-
1
-
-
67650999875
-
The basics of epithelial-mesenchymal transition
-
[CrossRef][PubMed]
-
Kalluri, R.; Weinberg, R.A. The basics of epithelial-mesenchymal transition. J. Clin. Investig. 2009, 119, 1420–1428. [CrossRef][PubMed]
-
(2009)
J. Clin. Investig
, vol.119
, pp. 1420-1428
-
-
Kalluri, R.1
Weinberg, R.A.2
-
2
-
-
70450198396
-
Epithelial-mesenchymal transitions in development and disease
-
[PubMed]
-
Thiery, J.P.; Acloque, H.; Huang, R.Y.; Nieto, M.A. Epithelial-mesenchymal transitions in development and disease. Cell 2009, 139, 871–890. [PubMed]
-
(2009)
Cell
, vol.139
, pp. 871-890
-
-
Thiery, J.P.1
Acloque, H.2
Huang, R.Y.3
Nieto, M.A.4
-
3
-
-
77955487833
-
The molecular mediators of type 2 epithelial to mesenchymal transition (EMT) and their role in renal pathophysiology.
-
[CrossRef][PubMed]
-
Burns, W.C.; Thomas, M.C. The molecular mediators of type 2 epithelial to mesenchymal transition (EMT) and their role in renal pathophysiology. Expert Rev. Mol. Med. 2010, 12, e17. [CrossRef][PubMed]
-
(2010)
Expert Rev. Mol. Med
, vol.12
-
-
Burns, W.C.1
Thomas, M.C.2
-
4
-
-
84908154922
-
The EMT universe: Space between cancer cell dissemination and metastasis initiation.
-
[CrossRef][PubMed]
-
Ombrato, L.; Malanchi, I. The EMT universe: Space between cancer cell dissemination and metastasis initiation. Crit. Rev. Oncog. 2014, 19, 349–361. [CrossRef][PubMed]
-
(2014)
Crit. Rev. Oncog
, vol.19
, pp. 349-361
-
-
Ombrato, L.1
Malanchi, I.2
-
5
-
-
77957551870
-
A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts
-
[CrossRef][PubMed]
-
Li, R.; Liang, J.; Ni, S.; Zhou, T.; Qing, X.; Li, H.; He, W.; Chen, J.; Li, F.; Zhuang, Q. et al. A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell 2010, 7, 51–63. [CrossRef][PubMed]
-
(2010)
Cell Stem Cell
, vol.7
, pp. 51-63
-
-
Li, R.1
Liang, J.2
Ni, S.3
Zhou, T.4
Qing, X.5
Li, H.6
He, W.7
Chen, J.8
Li, F.9
Zhuang, Q.10
-
6
-
-
33747195353
-
Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
-
[CrossRef][PubMed]
-
Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126, 663–676. [CrossRef][PubMed]
-
(2006)
Cell
, vol.126
, pp. 663-676
-
-
Takahashi, K.1
Yamanaka, S.2
-
7
-
-
84880330190
-
Sequential introduction of reprogramming factors reveals a time-sensitive requirement for individual factors and a sequential EMT-MET mechanism for optimal reprogramming.
