-
1
-
-
0033130103
-
Transport-vesicle targeting: tethers before SNAREs
-
Pfeffer, S.R., Transport-vesicle targeting: tethers before SNAREs. Nat. Cell Biol. 1 (1999), E17–E22.
-
(1999)
Nat. Cell Biol.
, vol.1
, pp. E17-E22
-
-
Pfeffer, S.R.1
-
2
-
-
78049368534
-
Tethering factors as organizers of intracellular vesicular traffic
-
Yu, I.M., Hughson, F.M., Tethering factors as organizers of intracellular vesicular traffic. Annu. Rev. Cell Dev. Biol. 26 (2010), 137–156.
-
(2010)
Annu. Rev. Cell Dev. Biol.
, vol.26
, pp. 137-156
-
-
Yu, I.M.1
Hughson, F.M.2
-
3
-
-
84960155907
-
Finding the Golgi: golgin coiled-coil proteins show the way
-
Gillingham, A.K., Munro, S., Finding the Golgi: golgin coiled-coil proteins show the way. Trends Cell Biol. 26 (2016), 399–408.
-
(2016)
Trends Cell Biol.
, vol.26
, pp. 399-408
-
-
Gillingham, A.K.1
Munro, S.2
-
4
-
-
85045751197
-
Membrane tethering complexes in the endosomal system
-
Spang, A., Membrane tethering complexes in the endosomal system. Front. Cell Dev. Biol., 4, 2016, 35.
-
(2016)
Front. Cell Dev. Biol.
, vol.4
, pp. 35
-
-
Spang, A.1
-
5
-
-
84979202073
-
TRAPP complexes in secretion and autophagy
-
Kim, J.J., et al. TRAPP complexes in secretion and autophagy. Front. Cell Dev. Biol., 4, 2016, 20.
-
(2016)
Front. Cell Dev. Biol.
, vol.4
, pp. 20
-
-
Kim, J.J.1
-
6
-
-
84911118605
-
Are all multisubunit tethering complexes bona fide tethers?
-
Brunet, S., Sacher, M., Are all multisubunit tethering complexes bona fide tethers?. Traffic 15 (2014), 1282–1287.
-
(2014)
Traffic
, vol.15
, pp. 1282-1287
-
-
Brunet, S.1
Sacher, M.2
-
7
-
-
77957020175
-
Membrane fusion: five lipids, four SNAREs, three chaperones, two nucleotides, and a Rab, all dancing in a ring on yeast vacuoles
-
Wickner, W., Membrane fusion: five lipids, four SNAREs, three chaperones, two nucleotides, and a Rab, all dancing in a ring on yeast vacuoles. Annu. Rev. Cell Dev. Biol. 26 (2010), 115–136.
-
(2010)
Annu. Rev. Cell Dev. Biol.
, vol.26
, pp. 115-136
-
-
Wickner, W.1
-
8
-
-
84984653623
-
An endosomal tether undergoes an entropic collapse to bring vesicles together
-
Murray, D.H., et al. An endosomal tether undergoes an entropic collapse to bring vesicles together. Nature 537 (2016), 107–111.
-
(2016)
Nature
, vol.537
, pp. 107-111
-
-
Murray, D.H.1
-
9
-
-
84911361850
-
The role of Sec3p in secretory vesicle targeting and exocyst complex assembly
-
Luo, G., et al. The role of Sec3p in secretory vesicle targeting and exocyst complex assembly. Mol. Biol. Cell 25 (2014), 3813–3822.
-
(2014)
Mol. Biol. Cell
, vol.25
, pp. 3813-3822
-
-
Luo, G.1
-
10
-
-
84890884015
-
Tethering the assembly of SNARE complexes
-
Hong, W., Lev, S., Tethering the assembly of SNARE complexes. Trends Cell Biol. 24 (2014), 35–43.
-
(2014)
Trends Cell Biol.
, vol.24
, pp. 35-43
-
-
Hong, W.1
Lev, S.2
-
11
-
-
85011897383
-
The secret life of tethers: the role of tethering factors in SNARE complex regulation
-
Dubuke, M.L., Munson, M., The secret life of tethers: the role of tethering factors in SNARE complex regulation. Front. Cell Dev. Biol., 4, 2016, 42.
