메뉴 건너뛰기




Volumn 43, Issue 9, 2018, Pages 714-725

Exposing the Elusive Exocyst Structure

Author keywords

exocyst; exocytosis; membrane fusion; membrane trafficking; Rab GTPase; Rho GTPase; SNARE; tethering complex

Indexed keywords

EXOCYST; SNARE PROTEIN;

EID: 85050343085     PISSN: 09680004     EISSN: 13624326     Source Type: Journal    
DOI: 10.1016/j.tibs.2018.06.012     Document Type: Review
Times cited : (53)

References (82)
  • 1
    • 0033130103 scopus 로고    scopus 로고
    • Transport-vesicle targeting: tethers before SNAREs
    • Pfeffer, S.R., Transport-vesicle targeting: tethers before SNAREs. Nat. Cell Biol. 1 (1999), E17–E22.
    • (1999) Nat. Cell Biol. , vol.1 , pp. E17-E22
    • Pfeffer, S.R.1
  • 2
    • 78049368534 scopus 로고    scopus 로고
    • Tethering factors as organizers of intracellular vesicular traffic
    • Yu, I.M., Hughson, F.M., Tethering factors as organizers of intracellular vesicular traffic. Annu. Rev. Cell Dev. Biol. 26 (2010), 137–156.
    • (2010) Annu. Rev. Cell Dev. Biol. , vol.26 , pp. 137-156
    • Yu, I.M.1    Hughson, F.M.2
  • 3
    • 84960155907 scopus 로고    scopus 로고
    • Finding the Golgi: golgin coiled-coil proteins show the way
    • Gillingham, A.K., Munro, S., Finding the Golgi: golgin coiled-coil proteins show the way. Trends Cell Biol. 26 (2016), 399–408.
    • (2016) Trends Cell Biol. , vol.26 , pp. 399-408
    • Gillingham, A.K.1    Munro, S.2
  • 4
    • 85045751197 scopus 로고    scopus 로고
    • Membrane tethering complexes in the endosomal system
    • Spang, A., Membrane tethering complexes in the endosomal system. Front. Cell Dev. Biol., 4, 2016, 35.
    • (2016) Front. Cell Dev. Biol. , vol.4 , pp. 35
    • Spang, A.1
  • 5
    • 84979202073 scopus 로고    scopus 로고
    • TRAPP complexes in secretion and autophagy
    • Kim, J.J., et al. TRAPP complexes in secretion and autophagy. Front. Cell Dev. Biol., 4, 2016, 20.
    • (2016) Front. Cell Dev. Biol. , vol.4 , pp. 20
    • Kim, J.J.1
  • 6
    • 84911118605 scopus 로고    scopus 로고
    • Are all multisubunit tethering complexes bona fide tethers?
    • Brunet, S., Sacher, M., Are all multisubunit tethering complexes bona fide tethers?. Traffic 15 (2014), 1282–1287.
    • (2014) Traffic , vol.15 , pp. 1282-1287
    • Brunet, S.1    Sacher, M.2
  • 7
    • 77957020175 scopus 로고    scopus 로고
    • Membrane fusion: five lipids, four SNAREs, three chaperones, two nucleotides, and a Rab, all dancing in a ring on yeast vacuoles
    • Wickner, W., Membrane fusion: five lipids, four SNAREs, three chaperones, two nucleotides, and a Rab, all dancing in a ring on yeast vacuoles. Annu. Rev. Cell Dev. Biol. 26 (2010), 115–136.
    • (2010) Annu. Rev. Cell Dev. Biol. , vol.26 , pp. 115-136
    • Wickner, W.1
  • 8
    • 84984653623 scopus 로고    scopus 로고
    • An endosomal tether undergoes an entropic collapse to bring vesicles together
    • Murray, D.H., et al. An endosomal tether undergoes an entropic collapse to bring vesicles together. Nature 537 (2016), 107–111.
    • (2016) Nature , vol.537 , pp. 107-111
    • Murray, D.H.1
  • 9
    • 84911361850 scopus 로고    scopus 로고
    • The role of Sec3p in secretory vesicle targeting and exocyst complex assembly
    • Luo, G., et al. The role of Sec3p in secretory vesicle targeting and exocyst complex assembly. Mol. Biol. Cell 25 (2014), 3813–3822.
    • (2014) Mol. Biol. Cell , vol.25 , pp. 3813-3822
    • Luo, G.1
  • 10
    • 84890884015 scopus 로고    scopus 로고
    • Tethering the assembly of SNARE complexes
    • Hong, W., Lev, S., Tethering the assembly of SNARE complexes. Trends Cell Biol. 24 (2014), 35–43.
