-
1
-
-
85030328444
-
The golgin protein Coy1 functions in intra- Golgi retrograde transport and interacts with the COG complex and Golgi SNAREs
-
Anderson, N.S., Mukherjee, I., Bentivoglio, C.M., and Barlowe, C. 2017. The golgin protein Coy1 functions in intra- Golgi retrograde transport and interacts with the COG complex and Golgi SNAREs. Mol. Biol. Cell, 28: 2686–2700.
-
(2017)
Mol. Biol. Cell
, vol.28
, pp. 2686-2700
-
-
Anderson, N.S.1
Mukherjee, I.2
Bentivoglio, C.M.3
Barlowe, C.4
-
2
-
-
84979048532
-
COG Complex Complexities: Detailed Characterization of a Complete Set of HEK293T Cells Lacking Individual COG Subunits
-
Bailey Blackburn, J., Pokrovskaya, I., Fisher, P., Ungar, D., and Lupashin, V.V. 2016. COG Complex Complexities: Detailed Characterization of a Complete Set of HEK293T Cells Lacking Individual COG Subunits. Front. Cell Dev. Biol., 4: 23.
-
(2016)
Front. Cell Dev. Biol
, vol.4
, pp. 23
-
-
Bailey Blackburn, J.1
Pokrovskaya, I.2
Fisher, P.3
Ungar, D.4
Lupashin, V.V.5
-
3
-
-
0842324801
-
The mechanisms of vesicle budding and fusion
-
Bonifacino, J.S. and Glick, B.S. 2004. The mechanisms of vesicle budding and fusion. Cell, 116: 153–166.
-
(2004)
Cell
, vol.116
, pp. 153-166
-
-
Bonifacino, J.S.1
Glick, B.S.2
-
4
-
-
0032579440
-
Designer deletion strains derived from Saccharomyces cerevisiae S288C: A useful set of strains and plasmids for PCRmediated gene disruption and other applications
-
Brachmann, C.B., Davies, A., Cost, G.J., Caputo, E., Li, J., Hieter, P., and Boeke, J.D. 1998. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCRmediated gene disruption and other applications. Yeast, 14: 115–132.
-
(1998)
Yeast
, vol.14
, pp. 115-132
-
-
Brachmann, C.B.1
Davies, A.2
Cost, G.J.3
Caputo, E.4
Li, J.5
Hieter, P.6
Boeke, J.D.7
-
5
-
-
4544237449
-
Retrograde transport of the mannosyltransferase Och1p to the early Golgi requires a component of the COG transport complex
-
Bruinsma, P., Spelbrink, R.G., and Nothwehr, S.F. 2004. Retrograde transport of the mannosyltransferase Och1p to the early Golgi requires a component of the COG transport complex. J. Biol. Chem., 279: 39814–39823.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 39814-39823
-
-
Bruinsma, P.1
Spelbrink, R.G.2
Nothwehr, S.F.3
-
6
-
-
34247623568
-
Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle
-
Cai, H., Reinisch, K., and Ferro-Novick, S. 2007. Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev. Cell, 12: 671–682.
-
(2007)
Dev. Cell
, vol.12
, pp. 671-682
-
-
Cai, H.1
Reinisch, K.2
Ferro-Novick, S.3
-
7
-
-
23044502309
-
Cog1p plays a central role in the organization of the yeast conserved oligomeric Golgi complex
-
Fotso, P., Koryakina, Y., Pavliv, O., Tsiomenko, A.B., and Lupashin, V.V. 2005. Cog1p plays a central role in the organization of the yeast conserved oligomeric Golgi complex. J. Biol. Chem., 280: 27613–27623.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 27613-27623
-
-
Fotso, P.1
Koryakina, Y.2
Pavliv, O.3
Tsiomenko, A.B.4
Lupashin, V.V.5
-
9
-
-
84927174857
-
A robust pipeline for rapid production of versatile nanobody repertoires
-
Fridy, P.C., Li, Y., Keegan, S., Thompson, M.K., Nudelman, I., Scheid, J.F., Oeffinger, M., Nussenzweig, M.C., Fenyo, D., Chait, B.T., and Rout, M.P. 2014. A robust pipeline for rapid production of versatile nanobody repertoires. Nat. Methods, 11: 1253–1260.