-
(2016)
Front. Cell Dev. Biol.
, vol.4
, pp. 42
-
-
Dubuke, M.L.1
Munson, M.2
-
12
-
-
77955050491
-
Structure and mechanism in membrane trafficking
-
Hughson, F.M., Reinisch, K.M., Structure and mechanism in membrane trafficking. Curr. Opin. Cell Biol. 22 (2010), 454–460.
-
(2010)
Curr. Opin. Cell Biol.
, vol.22
, pp. 454-460
-
-
Hughson, F.M.1
Reinisch, K.M.2
-
13
-
-
78549285917
-
Molecular organization of the COG vesicle tethering complex
-
Lees, J.A., et al. Molecular organization of the COG vesicle tethering complex. Nat. Struct. Mol. Biol. 17 (2010), 1292–1297.
-
(2010)
Nat. Struct. Mol. Biol.
, vol.17
, pp. 1292-1297
-
-
Lees, J.A.1
-
14
-
-
84857132605
-
Molecular architecture of the multisubunit homotypic fusion and vacuole protein sorting (HOPS) tethering complex
-
Brocker, C., et al. Molecular architecture of the multisubunit homotypic fusion and vacuole protein sorting (HOPS) tethering complex. Proc. Natl. Acad. Sci. U. S. A. 109 (2012), 1991–1996.
-
(2012)
Proc. Natl. Acad. Sci. U. S. A.
, vol.109
, pp. 1991-1996
-
-
Brocker, C.1
-
15
-
-
84978674897
-
CATCHR, HOPS and CORVET tethering complexes share a similar architecture
-
Chou, H.T., et al. CATCHR, HOPS and CORVET tethering complexes share a similar architecture. Nat. Struct. Mol. Biol. 23 (2016), 761–763.
-
(2016)
Nat. Struct. Mol. Biol.
, vol.23
, pp. 761-763
-
-
Chou, H.T.1
-
16
-
-
84954386257
-
Subunit connectivity, assembly determinants and architecture of the yeast exocyst complex
-
Heider, M.R., et al. Subunit connectivity, assembly determinants and architecture of the yeast exocyst complex. Nat. Struct. Mol. Biol. 23 (2016), 59–66.
-
(2016)
Nat. Struct. Mol. Biol.
, vol.23
, pp. 59-66
-
-
Heider, M.R.1
-
17
-
-
85042767185
-
Cryo-EM structure of the exocyst complex
-
Mei, K., et al. Cryo-EM structure of the exocyst complex. Nat. Struct. Mol. Biol. 25 (2018), 139–146.
-
(2018)
Nat. Struct. Mol. Biol.
, vol.25
, pp. 139-146
-
-
Mei, K.1
-
18
-
-
0018930046
-
Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway
-
Novick, P., et al. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21 (1980), 205–215.
-
(1980)
Cell
, vol.21
, pp. 205-215
-
-
Novick, P.1
-
19
-
-
0029843493
-
The exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae
-
TerBush, D.R., et al. The exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. EMBO J. 15 (1996), 6483–6494.
-
(1996)
EMBO J.
, vol.15
, pp. 6483-6494
-
-
TerBush, D.R.1
-
20
-
-
0033551705
-
Exo84p is an exocyst protein essential for secretion
-
Guo, W., et al. Exo84p is an exocyst protein essential for secretion. J. Biol. Chem. 274 (1999), 23558–23564.
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 23558-23564
-
-
Guo, W.1
-
21
-
-
84862268931
-
Exorcising the exocyst complex
-
Heider, M.R., Munson, M., Exorcising the exocyst complex. Traffic 13 (2012), 898–907.
-
(2012)
Traffic
, vol.13
, pp. 898-907
-
-
Heider, M.R.1
Munson, M.2
-
22
-
-
84888429837
-
Exocyst complexes multiple functions in plant cells secretory pathways
-
Zarsky, V., et al. Exocyst complexes multiple functions in plant cells secretory pathways. Curr. Opin. Plant Biol. 16 (2013), 726–733.