-
[CrossRef][PubMed]
-
Liu, X.; Sun, H.; Qi, J.; Wang, L.; He, S.; Liu, J.; Feng, C.; Chen, C.; Li, W.; Guo, Y. et al. Sequential introduction of reprogramming factors reveals a time-sensitive requirement for individual factors and a sequential EMT-MET mechanism for optimal reprogramming. Nat. Cell Biol. 2013, 15, 829–838. [CrossRef][PubMed]
-
(2013)
Nat. Cell Biol
, vol.15
, pp. 829-838
-
-
Liu, X.1
Sun, H.2
Qi, J.3
Wang, L.4
He, S.5
Liu, J.6
Feng, C.7
Chen, C.8
Li, W.9
Guo, Y.10
-
8
-
-
84923948249
-
Inducing pluripotency in vitro: Recent advances and highlights in induced pluripotent stem cells generation and pluripotency reprogramming
-
[CrossRef][PubMed]
-
Rony, I.K.; Baten, A.; Bloomfield, J.A.; Islam, M.E.; Billah, M.M.; Islam, K.D. Inducing pluripotency in vitro: Recent advances and highlights in induced pluripotent stem cells generation and pluripotency reprogramming. Cell Prolif. 2015, 48, 140–156. [CrossRef][PubMed]
-
(2015)
Cell Prolif
, vol.48
, pp. 140-156
-
-
Rony, I.K.1
Baten, A.2
Bloomfield, J.A.3
Islam, M.E.4
Billah, M.M.5
Islam, K.D.6
-
9
-
-
59449090107
-
TGF-b-induced epithelial to mesenchymal transition
-
[CrossRef][PubMed]
-
Xu, J.; Lamouille, S.; Derynck, R. TGF-b-induced epithelial to mesenchymal transition. Cell Res. 2009, 19, 156–172. [CrossRef][PubMed]
-
(2009)
Cell Res
, vol.19
, pp. 156-172
-
-
Xu, J.1
Lamouille, S.2
Derynck, R.3
-
10
-
-
0038717407
-
BMP-7 counteracts TGF-b1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat
-
[CrossRef][PubMed]
-
Zeisberg, M.; Hanai, J.; Sugimoto, H.; Mammoto, T.; Charytan, D.; Strutz, F.; Kalluri, R. BMP-7 counteracts TGF-b1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat. Med. 2003, 9, 964–968. [CrossRef][PubMed]
-
(2003)
Med
, vol.9
, pp. 964-968
-
-
Zeisberg, M.1
Hanai, J.2
Sugimoto, H.3
Mammoto, T.4
Charytan, D.5
Strutz, F.6
Kalluri, R.7
-
11
-
-
84888643463
-
Transforming growth factor-b and the progression of renal disease.
-
[CrossRef][PubMed]
-
Loeffler, I.; Wolf, G. Transforming growth factor-b and the progression of renal disease. Nephrol. Dial. Transplant. 2014, 29, i37–i45. [CrossRef][PubMed]
-
(2014)
Nephrol. Dial. Transplant
, vol.29
-
-
Loeffler, I.1
Wolf, G.2
-
12
-
-
84908093833
-
Transforming growth factor b1 (TGF-b1) enhances expression of profibrotic genes through a novel signaling cascade and microRNAs in renal mesangial cells
-
[CrossRef][PubMed]
-
Castro, N.E.; Kato, M.; Park, J.T.; Natarajan, R. Transforming growth factor b1 (TGF-b1) enhances expression of profibrotic genes through a novel signaling cascade and microRNAs in renal mesangial cells. J. Biol. Chem. 2014, 289, 29001–29013. [CrossRef][PubMed]
-
(2014)
J. Biol. Chem
, vol.289
, pp. 29001-29013
-
-
Castro, N.E.1
Kato, M.2
Park, J.T.3
Natarajan, R.4
-
13
-
-
0142104985
-
Smad-dependent and Smad-independent pathways in TGF-b family signalling
-
[CrossRef][PubMed]
-
Derynck, R.; Zhang, Y.E. Smad-dependent and Smad-independent pathways in TGF-b family signalling. Nature 2003, 425, 577–584. [CrossRef][PubMed]
-
(2003)
Nature
, vol.425
, pp. 577-584
-
-
Derynck, R.1
Zhang, Y.E.2
-
14
-
-
58149213801
-
Non-Smad pathways in TGF-b signaling
-
[CrossRef][PubMed]
-
Zhang, Y.E. Non-Smad pathways in TGF-b signaling. Cell Res. 2009, 19, 128–139. [CrossRef][PubMed]
-
(2009)
Cell Res
, vol.19
, pp. 128-139
-
-