-
(2014)
Nat. Methods
, vol.11
, pp. 1253-1260
-
-
Fridy, P.C.1
Li, Y.2
Keegan, S.3
Thompson, M.K.4
Nudelman, I.5
Scheid, J.F.6
Oeffinger, M.7
Nussenzweig, M.C.8
Fenyo, D.9
Chait, B.T.10
Rout, M.P.11
-
10
-
-
70350230237
-
Membrane traffic within the Golgi apparatus
-
Glick, B.S. and Nakano, A. 2009. Membrane traffic within the Golgi apparatus. Annu. Rev. Cell Dev. Biol., 25: 113–132.
-
(2009)
Annu. Rev. Cell Dev. Biol.
, vol.25
, pp. 113-132
-
-
Glick, B.S.1
Nakano, A.2
-
12
-
-
84988418466
-
COPI is essential for Golgi cisternal maturation and dynamics
-
Ishii, M., Suda, Y., Kurokawa, K., and Nakano, A. 2016. COPI is essential for Golgi cisternal maturation and dynamics. J. Cell Sci., 129: 3251–3261.
-
(2016)
J. Cell Sci.
, vol.129
, pp. 3251-3261
-
-
Ishii, M.1
Suda, Y.2
Kurokawa, K.3
Nakano, A.4
-
13
-
-
84888253206
-
Live cell visualization of Golgi membrane dynamics by superresolution confocal live imaging microscopy
-
Kurokawa, K., Ishii, M., Suda, Y., Ichihara, A., and Nakano, A. 2013. Live cell visualization of Golgi membrane dynamics by superresolution confocal live imaging microscopy. Method. Cell Biol., 118: 235–242.
-
(2013)
Method. Cell Biol.
, vol.118
, pp. 235-242
-
-
Kurokawa, K.1
Ishii, M.2
Suda, Y.3
Ichihara, A.4
Nakano, A.5
-
14
-
-
84898638312
-
Contact of cis-Golgi with ER exit sites executes cargo capture and delivery from the ER
-
Kurokawa, K., Okamoto, M., and Nakano, A. 2014. Contact of cis-Golgi with ER exit sites executes cargo capture and delivery from the ER. Nat. Commun., 5: 3653.
-
(2014)
Nat. Commun.
, vol.5
, pp. 3653
-
-
Kurokawa, K.1
Okamoto, M.2
Nakano, A.3
-
15
-
-
78549285917
-
Molecular organization of the COG vesicle tethering complex
-
Lees, J.A., Yip, C.K., Walz, T., and Hughson, F.M. 2010. Molecular organization of the COG vesicle tethering complex. Nat. Struct. Mol. Biol., 17: 1292–1297.
-
(2010)
Nat. Struct. Mol. Biol.
, vol.17
, pp. 1292-1297
-
-
Lees, J.A.1
Yip, C.K.2
Walz, T.3
Hughson, F.M.4
-
16
-
-
84911361850
-
The role of Sec3p in secretory vesicle targeting and exocyst complex assembly
-
Luo, G., Zhang, J., and Guo, W. 2014. The role of Sec3p in secretory vesicle targeting and exocyst complex assembly. Mol. Biol. Cell, 25: 3813–3822.
-
(2014)
Mol. Biol. Cell
, vol.25
, pp. 3813-3822
-
-
Luo, G.1
Zhang, J.2
Guo, W.3
-
17
-
-
0034676096
-
Dnm1p GTPasemediated mitochondrial fission is a multi-step process requiring the novel integral membrane component Fis1p
-
Mozdy, A.D., McCaffery, J.M., and Shaw, J.M. 2000. Dnm1p GTPasemediated mitochondrial fission is a multi-step process requiring the novel integral membrane component Fis1p. J. Cell Biol., 151: 367–380.
-
(2000)
J. Cell Biol.
, vol.151
, pp. 367-380
-
-
Mozdy, A.D.1
McCaffery, J.M.2
Shaw, J.M.3
-
18
-
-
0031976015
-
Localization of proteins to the Golgi apparatus
-
Munro, S. 1998. Localization of proteins to the Golgi apparatus. Trends Cell Biol., 8: 11–15.
-
(1998)
Trends Cell Biol.
, vol.8
, pp. 11-15
-
-
Munro, S.1
-
20
-
-
25444466999
-
Genetic analysis of the subunit organization and function of the conserved oligomeric golgi (COG) complex: Studies of COG5- and COG7-deficient mammalian cells
-
Oka, T., Vasile, E., Penman, M., Novina, C.D., Dykxhoorn, D.M., Ungar, D., Hughson, F.M., and Krieger, M. 2005. Genetic analysis of the subunit organization and function of the conserved oligomeric golgi (COG) complex: studies of COG5- and COG7-deficient mammalian cells. J. Biol. Chem., 280: 32736–32745.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 32736-32745
-
-
Oka, T.1
Vasile, E.2
Penman, M.3
Novina, C.D.4
Dykxhoorn, D.M.5
Ungar, D.6
Hughson, F.M.7
Krieger, M.8
-
21
-
-
84869046702
-
Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall
-
Orlean, P. 2012. Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall. Genetics, 192: 775–818.