-
(2013)
Curr. Opin. Plant Biol.
, vol.16
, pp. 726-733
-
-
Zarsky, V.1
-
23
-
-
85007028318
-
Diverse functions and signal transduction of the exocyst complex in tumor cells
-
Tanaka, T., et al. Diverse functions and signal transduction of the exocyst complex in tumor cells. J. Cell Physiol. 232 (2017), 939–957.
-
(2017)
J. Cell Physiol.
, vol.232
, pp. 939-957
-
-
Tanaka, T.1
-
24
-
-
85036655453
-
Polarized exocytosis
-
Published online December 1, 2017
-
Zeng, J., et al. Polarized exocytosis. Cold Spring Harb. Perspect. Biol., 2017, 10.1101/cshperspect.a027870 Published online December 1, 2017.
-
(2017)
Cold Spring Harb. Perspect. Biol.
-
-
Zeng, J.1
-
25
-
-
85009705123
-
The exocyst complex in health and disease
-
Martin-Urdiroz, M., et al. The exocyst complex in health and disease. Front. Cell Dev. Biol., 4, 2016, 24.
-
(2016)
Front. Cell Dev. Biol.
, vol.4
, pp. 24
-
-
Martin-Urdiroz, M.1
-
26
-
-
0344875517
-
Sec3p is needed for the spatial regulation of secretion and for the inheritance of the cortical endoplasmic reticulum
-
Wiederkehr, A., et al. Sec3p is needed for the spatial regulation of secretion and for the inheritance of the cortical endoplasmic reticulum. Mol. Biol. Cell 14 (2003), 4770–4782.
-
(2003)
Mol. Biol. Cell
, vol.14
, pp. 4770-4782
-
-
Wiederkehr, A.1
-
27
-
-
84949201120
-
Rapid depletion of budding yeast proteins via the fusion of an auxin-inducible degron (AID)
-
20.9.1-20.9.16
-
Nishimura, K., Kanemaki, M.T., Rapid depletion of budding yeast proteins via the fusion of an auxin-inducible degron (AID). Curr. Protoc. Cell Biol., 64, 2014 20.9.1-20.9.16.
-
(2014)
Curr. Protoc. Cell Biol.
, vol.64
-
-
Nishimura, K.1
Kanemaki, M.T.2
-
28
-
-
33847648364
-
Control systems for membrane fusion in the ancestral eukaryote; evolution of tethering complexes and SM proteins
-
Koumandou, V.L., et al. Control systems for membrane fusion in the ancestral eukaryote; evolution of tethering complexes and SM proteins. BMC Evol. Biol., 7, 2007, 29.
-
(2007)
BMC Evol. Biol.
, vol.7
, pp. 29
-
-
Koumandou, V.L.1
-
29
-
-
84973352485
-
Tracing the archaeal origins of eukaryotic membrane-trafficking system building blocks
-
Klinger, C.M., et al. Tracing the archaeal origins of eukaryotic membrane-trafficking system building blocks. Mol. Biol. Evol. 33 (2016), 1528–1541.
-
(2016)
Mol. Biol. Evol.
, vol.33
, pp. 1528-1541
-
-
Klinger, C.M.1
-
30
-
-
84871888382
-
Evolution of the land plant exocyst complexes
-
159
-
Cvrčková F., et al. Evolution of the land plant exocyst complexes. Front. Plant Sci. 3 (2012), 1–13 159.
-
(2012)
Front. Plant Sci.
, vol.3
, pp. 1-13
-
-
Cvrčková, F.1
-
31
-
-
85014748365
-
Tethering complexes in the Arabidopsis endomembrane system
-
Vukasinovic, N., Zarsky, V., Tethering complexes in the Arabidopsis endomembrane system. Front. Cell Dev. Biol., 4, 2016, 46.
-
(2016)
Front. Cell Dev. Biol.
, vol.4
, pp. 46
-
-
Vukasinovic, N.1
Zarsky, V.2
-
32
-
-
85010977077
-
The trypanosome exocyst: a conserved structure revealing a new role in endocytosis
-
Boehm, C.M., et al. The trypanosome exocyst: a conserved structure revealing a new role in endocytosis. PLoS Pathog., 13, 2017, e1006063.