    • (2014) Trends Cell Biol. , vol.24 , pp. 35-43
    • Hong, W.1    Lev, S.2
  • 11
    • 85011897383 scopus 로고    scopus 로고
    • The secret life of tethers: the role of tethering factors in SNARE complex regulation
    • Dubuke, M.L., Munson, M., The secret life of tethers: the role of tethering factors in SNARE complex regulation. Front. Cell Dev. Biol., 4, 2016, 42.
    • (2016) Front. Cell Dev. Biol. , vol.4 , pp. 42
    • Dubuke, M.L.1    Munson, M.2
  • 12
    • 77955050491 scopus 로고    scopus 로고
    • Structure and mechanism in membrane trafficking
    • Hughson, F.M., Reinisch, K.M., Structure and mechanism in membrane trafficking. Curr. Opin. Cell Biol. 22 (2010), 454–460.
    • (2010) Curr. Opin. Cell Biol. , vol.22 , pp. 454-460
    • Hughson, F.M.1    Reinisch, K.M.2
  • 13
    • 78549285917 scopus 로고    scopus 로고
    • Molecular organization of the COG vesicle tethering complex
    • Lees, J.A., et al. Molecular organization of the COG vesicle tethering complex. Nat. Struct. Mol. Biol. 17 (2010), 1292–1297.
    • (2010) Nat. Struct. Mol. Biol. , vol.17 , pp. 1292-1297
    • Lees, J.A.1
  • 14
    • 84857132605 scopus 로고    scopus 로고
    • Molecular architecture of the multisubunit homotypic fusion and vacuole protein sorting (HOPS) tethering complex
    • Brocker, C., et al. Molecular architecture of the multisubunit homotypic fusion and vacuole protein sorting (HOPS) tethering complex. Proc. Natl. Acad. Sci. U. S. A. 109 (2012), 1991–1996.
    • (2012) Proc. Natl. Acad. Sci. U. S. A. , vol.109 , pp. 1991-1996
    • Brocker, C.1
  • 15
    • 84978674897 scopus 로고    scopus 로고
    • CATCHR, HOPS and CORVET tethering complexes share a similar architecture
    • Chou, H.T., et al. CATCHR, HOPS and CORVET tethering complexes share a similar architecture. Nat. Struct. Mol. Biol. 23 (2016), 761–763.
    • (2016) Nat. Struct. Mol. Biol. , vol.23 , pp. 761-763
    • Chou, H.T.1
  • 16
    • 84954386257 scopus 로고    scopus 로고
    • Subunit connectivity, assembly determinants and architecture of the yeast exocyst complex
    • Heider, M.R., et al. Subunit connectivity, assembly determinants and architecture of the yeast exocyst complex. Nat. Struct. Mol. Biol. 23 (2016), 59–66.
    • (2016) Nat. Struct. Mol. Biol. , vol.23 , pp. 59-66
    • Heider, M.R.1
  • 17
    • 85042767185 scopus 로고    scopus 로고
    • Cryo-EM structure of the exocyst complex
    • Mei, K., et al. Cryo-EM structure of the exocyst complex. Nat. Struct. Mol. Biol. 25 (2018), 139–146.
    • (2018) Nat. Struct. Mol. Biol. , vol.25 , pp. 139-146
    • Mei, K.1
  • 18
    • 0018930046 scopus 로고
    • Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway
    • Novick, P., et al. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21 (1980), 205–215.
    • (1980) Cell , vol.21 , pp. 205-215
    • Novick, P.1
  • 19
    • 0029843493 scopus 로고    scopus 로고
    • The exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae
    • TerBush, D.R., et al. The exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. EMBO J. 15 (1996), 6483–6494.
    • (1996) EMBO J. , vol.15 , pp. 6483-6494
    • TerBush, D.R.1
  • 20
    • 0033551705 scopus 로고    scopus 로고
    • Exo84p is an exocyst protein essential for secretion
    • Guo, W., et al. Exo84p is an exocyst protein essential for secretion. J. Biol. Chem. 274 (1999), 23558–23564.
    • (1999) J. Biol. Chem. , vol.274 , pp. 23558-23564
    • Guo, W.1
  • 21
    • 84862268931 scopus 로고    scopus 로고
    • Exorcising the exocyst complex
    • Heider, M.R., Munson, M., Exorcising the exocyst complex. Traffic 13 (2012), 898–907.
