284588
-
Mechanism of recruiting Sec6/8 (exocyst) complex to the apical junctional complex during polarization of epithelial cells
-
COI: 1:CAS:528:DC%2BD2cXhslSjtL0%3D
-
Yeaman, C., Grindstaff, K. K. & Nelson, W. J. Mechanism of recruiting Sec6/8 (exocyst) complex to the apical junctional complex during polarization of epithelial cells. J. Cell Sci. 117, 559–570 (2004)
-
(2004)
J. Cell Sci.
, vol.117
, pp. 559-570
-
-
Yeaman, C.1
Grindstaff, K.K.2
Nelson, W.J.3
-
40
-
-
85042767185
-
Cryo-EM structure of the exocyst complex
-
COI: 1:CAS:528:DC%2BC1cXhtlCqu7vI
-
Mei, K. et al. Cryo-EM structure of the exocyst complex. Nat. Struct. Mol. Biol. 25, 139–146 (2018)
-
(2018)
Nat. Struct. Mol. Biol.
, vol.25
, pp. 139-146
-
-
Mei, K.1
-
41
-
-
0037320597
-
Three-dimensional analysis of post-Golgi carrier exocytosis in epithelial cells
-
COI: 1:CAS:528:DC%2BD3sXot12qsQ%3D%3D
-
Kreitzer, G. et al. Three-dimensional analysis of post-Golgi carrier exocytosis in epithelial cells. Nat. Cell Biol. 5, 126–136 (2003)
-
(2003)
Nat. Cell Biol.
, vol.5
, pp. 126-136
-
-
Kreitzer, G.1
-
42
-
-
85015163332
-
Measurement of rapid protein diffusion in the cytoplasm by photo-converted intensity profile expansion
-
COI: 1:CAS:528:DC%2BC2sXks1SntbY%3D
-
Gura Sadovsky, R., Brielle, S., Kaganovich, D. & England, J. L. Measurement of rapid protein diffusion in the cytoplasm by photo-converted intensity profile expansion. Cell Rep. 18, 2795–2806 (2017)
-
(2017)
Cell Rep.
, vol.18
, pp. 2795-2806
-
-
Gura Sadovsky, R.1
Brielle, S.2
Kaganovich, D.3
England, J.L.4
-
43
-
-
57949097314
-
Chapter 9: counting proteins in living cells by quantitative fluorescence microscopy with internal standards
-
COI: 1:CAS:528:DC%2BD1MXht1agsb%2FI
-
Wu, J. Q., McCormick, C. D. & Pollard, T. D. Chapter 9: counting proteins in living cells by quantitative fluorescence microscopy with internal standards. Methods Cell Biol. 89, 253–273 (2008)
-
(2008)
Methods Cell Biol.
, vol.89
, pp. 253-273
-
-
Wu, J.Q.1
McCormick, C.D.2
Pollard, T.D.3
-
44
-
-
84947465922
-
Referenced single-molecule measurements differentiate between GPCR oligomerization states
-
COI: 1:CAS:528:DC%2BC2MXhs1aksL7N
-
Latty, S. L. et al. Referenced single-molecule measurements differentiate between GPCR oligomerization states. Biophys. J. 109, 1798–1806 (2015)
-
(2015)
Biophys. J.
, vol.109
, pp. 1798-1806
-
-
Latty, S.L.1
-
45
-
-
85010677165
-
The in vivo architecture of the exocyst provides structural basis for exocytosis
-
COI: 1:CAS:528:DC%2BC2sXhslaqsLY%3D
-
Picco, A. et al. The in vivo architecture of the exocyst provides structural basis for exocytosis. Cell 168, 400–412 e418 (2017)
-
(2017)
Cell
, vol.168
, pp. 400-412 e418
-
-
Picco, A.1
-
46
-
-
0344875517
-
Sec3p is needed for the spatial regulation of secretion and for the inheritance of the cortical endoplasmic reticulum
-
COI: 1:CAS:528:DC%2BD3sXpsFaktrY%3D
-
Wiederkehr, A., Du, Y., Pypaert, M., Ferro-Novick, S. & Novick, P. Sec3p is needed for the spatial regulation of secretion and for the inheritance of the cortical endoplasmic reticulum. Mol. Biol. Cell 14, 4770–4782 (2003)
-
(2003)
Mol. Biol. Cell
, vol.14
, pp. 4770-4782
-
-
Wiederkehr, A.1
Du, Y.2
Pypaert, M.3
Ferro-Novick, S.4
Novick, P.5
-
47
-
-
85050343085
-
Exposing the elusive exocyst structure
-
COI: 1:CAS:528:DC%2BC1cXhtlWqt7fN
-
Lepore, D. M., Martinez-Nunez, L. & Munson, M. Exposing the elusive exocyst structure. Trends Biochem. Sci. 43, 714–725 (2018)
-
(2018)
Trends Biochem. Sci.