-
(2012)
Genetics
, vol.192
, pp. 775-818
-
-
Orlean, P.1
-
22
-
-
84988324922
-
COPI selectively drives maturation of the early Golgi
-
Papanikou, E., Day, K.J., Austin, J., and Glick, B.S. 2015. COPI selectively drives maturation of the early Golgi. Elife, 4.
-
(2015)
Elife
, pp. 4
-
-
Papanikou, E.1
Day, K.J.2
Austin, J.3
Glick, B.S.4
-
23
-
-
84862520770
-
Fiji: An open-source platform for biologicalimage analysis
-
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.Y., White, D.J., Hartenstein, V., Eliceiri, K., Tomancak, P., and Cardona, A. 2012. Fiji: an open-source platform for biologicalimage analysis. Nat. Methods, 9: 676–682.
-
(2012)
Nat. Methods
, vol.9
, pp. 676-682
-
-
Schindelin, J.1
Arganda-Carreras, I.2
Frise, E.3
Kaynig, V.4
Longair, M.5
Pietzsch, T.6
Preibisch, S.7
Rueden, C.8
Saalfeld, S.9
Schmid, B.10
Tinevez, J.Y.11
White, D.J.12
Hartenstein, V.13
Eliceiri, K.14
Tomancak, P.15
Cardona, A.16
-
24
-
-
67650475442
-
Organ‐elle tethering by a homotypic PDZ interaction underlies formation of the Golgi membrane network
-
Sengupta, D., Truschel, S., Bachert, C., and Linstedt, A.D. 2009. Organ‐elle tethering by a homotypic PDZ interaction underlies formation of the Golgi membrane network. J. Cell Biol., 186: 41–55.
-
(2009)
J. Cell Biol.
, vol.186
, pp. 41-55
-
-
Sengupta, D.1
Truschel, S.2
Bachert, C.3
Linstedt, A.D.4
-
25
-
-
37249008781
-
Interaction of the conserved oligomeric Golgi complex with t- SNARE Syntaxin5a/Sed5 enhances intra-Golgi SNARE complex stability
-
Shestakova, A., Suvorova, E., Pavliv, O., Khaidakova, G., and Lupashin, V. 2007. Interaction of the conserved oligomeric Golgi complex with t- SNARE Syntaxin5a/Sed5 enhances intra-Golgi SNARE complex stability. J. Cell Biol., 179: 1179–1192.
-
(2007)
J. Cell Biol.
, vol.179
, pp. 1179-1192
-
-
Shestakova, A.1
Suvorova, E.2
Pavliv, O.3
Khaidakova, G.4
Lupashin, V.5
-
26
-
-
0037071543
-
The Sec34/Sec35p complex, a Ypt1p effector required for retrograde intra-Golgi trafficking, interacts with Golgi SNAREs and COPI vesicle coat proteins
-
Suvorova, E.S., Duden, R., and Lupashin, V.V. 2002. The Sec34/Sec35p complex, a Ypt1p effector required for retrograde intra-Golgi trafficking, interacts with Golgi SNAREs and COPI vesicle coat proteins. J. Cell Biol., 157: 631–643.
-
(2002)
J. Cell Biol.
, vol.157
, pp. 631-643
-
-
Suvorova, E.S.1
Duden, R.2
Lupashin, V.V.3
-
27
-
-
0037193464
-
Characterization of a mammalian Golgi-localized protein complex, COG, that is required for normal Golgi morphology and function
-
Ungar, D., Oka, T., Brittle, E.E., Vasile, E., Lupashin, V.V., Chatterton, J.E., Heuser, J.E., Krieger, M., and Waters, M.G. 2002. Characterization of a mammalian Golgi-localized protein complex, COG, that is required for normal Golgi morphology and function. J. Cell Biol., 157: 405–415.