    • (2012) Traffic , vol.13 , pp. 898-907
    • Heider, M.R.1    Munson, M.2
  • 22
    • 84888429837 scopus 로고    scopus 로고
    • Exocyst complexes multiple functions in plant cells secretory pathways
    • Zarsky, V., et al. Exocyst complexes multiple functions in plant cells secretory pathways. Curr. Opin. Plant Biol. 16 (2013), 726–733.
    • (2013) Curr. Opin. Plant Biol. , vol.16 , pp. 726-733
    • Zarsky, V.1
  • 23
    • 85007028318 scopus 로고    scopus 로고
    • Diverse functions and signal transduction of the exocyst complex in tumor cells
    • Tanaka, T., et al. Diverse functions and signal transduction of the exocyst complex in tumor cells. J. Cell Physiol. 232 (2017), 939–957.
    • (2017) J. Cell Physiol. , vol.232 , pp. 939-957
    • Tanaka, T.1
  • 24
    • 85036655453 scopus 로고    scopus 로고
    • Polarized exocytosis
    • Published online December 1, 2017
    • Zeng, J., et al. Polarized exocytosis. Cold Spring Harb. Perspect. Biol., 2017, 10.1101/cshperspect.a027870 Published online December 1, 2017.
    • (2017) Cold Spring Harb. Perspect. Biol.
    • Zeng, J.1
  • 25
    • 85009705123 scopus 로고    scopus 로고
    • The exocyst complex in health and disease
    • Martin-Urdiroz, M., et al. The exocyst complex in health and disease. Front. Cell Dev. Biol., 4, 2016, 24.
    • (2016) Front. Cell Dev. Biol. , vol.4 , pp. 24
    • Martin-Urdiroz, M.1
  • 26
    • 0344875517 scopus 로고    scopus 로고
    • Sec3p is needed for the spatial regulation of secretion and for the inheritance of the cortical endoplasmic reticulum
    • Wiederkehr, A., et al. Sec3p is needed for the spatial regulation of secretion and for the inheritance of the cortical endoplasmic reticulum. Mol. Biol. Cell 14 (2003), 4770–4782.
    • (2003) Mol. Biol. Cell , vol.14 , pp. 4770-4782
    • Wiederkehr, A.1
  • 27
    • 84949201120 scopus 로고    scopus 로고
    • Rapid depletion of budding yeast proteins via the fusion of an auxin-inducible degron (AID)
    • 20.9.1-20.9.16
    • Nishimura, K., Kanemaki, M.T., Rapid depletion of budding yeast proteins via the fusion of an auxin-inducible degron (AID). Curr. Protoc. Cell Biol., 64, 2014 20.9.1-20.9.16.
    • (2014) Curr. Protoc. Cell Biol. , vol.64
    • Nishimura, K.1    Kanemaki, M.T.2
  • 28
    • 33847648364 scopus 로고    scopus 로고
    • Control systems for membrane fusion in the ancestral eukaryote; evolution of tethering complexes and SM proteins
    • Koumandou, V.L., et al. Control systems for membrane fusion in the ancestral eukaryote; evolution of tethering complexes and SM proteins. BMC Evol. Biol., 7, 2007, 29.
    • (2007) BMC Evol. Biol. , vol.7 , pp. 29
    • Koumandou, V.L.1
  • 29
    • 84973352485 scopus 로고    scopus 로고
    • Tracing the archaeal origins of eukaryotic membrane-trafficking system building blocks
    • Klinger, C.M., et al. Tracing the archaeal origins of eukaryotic membrane-trafficking system building blocks. Mol. Biol. Evol. 33 (2016), 1528–1541.
    • (2016) Mol. Biol. Evol. , vol.33 , pp. 1528-1541
    • Klinger, C.M.1
  • 30
    • 84871888382 scopus 로고    scopus 로고
    • Evolution of the land plant exocyst complexes
    • 159
    • Cvrčková F., et al. Evolution of the land plant exocyst complexes. Front. Plant Sci. 3 (2012), 1–13 159.
    • (2012) Front. Plant Sci. , vol.3 , pp. 1-13
    • Cvrčková, F.1
  • 31
    • 85014748365 scopus 로고    scopus 로고
    • Tethering complexes in the Arabidopsis endomembrane system
    • Vukasinovic, N., Zarsky, V., Tethering complexes in the Arabidopsis endomembrane system. Front. Cell Dev. Biol., 4, 2016, 46.