-
(2017)
PLoS Pathog.
, vol.13
-
-
Boehm, C.M.1
-
33
-
-
33745841364
-
The exocyst defrocked, a framework of rods revealed
-
Munson, M., Novick, P., The exocyst defrocked, a framework of rods revealed. Nat. Struct. Mol. Biol. 13 (2006), 577–581.
-
(2006)
Nat. Struct. Mol. Biol.
, vol.13
, pp. 577-581
-
-
Munson, M.1
Novick, P.2
-
34
-
-
64049100409
-
Sec6p anchors the assembled exocyst complex at sites of secretion
-
Songer, J.A., Munson, M., Sec6p anchors the assembled exocyst complex at sites of secretion. Mol. Biol. Cell 20 (2009), 973–982.
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 973-982
-
-
Songer, J.A.1
Munson, M.2
-
35
-
-
10344263403
-
Vesicles carry most exocyst subunits to exocytic sites marked by the remaining two subunits, Sec3p and Exo70p
-
Boyd, C., et al. Vesicles carry most exocyst subunits to exocytic sites marked by the remaining two subunits, Sec3p and Exo70p. J. Cell Biol. 167 (2004), 889–901.
-
(2004)
J. Cell Biol.
, vol.167
, pp. 889-901
-
-
Boyd, C.1
-
36
-
-
84957667091
-
Tracking individual secretory vesicles during exocytosis reveals an ordered and regulated process
-
Donovan, K.W., Bretscher, A., Tracking individual secretory vesicles during exocytosis reveals an ordered and regulated process. J. Cell Biol. 210 (2015), 181–189.
-
(2015)
J. Cell Biol.
, vol.210
, pp. 181-189
-
-
Donovan, K.W.1
Bretscher, A.2
-
37
-
-
23944480474
-
Rho GTPase regulation of exocytosis in yeast is independent of GTP hydrolysis and polarization of the exocyst complex
-
Roumanie, O., et al. Rho GTPase regulation of exocytosis in yeast is independent of GTP hydrolysis and polarization of the exocyst complex. J. Cell Biol. 170 (2005), 583–594.
-
(2005)
J. Cell Biol.
, vol.170
, pp. 583-594
-
-
Roumanie, O.1
-
38
-
-
85010677165
-
The in vivo architecture of the exocyst provides structural basis for exocytosis
-
400-412 e18
-
Picco, A., et al. The in vivo architecture of the exocyst provides structural basis for exocytosis. Cell, 168, 2017 400-412 e18.
-
(2017)
Cell
, vol.168
-
-
Picco, A.1
-
39
-
-
17244373188
-
Sec6 mutations and the Drosophila exocyst complex
-
Murthy, M., et al. Sec6 mutations and the Drosophila exocyst complex. J. Cell Sci. 118 (2005), 1139–1150.
-
(2005)
J. Cell Sci.
, vol.118
, pp. 1139-1150
-
-
Murthy, M.1
-
40
-
-
78651488777
-
RalB and the exocyst mediate the cellular starvation response by direct activation of autophagosome assembly
-
Bodemann, B.O., et al. RalB and the exocyst mediate the cellular starvation response by direct activation of autophagosome assembly. Cell 144 (2011), 253–267.
-
(2011)
Cell
, vol.144
, pp. 253-267
-
-
Bodemann, B.O.1
-
41
-
-
84885385036
-
Arabidopsis exocyst subcomplex containing subunit EXO70B1 is involved in autophagy-related transport to the vacuole
-
Kulich, I., et al. Arabidopsis exocyst subcomplex containing subunit EXO70B1 is involved in autophagy-related transport to the vacuole. Traffic 14 (2013), 1155–1165.
-
(2013)
Traffic
, vol.14
, pp. 1155-1165
-
-
Kulich, I.1
-
42
-
-
84901049925
-
The Neurospora crassa exocyst complex tethers Spitzenkorper vesicles to the apical plasma membrane during polarized growth
-
Riquelme, M., et al. The Neurospora crassa exocyst complex tethers Spitzenkorper vesicles to the apical plasma membrane during polarized growth. Mol. Biol. Cell 25 (2014), 1312–1326.