-
(2002)
J. Cell Biol.
, vol.157
, pp. 405-415
-
-
Ungar, D.1
Oka, T.2
Brittle, E.E.3
Vasile, E.4
Lupashin, V.V.5
Chatterton, J.E.6
Heuser, J.E.7
Krieger, M.8
Waters, M.G.9
-
28
-
-
25444486756
-
Subunit architecture of the conserved oligomeric Golgi complex
-
Ungar, D., Oka, T., Vasile, E., Krieger, M., and Hughson, F.M. 2005. Subunit architecture of the conserved oligomeric Golgi complex. J. Biol. Chem., 280: 32729–32735.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 32729-32735
-
-
Ungar, D.1
Oka, T.2
Vasile, E.3
Krieger, M.4
Hughson, F.M.5
-
29
-
-
0032101225
-
Sec35p, a novel peripheral membrane protein, is required for ER to Golgi vesicle docking
-
VanRheenen, S.M., Cao, X., Lupashin, V.V., Barlowe, C., and Waters, M.G. 1998. Sec35p, a novel peripheral membrane protein, is required for ER to Golgi vesicle docking. J. Cell Biol., 141: 1107–1119.
-
(1998)
J. Cell Biol.
, vol.141
, pp. 1107-1119
-
-
Vanrheenen, S.M.1
Cao, X.2
Lupashin, V.V.3
Barlowe, C.4
Waters, M.G.5
-
30
-
-
0033571293
-
Sec34p, a protein required for vesicle tethering to the yeast Golgi apparatus, is in a complex with Sec35p
-
VanRheenen, S.M., Cao, X., Sapperstein, S.K., Chiang, E.C., Lupashin, V.V., Barlowe, C., and Waters, M.G. 1999. Sec34p, a protein required for vesicle tethering to the yeast Golgi apparatus, is in a complex with Sec35p. J. Cell Biol., 147: 729–742.
-
(1999)
J. Cell Biol.
, vol.147
, pp. 729-742
-
-
Vanrheenen, S.M.1
Cao, X.2
Sapperstein, S.K.3
Chiang, E.C.4
Lupashin, V.V.5
Barlowe, C.6
Waters, M.G.7
-
31
-
-
0035489304
-
The Sec34/35 Golgi transport complex is related to the exocyst, defining a family of complexes involved in multiple steps of membrane traffic
-
Whyte, J.R. and Munro, S. 2001. The Sec34/35 Golgi transport complex is related to the exocyst, defining a family of complexes involved in multiple steps of membrane traffic. Dev. Cell, 1: 527–537.
-
(2001)
Dev. Cell
, vol.1
, pp. 527-537
-
-
Whyte, J.R.1
Munro, S.2
-
32
-
-
84875886094
-
COG complexes form spatial landmarks for distinct SNARE complexes
-
Willett, R., Kudlyk, T., Pokrovskaya, I., Schonherr, R., Ungar, D., Duden, R., and Lupashin, V. 2013. COG complexes form spatial landmarks for distinct SNARE complexes. Nat. Commun., 4: 1553.
-
(2013)
Nat. Commun.
, vol.4
, pp. 1553
-
-
Willett, R.1
Kudlyk, T.2
Pokrovskaya, I.3
Schonherr, R.4
Ungar, D.5
Duden, R.6
Lupashin, V.7
-
33
-
-
84979017473
-
COG lobe B sub-complex engages v-SNARE GS15 and functions via regulated interaction with lobe A sub-complex
-
Willett, R., Blackburn, J.B., Climer, L., Pokrovskaya, I., Kudlyk, T., Wang, W., and Lupashin, V. 2016. COG lobe B sub-complex engages v-SNARE GS15 and functions via regulated interaction with lobe A sub-complex. Sci. Rep., 6: 29139.
-
(2016)
Sci. Rep.
, vol.6
, pp. 29139
-
-
Willett, R.1
Blackburn, J.B.2
Climer, L.3
Pokrovskaya, I.4
Kudlyk, T.5
Wang, W.6
Lupashin, V.7
-
34
-
-
0030050828
-
New mutants of Saccharomyces cerevisiae affected in the transport of proteins from the endoplasmic reticulum to the Golgi complex
-
Wuestehube, L.J., Duden, R., Eun, A., Hamamoto, S., Korn, P., Ram, R., and Schekman, R. 1996. New mutants of Saccharomyces cerevisiae affected in the transport of proteins from the endoplasmic reticulum to the Golgi complex. Genetics, 142: 393–406.
-
(1996)
Genetics
, vol.142
, pp. 393-406
-
-
Wuestehube, L.J.1
Duden, R.2
Eun, A.3
Hamamoto, S.4
Korn, P.5
Ram, R.6
Schekman, R.7
|