    • (2016) Front. Cell Dev. Biol. , vol.4 , pp. 46
    • Vukasinovic, N.1    Zarsky, V.2
  • 32
    • 85010977077 scopus 로고    scopus 로고
    • The trypanosome exocyst: a conserved structure revealing a new role in endocytosis
    • Boehm, C.M., et al. The trypanosome exocyst: a conserved structure revealing a new role in endocytosis. PLoS Pathog., 13, 2017, e1006063.
    • (2017) PLoS Pathog. , vol.13
    • Boehm, C.M.1
  • 33
    • 33745841364 scopus 로고    scopus 로고
    • The exocyst defrocked, a framework of rods revealed
    • Munson, M., Novick, P., The exocyst defrocked, a framework of rods revealed. Nat. Struct. Mol. Biol. 13 (2006), 577–581.
    • (2006) Nat. Struct. Mol. Biol. , vol.13 , pp. 577-581
    • Munson, M.1    Novick, P.2
  • 34
    • 64049100409 scopus 로고    scopus 로고
    • Sec6p anchors the assembled exocyst complex at sites of secretion
    • Songer, J.A., Munson, M., Sec6p anchors the assembled exocyst complex at sites of secretion. Mol. Biol. Cell 20 (2009), 973–982.
    • (2009) Mol. Biol. Cell , vol.20 , pp. 973-982
    • Songer, J.A.1    Munson, M.2
  • 35
    • 10344263403 scopus 로고    scopus 로고
    • Vesicles carry most exocyst subunits to exocytic sites marked by the remaining two subunits, Sec3p and Exo70p
    • Boyd, C., et al. Vesicles carry most exocyst subunits to exocytic sites marked by the remaining two subunits, Sec3p and Exo70p. J. Cell Biol. 167 (2004), 889–901.
    • (2004) J. Cell Biol. , vol.167 , pp. 889-901
    • Boyd, C.1
  • 36
    • 84957667091 scopus 로고    scopus 로고
    • Tracking individual secretory vesicles during exocytosis reveals an ordered and regulated process
    • Donovan, K.W., Bretscher, A., Tracking individual secretory vesicles during exocytosis reveals an ordered and regulated process. J. Cell Biol. 210 (2015), 181–189.
    • (2015) J. Cell Biol. , vol.210 , pp. 181-189
    • Donovan, K.W.1    Bretscher, A.2
  • 37
    • 23944480474 scopus 로고    scopus 로고
    • Rho GTPase regulation of exocytosis in yeast is independent of GTP hydrolysis and polarization of the exocyst complex
    • Roumanie, O., et al. Rho GTPase regulation of exocytosis in yeast is independent of GTP hydrolysis and polarization of the exocyst complex. J. Cell Biol. 170 (2005), 583–594.
    • (2005) J. Cell Biol. , vol.170 , pp. 583-594
    • Roumanie, O.1
  • 38
    • 85010677165 scopus 로고    scopus 로고
    • The in vivo architecture of the exocyst provides structural basis for exocytosis
    • 400-412 e18
    • Picco, A., et al. The in vivo architecture of the exocyst provides structural basis for exocytosis. Cell, 168, 2017 400-412 e18.
    • (2017) Cell , vol.168
    • Picco, A.1
  • 39
    • 17244373188 scopus 로고    scopus 로고
    • Sec6 mutations and the Drosophila exocyst complex
    • Murthy, M., et al. Sec6 mutations and the Drosophila exocyst complex. J. Cell Sci. 118 (2005), 1139–1150.
    • (2005) J. Cell Sci. , vol.118 , pp. 1139-1150
    • Murthy, M.1
  • 40
    • 78651488777 scopus 로고    scopus 로고
    • RalB and the exocyst mediate the cellular starvation response by direct activation of autophagosome assembly
    • Bodemann, B.O., et al. RalB and the exocyst mediate the cellular starvation response by direct activation of autophagosome assembly. Cell 144 (2011), 253–267.
    • (2011) Cell , vol.144 , pp. 253-267
    • Bodemann, B.O.1
  • 41
    • 84885385036 scopus 로고    scopus 로고
    • Arabidopsis exocyst subcomplex containing subunit EXO70B1 is involved in autophagy-related transport to the vacuole
    • Kulich, I., et al. Arabidopsis exocyst subcomplex containing subunit EXO70B1 is involved in autophagy-related transport to the vacuole. Traffic 14 (2013), 1155–1165.