, vol.43
, pp. 714-725
-
-
Lepore, D.M.1
Martinez-Nunez, L.2
Munson, M.3
-
48
-
-
85057619319
-
-
Preprint at bioRxiv
-
Zhai, Y., Zhang, D., Yu, L., Sun, F. & Sun, F. Large protein complex production using the SmartBac System - Strategies and Applications. Preprint at bioRxiv. 219246, 1–30 (2017)
-
(2017)
Large protein complex production using the SmartBac System - Strategies and Applications
, pp. 1-30
-
-
Zhai, Y.1
Zhang, D.2
Yu, L.3
Sun, F.4
Sun, F.5
-
49
-
-
84987926250
-
Single-molecule analysis of the supramolecular organization of the M2 muscarinic receptor and the Galphai1 protein
-
COI: 1:CAS:528:DC%2BC28Xht12gtbvI
-
Shivnaraine, R. V. et al. Single-molecule analysis of the supramolecular organization of the M2 muscarinic receptor and the Galphai1 protein. J. Am. Chem. Soc. 138, 11583–11598 (2016)
-
(2016)
J. Am. Chem. Soc.
, vol.138
, pp. 11583-11598
-
-
Shivnaraine, R.V.1
-
50
-
-
84870953047
-
3-D PSF fitting for fluorescence microscopy: implementation and localization application
-
COI: 1:CAS:528:DC%2BC38XhvVWqtLbL
-
Kirshner, H., Aguet, F., Sage, D. & Unser, M. 3-D PSF fitting for fluorescence microscopy: implementation and localization application. J. Microsc. 249, 13–25 (2013)
-
(2013)
J. Microsc.
, vol.249
, pp. 13-25
-
-
Kirshner, H.1
Aguet, F.2
Sage, D.3
Unser, M.4
-
51
-
-
33751215258
-
A rigorous experimental framework for detecting protein oligomerization using bioluminescence resonance energy transfer
-
COI: 1:CAS:528:DC%2BD28Xht1Wqu77P
-
James, J. R., Oliveira, M. I., Carmo, A. M., Iaboni, A. & Davis, S. J. A rigorous experimental framework for detecting protein oligomerization using bioluminescence resonance energy transfer. Nat. Methods 3, 1001–1006 (2006)
-
(2006)
Nat. Methods
, vol.3
, pp. 1001-1006
-
-
James, J.R.1
Oliveira, M.I.2
Carmo, A.M.3
Iaboni, A.4
Davis, S.J.5
-
52
-
-
85051646805
-
Ligand-Induced Coupling between Oligomers of the M2 Receptor and the Gi1 Protein in Live Cells
-
COI: 1:CAS:528:DC%2BC1cXhsFeqt7zK
-
Li, Y., Shivnaraine, R. V., Huang, F., Wells, J. W. & Gradinaru, C. C. Ligand-induced coupling between oligomers of the M2 receptor and the Gi1 protein in live cells. Biophys J. 115, 881–895 (2018)
-
(2018)
Biophysical Journal
, vol.115
, Issue.5
, pp. 881-895
-
-
Li, Y.1
Shivnaraine, R.V.2
Huang, F.3
Wells, J.W.4
Gradinaru, C.C.5
-
53
-
-
85017631152
-
Choosing the right fluorophore for single-molecule fluorescence studies in a lipid environment
-
COI: 1:CAS:528:DC%2BC2sXmsVehsLw%3D
-
Zhang, Z., Yomo, D. & Gradinaru, C. Choosing the right fluorophore for single-molecule fluorescence studies in a lipid environment. Biochim. Biophys. Acta 1859, 1242–1253 (2017)
-
(2017)
Biochim. Biophys. Acta
, vol.1859
, pp. 1242-1253
-
-
Zhang, Z.1
Yomo, D.2
Gradinaru, C.3
-
54
-
-
35748931313
-
Practical guidelines for dual-color fluorescence cross-correlation spectroscopy
-
COI: 1:CAS:528:DC%2BD2sXhtlSlsrzN
-
Bacia, K. & Schwille, P. Practical guidelines for dual-color fluorescence cross-correlation spectroscopy. Nat. Protoc. 2, 2842–2856 (2007)
-
(2007)
Nat. Protoc.
, vol.2
, pp. 2842-2856
-
-
Bacia, K.1
Schwille, P.2
-
55
-
-
84859244160
-
Correcting for spectral cross-talk in dual-color fluorescence cross-correlation spectroscopy
-
COI: 1:CAS:528:DC%2BC38XitlKnsL0%3D
-
Bacia, K., Petrasek, Z. & Schwille, P. Correcting for spectral cross-talk in dual-color fluorescence cross-correlation spectroscopy. Chemphyschem 13, 1221–1231 (2012)
-
(2012)
Chemphyschem
, vol.13
, pp. 1221-1231
-
-
Bacia, K.1
Petrasek, Z.2
Schwille, P.3
|