메뉴 건너뛰기




Volumn 43, Issue 2, 2018, Pages 119-127

Detailed analysis of the interaction of yeast COG complex1

Author keywords

COG complex; Membrane trafficking; Multi subunit tethering complex; The Golgi apparatus; Yeast

Indexed keywords

ARTICLE; CONGENITAL DISORDER OF GLYCOSYLATION; CONSERVED OLIGOMERIC GOLGI COMPLEX; CONTROLLED STUDY; CYTOSOL; FUNGUS MUTANT; GOLGI COMPLEX; IMMUNOPRECIPITATION; MITOCHONDRION; MUTATION; NONHUMAN; PRIORITY JOURNAL; PROTEIN FUNCTION; PROTEIN GLYCOSYLATION; YEAST CELL; GLYCOSYLATION; HUMAN; METABOLISM; PROTEIN ANALYSIS; PROTEIN SUBUNIT; PROTEIN TRANSPORT; SACCHAROMYCES CEREVISIAE;

EID: 85051000867     PISSN: 03867196     EISSN: 13473700     Source Type: Journal    
DOI: 10.1247/csf.18014     Document Type: Article
Times cited : (4)

References (34)
  • 1
    • 85030328444 scopus 로고    scopus 로고
    • The golgin protein Coy1 functions in intra- Golgi retrograde transport and interacts with the COG complex and Golgi SNAREs
    • Anderson, N.S., Mukherjee, I., Bentivoglio, C.M., and Barlowe, C. 2017. The golgin protein Coy1 functions in intra- Golgi retrograde transport and interacts with the COG complex and Golgi SNAREs. Mol. Biol. Cell, 28: 2686–2700.
    • (2017) Mol. Biol. Cell , vol.28 , pp. 2686-2700
    • Anderson, N.S.1    Mukherjee, I.2    Bentivoglio, C.M.3    Barlowe, C.4
  • 2
    • 84979048532 scopus 로고    scopus 로고
    • COG Complex Complexities: Detailed Characterization of a Complete Set of HEK293T Cells Lacking Individual COG Subunits
    • Bailey Blackburn, J., Pokrovskaya, I., Fisher, P., Ungar, D., and Lupashin, V.V. 2016. COG Complex Complexities: Detailed Characterization of a Complete Set of HEK293T Cells Lacking Individual COG Subunits. Front. Cell Dev. Biol., 4: 23.
    • (2016) Front. Cell Dev. Biol , vol.4 , pp. 23
    • Bailey Blackburn, J.1    Pokrovskaya, I.2    Fisher, P.3    Ungar, D.4    Lupashin, V.V.5
  • 3
    • 0842324801 scopus 로고    scopus 로고
    • The mechanisms of vesicle budding and fusion
    • Bonifacino, J.S. and Glick, B.S. 2004. The mechanisms of vesicle budding and fusion. Cell, 116: 153–166.
    • (2004) Cell , vol.116 , pp. 153-166
    • Bonifacino, J.S.1    Glick, B.S.2
  • 4
    • 0032579440 scopus 로고    scopus 로고
    • Designer deletion strains derived from Saccharomyces cerevisiae S288C: A useful set of strains and plasmids for PCRmediated gene disruption and other applications
    • Brachmann, C.B., Davies, A., Cost, G.J., Caputo, E., Li, J., Hieter, P., and Boeke, J.D. 1998. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCRmediated gene disruption and other applications. Yeast, 14: 115–132.
    • (1998) Yeast , vol.14 , pp. 115-132
    • Brachmann, C.B.1    Davies, A.2    Cost, G.J.3    Caputo, E.4    Li, J.5    Hieter, P.6    Boeke, J.D.7
  • 5
    • 4544237449 scopus 로고    scopus 로고
    • Retrograde transport of the mannosyltransferase Och1p to the early Golgi requires a component of the COG transport complex
    • Bruinsma, P., Spelbrink, R.G., and Nothwehr, S.F. 2004. Retrograde transport of the mannosyltransferase Och1p to the early Golgi requires a component of the COG transport complex. J. Biol. Chem., 279: 39814–39823.
    • (2004) J. Biol. Chem. , vol.279 , pp. 39814-39823
    • Bruinsma, P.1    Spelbrink, R.G.2    Nothwehr, S.F.3
  • 6
    • 34247623568 scopus 로고    scopus 로고
    • Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle
    • Cai, H., Reinisch, K., and Ferro-Novick, S. 2007. Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev. Cell, 12: 671–682.
    • (2007) Dev. Cell , vol.12 , pp. 671-682
    • Cai, H.1    Reinisch, K.2    Ferro-Novick, S.3
  • 7
    • 23044502309 scopus 로고    scopus 로고
    • Cog1p plays a central role in the organization of the yeast conserved oligomeric Golgi complex
    • Fotso, P., Koryakina, Y., Pavliv, O., Tsiomenko, A.B., and Lupashin, V.V. 2005. Cog1p plays a central role in the organization of the yeast conserved oligomeric Golgi complex. J. Biol. Chem., 280: 27613–27623.
    • (2005) J. Biol. Chem. , vol.280 , pp. 27613-27623
    • Fotso, P.1    Koryakina, Y.2    Pavliv, O.3    Tsiomenko, A.B.4    Lupashin, V.V.5
  • 10
    • 70350230237 scopus 로고    scopus 로고
    • Membrane traffic within the Golgi apparatus
    • Glick, B.S. and Nakano, A. 2009. Membrane traffic within the Golgi apparatus. Annu. Rev. Cell Dev. Biol., 25: 113–132.
    • (2009) Annu. Rev. Cell Dev. Biol. , vol.25 , pp. 113-132
    • Glick, B.S.1    Nakano, A.2
  • 12
    • 84988418466 scopus 로고    scopus 로고
    • COPI is essential for Golgi cisternal maturation and dynamics
    • Ishii, M., Suda, Y., Kurokawa, K., and Nakano, A. 2016. COPI is essential for Golgi cisternal maturation and dynamics. J. Cell Sci., 129: 3251–3261.
    • (2016) J. Cell Sci. , vol.129 , pp. 3251-3261
    • Ishii, M.1    Suda, Y.2    Kurokawa, K.3    Nakano, A.4
  • 13
    • 84888253206 scopus 로고    scopus 로고
    • Live cell visualization of Golgi membrane dynamics by superresolution confocal live imaging microscopy
    • Kurokawa, K., Ishii, M., Suda, Y., Ichihara, A., and Nakano, A. 2013. Live cell visualization of Golgi membrane dynamics by superresolution confocal live imaging microscopy. Method. Cell Biol., 118: 235–242.
    • (2013) Method. Cell Biol. , vol.118 , pp. 235-242
    • Kurokawa, K.1    Ishii, M.2    Suda, Y.3    Ichihara, A.4    Nakano, A.5
  • 14
    • 84898638312 scopus 로고    scopus 로고
    • Contact of cis-Golgi with ER exit sites executes cargo capture and delivery from the ER
    • Kurokawa, K., Okamoto, M., and Nakano, A. 2014. Contact of cis-Golgi with ER exit sites executes cargo capture and delivery from the ER. Nat. Commun., 5: 3653.
    • (2014) Nat. Commun. , vol.5 , pp. 3653
    • Kurokawa, K.1    Okamoto, M.2    Nakano, A.3
  • 15
    • 78549285917 scopus 로고    scopus 로고
    • Molecular organization of the COG vesicle tethering complex
    • Lees, J.A., Yip, C.K., Walz, T., and Hughson, F.M. 2010. Molecular organization of the COG vesicle tethering complex. Nat. Struct. Mol. Biol., 17: 1292–1297.
    • (2010) Nat. Struct. Mol. Biol. , vol.17 , pp. 1292-1297
    • Lees, J.A.1    Yip, C.K.2    Walz, T.3    Hughson, F.M.4
  • 16
    • 84911361850 scopus 로고    scopus 로고
    • The role of Sec3p in secretory vesicle targeting and exocyst complex assembly
    • Luo, G., Zhang, J., and Guo, W. 2014. The role of Sec3p in secretory vesicle targeting and exocyst complex assembly. Mol. Biol. Cell, 25: 3813–3822.
    • (2014) Mol. Biol. Cell , vol.25 , pp. 3813-3822
    • Luo, G.1    Zhang, J.2    Guo, W.3
  • 17
    • 0034676096 scopus 로고    scopus 로고
    • Dnm1p GTPasemediated mitochondrial fission is a multi-step process requiring the novel integral membrane component Fis1p