    • (2013) Traffic , vol.14 , pp. 1155-1165
    • Kulich, I.1
  • 42
    • 84901049925 scopus 로고    scopus 로고
    • The Neurospora crassa exocyst complex tethers Spitzenkorper vesicles to the apical plasma membrane during polarized growth
    • Riquelme, M., et al. The Neurospora crassa exocyst complex tethers Spitzenkorper vesicles to the apical plasma membrane during polarized growth. Mol. Biol. Cell 25 (2014), 1312–1326.
    • (2014) Mol. Biol. Cell , vol.25 , pp. 1312-1326
    • Riquelme, M.1
  • 43
    • 85043596164 scopus 로고    scopus 로고
    • Probing functional changes in exocyst configuration with monoclonal antibodies
    • Inamdar, S.M., et al. Probing functional changes in exocyst configuration with monoclonal antibodies. Front. Cell Dev. Biol., 4, 2016, 51.
    • (2016) Front. Cell Dev. Biol. , vol.4 , pp. 51
    • Inamdar, S.M.1
  • 44
    • 0032103420 scopus 로고    scopus 로고
    • Subunit composition, protein interactions, and structures of the mammalian brain sec6/8 complex and septin filaments
    • Hsu, S.C., et al. Subunit composition, protein interactions, and structures of the mammalian brain sec6/8 complex and septin filaments. Neuron 20 (1998), 1111–1122.
    • (1998) Neuron , vol.20 , pp. 1111-1122
    • Hsu, S.C.1
  • 45
    • 28544432477 scopus 로고    scopus 로고
    • The structures of exocyst subunit Exo70p and the Exo84p C-terminal domains reveal a common motif
    • Dong, G., et al. The structures of exocyst subunit Exo70p and the Exo84p C-terminal domains reveal a common motif. Nat. Struct. Mol. Biol. 12 (2005), 1094–1100.
    • (2005) Nat. Struct. Mol. Biol. , vol.12 , pp. 1094-1100
    • Dong, G.1
  • 46
    • 33744933711 scopus 로고    scopus 로고
    • The structure of the exocyst subunit Sec6p defines a conserved architecture with diverse roles
    • Sivaram, M.V., et al. The structure of the exocyst subunit Sec6p defines a conserved architecture with diverse roles. Nat. Struct. Mol. Biol. 13 (2006), 555–556.
    • (2006) Nat. Struct. Mol. Biol. , vol.13 , pp. 555-556
    • Sivaram, M.V.1
  • 47
    • 27144456598 scopus 로고    scopus 로고
    • Sec15 interacts with Rab11 via a novel domain and affects Rab11 localization in vivo
    • Wu, S., et al. Sec15 interacts with Rab11 via a novel domain and affects Rab11 localization in vivo. Nat. Struct. Mol. Biol. 12 (2005), 879–885.
    • (2005) Nat. Struct. Mol. Biol. , vol.12 , pp. 879-885
    • Wu, S.1
  • 48
    • 85010058347 scopus 로고    scopus 로고
    • Crystal structure of Sec10, a subunit of the exocyst complex
    • 40909
    • Chen, J., et al. Crystal structure of Sec10, a subunit of the exocyst complex. Sci. Rep., 7, 2017 40909.
    • (2017) Sci. Rep. , vol.7
    • Chen, J.1
  • 49
    • 84988008301 scopus 로고    scopus 로고
    • Distinct roles for the N- and C-terminal regions of M-Sec in plasma membrane deformation during tunneling nanotube formation
    • 33548
    • Kimura, S., et al. Distinct roles for the N- and C-terminal regions of M-Sec in plasma membrane deformation during tunneling nanotube formation. Sci. Rep., 6, 2016 33548.
    • (2016) Sci. Rep. , vol.6
    • Kimura, S.1
  • 50
    • 69449100200 scopus 로고    scopus 로고
    • Structural basis for a human glycosylation disorder caused by mutation of the COG4 gene
    • Richardson, B.C., et al. Structural basis for a human glycosylation disorder caused by mutation of the COG4 gene. Proc. Natl. Acad. Sci. U. S. A. 106 (2009), 13329–13334.
    • (2009) Proc. Natl. Acad. Sci. U. S. A. , vol.106 , pp. 13329-13334
    • Richardson, B.C.1
  • 51
    • 59649118155 scopus 로고    scopus 로고
    • Tip20p reaches out to Dsl1p to tether membranes
    • Munson, M., Tip20p reaches out to Dsl1p to tether membranes. Nat. Struct. Mol. Biol. 16 (2009), 100–102.