-
(2014)
Mol. Biol. Cell
, vol.25
, pp. 1312-1326
-
-
Riquelme, M.1
-
43
-
-
85043596164
-
Probing functional changes in exocyst configuration with monoclonal antibodies
-
Inamdar, S.M., et al. Probing functional changes in exocyst configuration with monoclonal antibodies. Front. Cell Dev. Biol., 4, 2016, 51.
-
(2016)
Front. Cell Dev. Biol.
, vol.4
, pp. 51
-
-
Inamdar, S.M.1
-
44
-
-
0032103420
-
Subunit composition, protein interactions, and structures of the mammalian brain sec6/8 complex and septin filaments
-
Hsu, S.C., et al. Subunit composition, protein interactions, and structures of the mammalian brain sec6/8 complex and septin filaments. Neuron 20 (1998), 1111–1122.
-
(1998)
Neuron
, vol.20
, pp. 1111-1122
-
-
Hsu, S.C.1
-
45
-
-
28544432477
-
The structures of exocyst subunit Exo70p and the Exo84p C-terminal domains reveal a common motif
-
Dong, G., et al. The structures of exocyst subunit Exo70p and the Exo84p C-terminal domains reveal a common motif. Nat. Struct. Mol. Biol. 12 (2005), 1094–1100.
-
(2005)
Nat. Struct. Mol. Biol.
, vol.12
, pp. 1094-1100
-
-
Dong, G.1
-
46
-
-
33744933711
-
The structure of the exocyst subunit Sec6p defines a conserved architecture with diverse roles
-
Sivaram, M.V., et al. The structure of the exocyst subunit Sec6p defines a conserved architecture with diverse roles. Nat. Struct. Mol. Biol. 13 (2006), 555–556.
-
(2006)
Nat. Struct. Mol. Biol.
, vol.13
, pp. 555-556
-
-
Sivaram, M.V.1
-
47
-
-
27144456598
-
Sec15 interacts with Rab11 via a novel domain and affects Rab11 localization in vivo
-
Wu, S., et al. Sec15 interacts with Rab11 via a novel domain and affects Rab11 localization in vivo. Nat. Struct. Mol. Biol. 12 (2005), 879–885.
-
(2005)
Nat. Struct. Mol. Biol.
, vol.12
, pp. 879-885
-
-
Wu, S.1
-
48
-
-
85010058347
-
Crystal structure of Sec10, a subunit of the exocyst complex
-
40909
-
Chen, J., et al. Crystal structure of Sec10, a subunit of the exocyst complex. Sci. Rep., 7, 2017 40909.
-
(2017)
Sci. Rep.
, vol.7
-
-
Chen, J.1
-
49
-
-
84988008301
-
Distinct roles for the N- and C-terminal regions of M-Sec in plasma membrane deformation during tunneling nanotube formation
-
33548
-
Kimura, S., et al. Distinct roles for the N- and C-terminal regions of M-Sec in plasma membrane deformation during tunneling nanotube formation. Sci. Rep., 6, 2016 33548.
-
(2016)
Sci. Rep.
, vol.6
-
-
Kimura, S.1
-
50
-
-
69449100200
-
Structural basis for a human glycosylation disorder caused by mutation of the COG4 gene
-
Richardson, B.C., et al. Structural basis for a human glycosylation disorder caused by mutation of the COG4 gene. Proc. Natl. Acad. Sci. U. S. A. 106 (2009), 13329–13334.
-
(2009)
Proc. Natl. Acad. Sci. U. S. A.
, vol.106
, pp. 13329-13334
-
-
Richardson, B.C.1
-
51
-
-
59649118155
-
Tip20p reaches out to Dsl1p to tether membranes
-
Munson, M., Tip20p reaches out to Dsl1p to tether membranes. Nat. Struct. Mol. Biol. 16 (2009), 100–102.
-
(2009)
Nat. Struct. Mol. Biol.