    • Mozdy, A.D., McCaffery, J.M., and Shaw, J.M. 2000. Dnm1p GTPasemediated mitochondrial fission is a multi-step process requiring the novel integral membrane component Fis1p. J. Cell Biol., 151: 367–380.
    • (2000) J. Cell Biol. , vol.151 , pp. 367-380
    • Mozdy, A.D.1    McCaffery, J.M.2    Shaw, J.M.3
  • 18
    • 0031976015 scopus 로고    scopus 로고
    • Localization of proteins to the Golgi apparatus
    • Munro, S. 1998. Localization of proteins to the Golgi apparatus. Trends Cell Biol., 8: 11–15.
    • (1998) Trends Cell Biol. , vol.8 , pp. 11-15
    • Munro, S.1
  • 19
  • 20
    • 25444466999 scopus 로고    scopus 로고
    • Genetic analysis of the subunit organization and function of the conserved oligomeric golgi (COG) complex: Studies of COG5- and COG7-deficient mammalian cells
    • Oka, T., Vasile, E., Penman, M., Novina, C.D., Dykxhoorn, D.M., Ungar, D., Hughson, F.M., and Krieger, M. 2005. Genetic analysis of the subunit organization and function of the conserved oligomeric golgi (COG) complex: studies of COG5- and COG7-deficient mammalian cells. J. Biol. Chem., 280: 32736–32745.
    • (2005) J. Biol. Chem. , vol.280 , pp. 32736-32745
    • Oka, T.1    Vasile, E.2    Penman, M.3    Novina, C.D.4    Dykxhoorn, D.M.5    Ungar, D.6    Hughson, F.M.7    Krieger, M.8
  • 21
    • 84869046702 scopus 로고    scopus 로고
    • Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall
    • Orlean, P. 2012. Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall. Genetics, 192: 775–818.
    • (2012) Genetics , vol.192 , pp. 775-818
    • Orlean, P.1
  • 22
    • 84988324922 scopus 로고    scopus 로고
    • COPI selectively drives maturation of the early Golgi
    • Papanikou, E., Day, K.J., Austin, J., and Glick, B.S. 2015. COPI selectively drives maturation of the early Golgi. Elife, 4.
    • (2015) Elife , pp. 4
    • Papanikou, E.1    Day, K.J.2    Austin, J.3    Glick, B.S.4
  • 24
    • 67650475442 scopus 로고    scopus 로고
    • Organ‐elle tethering by a homotypic PDZ interaction underlies formation of the Golgi membrane network
    • Sengupta, D., Truschel, S., Bachert, C., and Linstedt, A.D. 2009. Organ‐elle tethering by a homotypic PDZ interaction underlies formation of the Golgi membrane network. J. Cell Biol., 186: 41–55.
    • (2009) J. Cell Biol. , vol.186 , pp. 41-55
    • Sengupta, D.1    Truschel, S.2    Bachert, C.3    Linstedt, A.D.4
  • 25
    • 37249008781 scopus 로고    scopus 로고
    • Interaction of the conserved oligomeric Golgi complex with t- SNARE Syntaxin5a/Sed5 enhances intra-Golgi SNARE complex stability
    • Shestakova, A., Suvorova, E., Pavliv, O., Khaidakova, G., and Lupashin, V. 2007. Interaction of the conserved oligomeric Golgi complex with t- SNARE Syntaxin5a/Sed5 enhances intra-Golgi SNARE complex stability. J. Cell Biol., 179: 1179–1192.
    • (2007) J. Cell Biol. , vol.179 , pp. 1179-1192
    • Shestakova, A.1    Suvorova, E.2    Pavliv, O.3    Khaidakova, G.4    Lupashin, V.5
  • 26
    • 0037071543 scopus 로고    scopus 로고
    • The Sec34/Sec35p complex, a Ypt1p effector required for retrograde intra-Golgi trafficking, interacts with Golgi SNAREs and COPI vesicle coat proteins
    • Suvorova, E.S., Duden, R., and Lupashin, V.V. 2002. The Sec34/Sec35p complex, a Ypt1p effector required for retrograde intra-Golgi trafficking, interacts with Golgi SNAREs and COPI vesicle coat proteins. J. Cell Biol., 157: 631–643.