    • (2009) Nat. Struct. Mol. Biol. , vol.16 , pp. 100-102
    • Munson, M.1
  • 52
    • 33644548665 scopus 로고    scopus 로고
    • Structural basis for myosin V discrimination between distinct cargoes
    • Pashkova, N., et al. Structural basis for myosin V discrimination between distinct cargoes. EMBO J. 25 (2006), 693–700.
    • (2006) EMBO J. , vol.25 , pp. 693-700
    • Pashkova, N.1
  • 53
    • 83455229807 scopus 로고    scopus 로고
    • Myosin V transports secretory vesicles via a Rab GTPase cascade and interaction with the exocyst complex
    • Jin, Y., et al. Myosin V transports secretory vesicles via a Rab GTPase cascade and interaction with the exocyst complex. Dev. Cell 21 (2011), 1156–1170.
    • (2011) Dev. Cell , vol.21 , pp. 1156-1170
    • Jin, Y.1
  • 54
    • 80054056038 scopus 로고    scopus 로고
    • The crystal structure of a Munc13 C-terminal module exhibits a remarkable similarity to vesicle tethering factors
    • Li, W., et al. The crystal structure of a Munc13 C-terminal module exhibits a remarkable similarity to vesicle tethering factors. Structure 19 (2011), 1443–1455.
    • (2011) Structure , vol.19 , pp. 1443-1455
    • Li, W.1
  • 55
    • 21844443829 scopus 로고    scopus 로고
    • Exo84 and Sec5 are competitive regulatory Sec6/8 effectors to the RalA GTPase
    • Jin, R., et al. Exo84 and Sec5 are competitive regulatory Sec6/8 effectors to the RalA GTPase. EMBO J. 24 (2005), 2064–2074.
    • (2005) EMBO J. , vol.24 , pp. 2064-2074
    • Jin, R.1
  • 56
    • 0037699926 scopus 로고    scopus 로고
    • Structure of the GTPase-binding domain of Sec5 and elucidation of its Ral binding site
    • Mott, H.R., et al. Structure of the GTPase-binding domain of Sec5 and elucidation of its Ral binding site. J. Biol. Chem. 278 (2003), 17053–17059.
    • (2003) J. Biol. Chem. , vol.278 , pp. 17053-17059
    • Mott, H.R.1
  • 57
    • 0038602702 scopus 로고    scopus 로고
    • Structural basis of the interaction between RalA and Sec5, a subunit of the sec6/8 complex
    • Fukai, S., et al. Structural basis of the interaction between RalA and Sec5, a subunit of the sec6/8 complex. EMBO J. 22 (2003), 3267–3278.
    • (2003) EMBO J. , vol.22 , pp. 3267-3278
    • Fukai, S.1
  • 58
    • 77951227637 scopus 로고    scopus 로고
    • Structure-function study of the N-terminal domain of exocyst subunit Sec3
    • Baek, K., et al. Structure-function study of the N-terminal domain of exocyst subunit Sec3. J. Biol. Chem. 285 (2010), 10424–10433.
    • (2010) J. Biol. Chem. , vol.285 , pp. 10424-10433
    • Baek, K.1
  • 59
    • 76349093365 scopus 로고    scopus 로고
    • Structural basis for the Rho- and phosphoinositide-dependent localization of the exocyst subunit Sec3
    • Yamashita, M., et al. Structural basis for the Rho- and phosphoinositide-dependent localization of the exocyst subunit Sec3. Nat. Struct. Mol. Biol. 17 (2010), 180–186.
    • (2010) Nat. Struct. Mol. Biol. , vol.17 , pp. 180-186
    • Yamashita, M.1
  • 60
    • 0035145498 scopus 로고    scopus 로고
    • Purification and characterization of yeast exocyst complex
    • Terbush, D.R., et al. Purification and characterization of yeast exocyst complex. Methods Enzymol. 329 (2001), 100–110.
    • (2001) Methods Enzymol. , vol.329 , pp. 100-110
    • Terbush, D.R.1
  • 61
    • 84932108013 scopus 로고    scopus 로고
    • Architectures of multisubunit complexes revealed by a visible immunoprecipitation assay using fluorescent fusion proteins
    • Katoh, Y., et al. Architectures of multisubunit complexes revealed by a visible immunoprecipitation assay using fluorescent fusion proteins. J. Cell Sci. 128 (2015), 2351–2362.