, vol.16
, pp. 100-102
-
-
Munson, M.1
-
52
-
-
33644548665
-
Structural basis for myosin V discrimination between distinct cargoes
-
Pashkova, N., et al. Structural basis for myosin V discrimination between distinct cargoes. EMBO J. 25 (2006), 693–700.
-
(2006)
EMBO J.
, vol.25
, pp. 693-700
-
-
Pashkova, N.1
-
53
-
-
83455229807
-
Myosin V transports secretory vesicles via a Rab GTPase cascade and interaction with the exocyst complex
-
Jin, Y., et al. Myosin V transports secretory vesicles via a Rab GTPase cascade and interaction with the exocyst complex. Dev. Cell 21 (2011), 1156–1170.
-
(2011)
Dev. Cell
, vol.21
, pp. 1156-1170
-
-
Jin, Y.1
-
54
-
-
80054056038
-
The crystal structure of a Munc13 C-terminal module exhibits a remarkable similarity to vesicle tethering factors
-
Li, W., et al. The crystal structure of a Munc13 C-terminal module exhibits a remarkable similarity to vesicle tethering factors. Structure 19 (2011), 1443–1455.
-
(2011)
Structure
, vol.19
, pp. 1443-1455
-
-
Li, W.1
-
55
-
-
21844443829
-
Exo84 and Sec5 are competitive regulatory Sec6/8 effectors to the RalA GTPase
-
Jin, R., et al. Exo84 and Sec5 are competitive regulatory Sec6/8 effectors to the RalA GTPase. EMBO J. 24 (2005), 2064–2074.
-
(2005)
EMBO J.
, vol.24
, pp. 2064-2074
-
-
Jin, R.1
-
56
-
-
0037699926
-
Structure of the GTPase-binding domain of Sec5 and elucidation of its Ral binding site
-
Mott, H.R., et al. Structure of the GTPase-binding domain of Sec5 and elucidation of its Ral binding site. J. Biol. Chem. 278 (2003), 17053–17059.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 17053-17059
-
-
Mott, H.R.1
-
57
-
-
0038602702
-
Structural basis of the interaction between RalA and Sec5, a subunit of the sec6/8 complex
-
Fukai, S., et al. Structural basis of the interaction between RalA and Sec5, a subunit of the sec6/8 complex. EMBO J. 22 (2003), 3267–3278.
-
(2003)
EMBO J.
, vol.22
, pp. 3267-3278
-
-
Fukai, S.1
-
58
-
-
77951227637
-
Structure-function study of the N-terminal domain of exocyst subunit Sec3
-
Baek, K., et al. Structure-function study of the N-terminal domain of exocyst subunit Sec3. J. Biol. Chem. 285 (2010), 10424–10433.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 10424-10433
-
-
Baek, K.1
-
59
-
-
76349093365
-
Structural basis for the Rho- and phosphoinositide-dependent localization of the exocyst subunit Sec3
-
Yamashita, M., et al. Structural basis for the Rho- and phosphoinositide-dependent localization of the exocyst subunit Sec3. Nat. Struct. Mol. Biol. 17 (2010), 180–186.
-
(2010)
Nat. Struct. Mol. Biol.
, vol.17
, pp. 180-186
-
-
Yamashita, M.1
-
60
-
-
0035145498
-
Purification and characterization of yeast exocyst complex
-
Terbush, D.R., et al. Purification and characterization of yeast exocyst complex. Methods Enzymol. 329 (2001), 100–110.
-
(2001)
Methods Enzymol.
, vol.329
, pp. 100-110
-
-
Terbush, D.R.1
-
61
-
-
84932108013
-
Architectures of multisubunit complexes revealed by a visible immunoprecipitation assay using fluorescent fusion proteins
-
Katoh, Y., et al. Architectures of multisubunit complexes revealed by a visible immunoprecipitation assay using fluorescent fusion proteins. J. Cell Sci. 128 (2015), 2351–2362.
-
(2015)
J. Cell Sci.
, vol.128
, pp. 2351-2362
-
-
Katoh, Y.1
-
62
-
-
0035859819
-
The Sec6/8 complex in mammalian cells: characterization of mammalian Sec3, subunit interactions, and expression of subunits in polarized cells
-
Matern, H.T., et al. The Sec6/8 complex in mammalian cells: characterization of mammalian Sec3, subunit interactions, and expression of subunits in polarized cells. Proc. Natl. Acad. Sci. U. S. A. 98 (2001), 9648–9653.