    • (2002) J. Cell Biol. , vol.157 , pp. 631-643
    • Suvorova, E.S.1    Duden, R.2    Lupashin, V.V.3
  • 27
    • 0037193464 scopus 로고    scopus 로고
    • Characterization of a mammalian Golgi-localized protein complex, COG, that is required for normal Golgi morphology and function
    • Ungar, D., Oka, T., Brittle, E.E., Vasile, E., Lupashin, V.V., Chatterton, J.E., Heuser, J.E., Krieger, M., and Waters, M.G. 2002. Characterization of a mammalian Golgi-localized protein complex, COG, that is required for normal Golgi morphology and function. J. Cell Biol., 157: 405–415.
    • (2002) J. Cell Biol. , vol.157 , pp. 405-415
    • Ungar, D.1    Oka, T.2    Brittle, E.E.3    Vasile, E.4    Lupashin, V.V.5    Chatterton, J.E.6    Heuser, J.E.7    Krieger, M.8    Waters, M.G.9
  • 28
    • 25444486756 scopus 로고    scopus 로고
    • Subunit architecture of the conserved oligomeric Golgi complex
    • Ungar, D., Oka, T., Vasile, E., Krieger, M., and Hughson, F.M. 2005. Subunit architecture of the conserved oligomeric Golgi complex. J. Biol. Chem., 280: 32729–32735.
    • (2005) J. Biol. Chem. , vol.280 , pp. 32729-32735
    • Ungar, D.1    Oka, T.2    Vasile, E.3    Krieger, M.4    Hughson, F.M.5
  • 29
    • 0032101225 scopus 로고    scopus 로고
    • Sec35p, a novel peripheral membrane protein, is required for ER to Golgi vesicle docking
    • VanRheenen, S.M., Cao, X., Lupashin, V.V., Barlowe, C., and Waters, M.G. 1998. Sec35p, a novel peripheral membrane protein, is required for ER to Golgi vesicle docking. J. Cell Biol., 141: 1107–1119.
    • (1998) J. Cell Biol. , vol.141 , pp. 1107-1119
    • Vanrheenen, S.M.1    Cao, X.2    Lupashin, V.V.3    Barlowe, C.4    Waters, M.G.5
  • 30
  • 31
    • 0035489304 scopus 로고    scopus 로고
    • The Sec34/35 Golgi transport complex is related to the exocyst, defining a family of complexes involved in multiple steps of membrane traffic
    • Whyte, J.R. and Munro, S. 2001. The Sec34/35 Golgi transport complex is related to the exocyst, defining a family of complexes involved in multiple steps of membrane traffic. Dev. Cell, 1: 527–537.
    • (2001) Dev. Cell , vol.1 , pp. 527-537
    • Whyte, J.R.1    Munro, S.2
  • 33
    • 84979017473 scopus 로고    scopus 로고
    • COG lobe B sub-complex engages v-SNARE GS15 and functions via regulated interaction with lobe A sub-complex
    • Willett, R., Blackburn, J.B., Climer, L., Pokrovskaya, I., Kudlyk, T., Wang, W., and Lupashin, V. 2016. COG lobe B sub-complex engages v-SNARE GS15 and functions via regulated interaction with lobe A sub-complex. Sci. Rep., 6: 29139.
    • (2016) Sci. Rep. , vol.6 , pp. 29139
    • Willett, R.1    Blackburn, J.B.2    Climer, L.3    Pokrovskaya, I.4    Kudlyk, T.5    Wang, W.6    Lupashin, V.7
  • 34
    • 0030050828 scopus 로고    scopus 로고
    • New mutants of Saccharomyces cerevisiae affected in the transport of proteins from the endoplasmic reticulum to the Golgi complex
    • Wuestehube, L.J., Duden, R., Eun, A., Hamamoto, S., Korn, P., Ram, R., and Schekman, R. 1996. New mutants of Saccharomyces cerevisiae affected in the transport of proteins from the endoplasmic reticulum to the Golgi complex. Genetics, 142: 393–406.
    • (1996) Genetics , vol.142 , pp. 393-406
    • Wuestehube, L.J.1    Duden, R.2    Eun, A.3    Hamamoto, S.4    Korn, P.5    Ram, R.6    Schekman, R.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.