    • (2015) J. Cell Sci. , vol.128 , pp. 2351-2362
    • Katoh, Y.1
  • 62
    • 0035859819 scopus 로고    scopus 로고
    • The Sec6/8 complex in mammalian cells: characterization of mammalian Sec3, subunit interactions, and expression of subunits in polarized cells
    • Matern, H.T., et al. The Sec6/8 complex in mammalian cells: characterization of mammalian Sec3, subunit interactions, and expression of subunits in polarized cells. Proc. Natl. Acad. Sci. U. S. A. 98 (2001), 9648–9653.
    • (2001) Proc. Natl. Acad. Sci. U. S. A. , vol.98 , pp. 9648-9653
    • Matern, H.T.1
  • 63
    • 17644416413 scopus 로고    scopus 로고
    • Dimerization of the exocyst protein Sec6p and its interaction with the t-SNARE Sec9p
    • Sivaram, M.V., et al. Dimerization of the exocyst protein Sec6p and its interaction with the t-SNARE Sec9p. Biochemistry 44 (2005), 6302–6311.
    • (2005) Biochemistry , vol.44 , pp. 6302-6311
    • Sivaram, M.V.1
  • 64
    • 84884239046 scopus 로고    scopus 로고
    • The synaptobrevin homologue Snc2p recruits the exocyst to secretory vesicles by binding to Sec6p
    • Shen, D., et al. The synaptobrevin homologue Snc2p recruits the exocyst to secretory vesicles by binding to Sec6p. J. Cell Biol. 202 (2013), 509–526.
    • (2013) J. Cell Biol. , vol.202 , pp. 509-526
    • Shen, D.1
  • 65
    • 85051591378 scopus 로고    scopus 로고
    • Large protein complex production using the SmartBac system – strategies and applications
    • Published online November 14, 2017
    • Zhai, Y., et al. Large protein complex production using the SmartBac system – strategies and applications. bioRxiv, 2017, 10.1101/219246 Published online November 14, 2017.
    • (2017) bioRxiv
    • Zhai, Y.1
  • 66
    • 84877039406 scopus 로고    scopus 로고
    • Detection and characterization of protein interactions in vivo by a simple live-cell imaging method
    • Gallego, O., et al. Detection and characterization of protein interactions in vivo by a simple live-cell imaging method. PLoS One, 8, 2013, e62195.
    • (2013) PLoS One , vol.8
    • Gallego, O.1
  • 67
    • 80054769466 scopus 로고    scopus 로고
    • Modeling of proteins and their assemblies with the integrative modeling platform
    • Webb, B., et al. Modeling of proteins and their assemblies with the integrative modeling platform. Methods Mol. Biol. 781 (2011), 377–397.
    • (2011) Methods Mol. Biol. , vol.781 , pp. 377-397
    • Webb, B.1
  • 68
    • 84863276609 scopus 로고    scopus 로고
    • UCSF Chimera, MODELLER, and IMP: an integrated modeling system
    • Yang, Z., et al. UCSF Chimera, MODELLER, and IMP: an integrated modeling system. J. Struct. Biol. 179 (2012), 269–278.
    • (2012) J. Struct. Biol. , vol.179 , pp. 269-278
    • Yang, Z.1
  • 69
    • 84866078359 scopus 로고    scopus 로고
    • Prevention of overfitting in cryo-EM structure determination
    • Scheres, S.H., Chen, S., Prevention of overfitting in cryo-EM structure determination. Nat. Methods 9 (2012), 853–854.
    • (2012) Nat. Methods , vol.9 , pp. 853-854
    • Scheres, S.H.1    Chen, S.2
  • 70
    • 0036629335 scopus 로고    scopus 로고
    • Vesicle tethering complexes in membrane traffic
    • Whyte, J.R., Munro, S., Vesicle tethering complexes in membrane traffic. J. Cell Sci. 115 (2002), 2627–2637.
    • (2002) J. Cell Sci. , vol.115 , pp. 2627-2637
    • Whyte, J.R.1    Munro, S.2
  • 71
    • 22944450057 scopus 로고    scopus 로고
    • Lethal giant larvae proteins interact with the exocyst complex and are involved in polarized exocytosis
    • Zhang, X., et al. Lethal giant larvae proteins interact with the exocyst complex and are involved in polarized exocytosis. J. Cell Biol. 170 (2005), 273–283.
    • (2005) J. Cell Biol. , vol.170 , pp. 273-283
    • Zhang, X.1
  • 72
    • 84855884898 scopus 로고    scopus 로고
    • Regulation of exocytosis by the exocyst subunit Sec6 and the SM protein Sec1
    • Morgera, F., et al. Regulation of exocytosis by the exocyst subunit Sec6 and the SM protein Sec1. Mol. Biol. Cell 23 (2012), 337–346.