-
(2001)
Proc. Natl. Acad. Sci. U. S. A.
, vol.98
, pp. 9648-9653
-
-
Matern, H.T.1
-
63
-
-
17644416413
-
Dimerization of the exocyst protein Sec6p and its interaction with the t-SNARE Sec9p
-
Sivaram, M.V., et al. Dimerization of the exocyst protein Sec6p and its interaction with the t-SNARE Sec9p. Biochemistry 44 (2005), 6302–6311.
-
(2005)
Biochemistry
, vol.44
, pp. 6302-6311
-
-
Sivaram, M.V.1
-
64
-
-
84884239046
-
The synaptobrevin homologue Snc2p recruits the exocyst to secretory vesicles by binding to Sec6p
-
Shen, D., et al. The synaptobrevin homologue Snc2p recruits the exocyst to secretory vesicles by binding to Sec6p. J. Cell Biol. 202 (2013), 509–526.
-
(2013)
J. Cell Biol.
, vol.202
, pp. 509-526
-
-
Shen, D.1
-
65
-
-
85051591378
-
Large protein complex production using the SmartBac system – strategies and applications
-
Published online November 14, 2017
-
Zhai, Y., et al. Large protein complex production using the SmartBac system – strategies and applications. bioRxiv, 2017, 10.1101/219246 Published online November 14, 2017.
-
(2017)
bioRxiv
-
-
Zhai, Y.1
-
66
-
-
84877039406
-
Detection and characterization of protein interactions in vivo by a simple live-cell imaging method
-
Gallego, O., et al. Detection and characterization of protein interactions in vivo by a simple live-cell imaging method. PLoS One, 8, 2013, e62195.
-
(2013)
PLoS One
, vol.8
-
-
Gallego, O.1
-
67
-
-
80054769466
-
Modeling of proteins and their assemblies with the integrative modeling platform
-
Webb, B., et al. Modeling of proteins and their assemblies with the integrative modeling platform. Methods Mol. Biol. 781 (2011), 377–397.
-
(2011)
Methods Mol. Biol.
, vol.781
, pp. 377-397
-
-
Webb, B.1
-
68
-
-
84863276609
-
UCSF Chimera, MODELLER, and IMP: an integrated modeling system
-
Yang, Z., et al. UCSF Chimera, MODELLER, and IMP: an integrated modeling system. J. Struct. Biol. 179 (2012), 269–278.
-
(2012)
J. Struct. Biol.
, vol.179
, pp. 269-278
-
-
Yang, Z.1
-
69
-
-
84866078359
-
Prevention of overfitting in cryo-EM structure determination
-
Scheres, S.H., Chen, S., Prevention of overfitting in cryo-EM structure determination. Nat. Methods 9 (2012), 853–854.
-
(2012)
Nat. Methods
, vol.9
, pp. 853-854
-
-
Scheres, S.H.1
Chen, S.2
-
70
-
-
0036629335
-
Vesicle tethering complexes in membrane traffic
-
Whyte, J.R., Munro, S., Vesicle tethering complexes in membrane traffic. J. Cell Sci. 115 (2002), 2627–2637.
-
(2002)
J. Cell Sci.
, vol.115
, pp. 2627-2637
-
-
Whyte, J.R.1
Munro, S.2
-
71
-
-
22944450057
-
Lethal giant larvae proteins interact with the exocyst complex and are involved in polarized exocytosis
-
Zhang, X., et al. Lethal giant larvae proteins interact with the exocyst complex and are involved in polarized exocytosis. J. Cell Biol. 170 (2005), 273–283.
-
(2005)
J. Cell Biol.
, vol.170
, pp. 273-283
-
-
Zhang, X.1
-
72
-
-
84855884898
-
Regulation of exocytosis by the exocyst subunit Sec6 and the SM protein Sec1
-
Morgera, F., et al. Regulation of exocytosis by the exocyst subunit Sec6 and the SM protein Sec1. Mol. Biol. Cell 23 (2012), 337–346.
-
(2012)
Mol. Biol. Cell
, vol.23
, pp. 337-346
-
-
Morgera, F.1
-
73
-
-
84945314264
-
The exocyst subunit Sec6 interacts with assembled exocytic SNARE complexes
-
Dubuke, M.L., et al. The exocyst subunit Sec6 interacts with assembled exocytic SNARE complexes. J. Biol. Chem. 290 (2015), 28245–28256.
-
(2015)
J. Biol. Chem.
, vol.290
, pp. 28245-28256
-
-
Dubuke, M.L.1
-
74
-
-
76049118573
-
The Exo70 subunit of the exocyst is an effector for both Cdc42 and Rho3 function in polarized exocytosis
-
Wu, H., et al. The Exo70 subunit of the exocyst is an effector for both Cdc42 and Rho3 function in polarized exocytosis. Mol. Biol. Cell 21 (2010), 430–442.
-
(2010)
Mol. Biol. Cell
, vol.21
, pp. 430-442
-
-
Wu, H.1
-
75
-
-
85010423721
-
Sec3 promotes the initial binary t-SNARE complex assembly and membrane fusion
-
14236
-
Yue, P., et al. Sec3 promotes the initial binary t-SNARE complex assembly and membrane fusion. Nat. Commun., 8, 2017 14236.
-
(2017)
Nat. Commun.
, vol.8
-
-
Yue, P.1
-
76
-
-
47849125967
-
A multidimensional chromatography technology for in-depth phosphoproteome analysis
-
Albuquerque, C.P., et al. A multidimensional chromatography technology for in-depth phosphoproteome analysis. Mol. Cell. Proteom. 7 (2008), 1389–1396.
-
(2008)
Mol. Cell. Proteom.
, vol.7
, pp. 1389-1396
-
-
Albuquerque, C.P.1
-
77
-
-
70349546862
-
Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution
-
Holt, L.J., et al. Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325 (2009), 1682–1686.
-
(2009)
Science
, vol.325
, pp. 1682-1686
-
-
Holt, L.J.1
-
78
-
-
84880620028
-
Mitotic phosphorylation of Exo84 disrupts exocyst assembly and arrests cell growth
-
Luo, G., et al. Mitotic phosphorylation of Exo84 disrupts exocyst assembly and arrests cell growth. J. Cell Biol. 202 (2013), 97–111.
-
(2013)
J. Cell Biol.
, vol.202
, pp. 97-111
-
-
Luo, G.1
-
79
-
-
84863615537
-
Proteasomal degradation resolves competition between cell polarization and cellular wound healing
-
Kono, K., et al. Proteasomal degradation resolves competition between cell polarization and cellular wound healing. Cell 150 (2012), 151–164.
-
(2012)
Cell
, vol.150
, pp. 151-164
-
-
Kono, K.1
-
80
-
-
84978718885
-
Molecular architecture of the complete COG tethering complex
-
Ha, J.Y., et al. Molecular architecture of the complete COG tethering complex. Nat. Struct. Mol. Biol. 23 (2016), 758–760.
-
(2016)
Nat. Struct. Mol. Biol.
, vol.23
, pp. 758-760
-
-
Ha, J.Y.1
-
81
-
-
71149117138
-
A structure-based mechanism for vesicle capture by the multisubunit tethering complex Dsl1
-
Ren, Y., et al. A structure-based mechanism for vesicle capture by the multisubunit tethering complex Dsl1. Cell 139 (2009), 1119–1129.
-
(2009)
Cell
, vol.139
, pp. 1119-1129
-
-
Ren, Y.1
-
82
-
-
84953280683
-
Endosidin2 targets conserved exocyst complex subunit EXO70 to inhibit exocytosis
-
Zhang, C., et al. Endosidin2 targets conserved exocyst complex subunit EXO70 to inhibit exocytosis. Proc. Natl. Acad. Sci. U. S. A. 113 (2016), E41–E50.
-
(2016)
Proc. Natl. Acad. Sci. U. S. A.
, vol.113
, pp. E41-E50
-
-
Zhang, C.1
|