    • (2012) Mol. Biol. Cell , vol.23 , pp. 337-346
    • Morgera, F.1
  • 73
    • 84945314264 scopus 로고    scopus 로고
    • The exocyst subunit Sec6 interacts with assembled exocytic SNARE complexes
    • Dubuke, M.L., et al. The exocyst subunit Sec6 interacts with assembled exocytic SNARE complexes. J. Biol. Chem. 290 (2015), 28245–28256.
    • (2015) J. Biol. Chem. , vol.290 , pp. 28245-28256
    • Dubuke, M.L.1
  • 74
    • 76049118573 scopus 로고    scopus 로고
    • The Exo70 subunit of the exocyst is an effector for both Cdc42 and Rho3 function in polarized exocytosis
    • Wu, H., et al. The Exo70 subunit of the exocyst is an effector for both Cdc42 and Rho3 function in polarized exocytosis. Mol. Biol. Cell 21 (2010), 430–442.
    • (2010) Mol. Biol. Cell , vol.21 , pp. 430-442
    • Wu, H.1
  • 75
    • 85010423721 scopus 로고    scopus 로고
    • Sec3 promotes the initial binary t-SNARE complex assembly and membrane fusion
    • 14236
    • Yue, P., et al. Sec3 promotes the initial binary t-SNARE complex assembly and membrane fusion. Nat. Commun., 8, 2017 14236.
    • (2017) Nat. Commun. , vol.8
    • Yue, P.1
  • 76
    • 47849125967 scopus 로고    scopus 로고
    • A multidimensional chromatography technology for in-depth phosphoproteome analysis
    • Albuquerque, C.P., et al. A multidimensional chromatography technology for in-depth phosphoproteome analysis. Mol. Cell. Proteom. 7 (2008), 1389–1396.
    • (2008) Mol. Cell. Proteom. , vol.7 , pp. 1389-1396
    • Albuquerque, C.P.1
  • 77
    • 70349546862 scopus 로고    scopus 로고
    • Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution
    • Holt, L.J., et al. Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325 (2009), 1682–1686.
    • (2009) Science , vol.325 , pp. 1682-1686
    • Holt, L.J.1
  • 78
    • 84880620028 scopus 로고    scopus 로고
    • Mitotic phosphorylation of Exo84 disrupts exocyst assembly and arrests cell growth
    • Luo, G., et al. Mitotic phosphorylation of Exo84 disrupts exocyst assembly and arrests cell growth. J. Cell Biol. 202 (2013), 97–111.
    • (2013) J. Cell Biol. , vol.202 , pp. 97-111
    • Luo, G.1
  • 79
    • 84863615537 scopus 로고    scopus 로고
    • Proteasomal degradation resolves competition between cell polarization and cellular wound healing
    • Kono, K., et al. Proteasomal degradation resolves competition between cell polarization and cellular wound healing. Cell 150 (2012), 151–164.
    • (2012) Cell , vol.150 , pp. 151-164
    • Kono, K.1
  • 80
    • 84978718885 scopus 로고    scopus 로고
    • Molecular architecture of the complete COG tethering complex
    • Ha, J.Y., et al. Molecular architecture of the complete COG tethering complex. Nat. Struct. Mol. Biol. 23 (2016), 758–760.
    • (2016) Nat. Struct. Mol. Biol. , vol.23 , pp. 758-760
    • Ha, J.Y.1
  • 81
    • 71149117138 scopus 로고    scopus 로고
    • A structure-based mechanism for vesicle capture by the multisubunit tethering complex Dsl1
    • Ren, Y., et al. A structure-based mechanism for vesicle capture by the multisubunit tethering complex Dsl1. Cell 139 (2009), 1119–1129.
    • (2009) Cell , vol.139 , pp. 1119-1129
    • Ren, Y.1
  • 82
    • 84953280683 scopus 로고    scopus 로고
    • Endosidin2 targets conserved exocyst complex subunit EXO70 to inhibit exocytosis
    • Zhang, C., et al. Endosidin2 targets conserved exocyst complex subunit EXO70 to inhibit exocytosis. Proc. Natl. Acad. Sci. U. S. A. 113 (2016), E41–E50.
    • (2016) Proc. Natl. Acad. Sci. U. S. A. , vol.113 , pp. E41-E50
    • Zhang, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.