Zhang, Y.E.1
-
15
-
-
84887273608
-
Epithelial plasticity: A common theme in embryonic and cancer cells
-
[CrossRef][PubMed]
-
Nieto, M.A. Epithelial plasticity: A common theme in embryonic and cancer cells. Science 2013, 342, 1234850. [CrossRef][PubMed]
-
(2013)
Science
, vol.342
-
-
Nieto, M.A.1
-
16
-
-
84934297821
-
Implications of the Hybrid Epithelial/Mesenchymal Phenotype in Metastasis. Front
-
[CrossRef][PubMed]
-
Jolly, M.K.; Boareto, M.; Huang, B.; Jia, D.; Lu, M.; Ben-Jacob, E.; Onuchic, J.N.; Levine, H. Implications of the Hybrid Epithelial/Mesenchymal Phenotype in Metastasis. Front. Oncol. 2015, 5, 155. [CrossRef][PubMed]
-
(2015)
Oncol
, vol.5
-
-
Jolly, M.K.1
Boareto, M.2
Huang, B.3
Jia, D.4
Lu, M.5
Ben-Jacob, E.6
Onuchic, J.N.7
Levine, H.8
-
17
-
-
84887278742
-
MicroRNA-based regulation of epithelial-hybridmesenchymal fate determination
-
[CrossRef][PubMed]
-
Lu, M.; Jolly, M.K.; Levine, H.; Onuchic, J.N.; Ben-Jacob, E. MicroRNA-based regulation of epithelial-hybridmesenchymal fate determination. Proc. Natl. Acad. Sci. USA 2013, 110, 18144–18149. [CrossRef][PubMed]
-
(2013)
Proc. Natl. Acad. Sci. USA
, vol.110
, pp. 18144-18149
-
-
Lu, M.1
Jolly, M.K.2
Levine, H.3
Onuchic, J.N.4
Ben-Jacob, E.5
-
18
-
-
84924182162
-
Kidney regeneration: Where we are and future perspectives. World
-
[CrossRef][PubMed]
-
Zambon, J.P.; Magalhaes, R.S.; Ko, I.; Ross, C.L.; Orlando, G.; Peloso, A.; Atala, A.; Yoo, J.J. Kidney regeneration: Where we are and future perspectives. World J. Nephrol. 2014, 3, 24–30. [CrossRef][PubMed]
-
(2014)
J. Nephrol
, vol.3
, pp. 24-30
-
-
Zambon, J.P.1
Magalhaes, R.S.2
Ko, I.3
Ross, C.L.4
Orlando, G.5
Peloso, A.6
Atala, A.7
Yoo, J.J.8
-
19
-
-
84866166692
-
Mammalian kidney development: Principles, progress, and projections.
-
[CrossRef][PubMed]
-
Little, M.H.; McMahon, A.P. Mammalian kidney development: Principles, progress, and projections. Cold Spring Harb. Perspect. Biol. 2012, 4. [CrossRef][PubMed]
-
(2012)
Cold Spring Harb. Perspect. Biol
-
-
Little, M.H.1
McMahon, A.P.2
-
20
-
-
84939599871
-
Who regenerates the kidney tubule? Nephrol. Dial
-
[CrossRef][PubMed]
-
Kramann, R.; Kusaba, T.; Humphreys, B.D. Who regenerates the kidney tubule? Nephrol. Dial. Transplant. 2015, 30, 903–910. [CrossRef][PubMed]
-
(2015)
Transplant
, vol.30
, pp. 903-910
-
-
Kramann, R.1
Kusaba, T.2
Humphreys, B.D.3
-
21
-
-
0037836057
-
Dedifferentiation and proliferation of surviving epithelial cells in acute renal failure.
-
[CrossRef][PubMed]
-
Bonventre, J.V. Dedifferentiation and proliferation of surviving epithelial cells in acute renal failure. J. Am. Soc. Nephrol. JASN 2003, 14, S55–S61. [CrossRef][PubMed]
-
(2003)
J. Am. Soc. Nephrol. JASN
, vol.14
, pp. S55-S61
-
-
Bonventre, J.V.1
-
22
-
-
84893369728
-
Differentiated kidney epithelial cells repair injured proximal tubule
-
[CrossRef][PubMed]
-
Kusaba, T.; Lalli, M.; Kramann, R.; Kobayashi, A.; Humphreys, B.D. Differentiated kidney epithelial cells repair injured proximal tubule. Proc. Natl. Acad. Sci. USA 2014, 111, 1527–1532. [CrossRef][PubMed]
-
(2014)
Proc. Natl. Acad. Sci. USA
, vol.111
, pp. 1527-1532
-
-
Kusaba, T.1
Lalli, M.2
Kramann, R.3
Kobayashi, A.4
Humphreys, B.D.5
-
23
-
-
84875037125
-
Proximal tubular cells contain a phenotypically distinct, scattered cell population involved in tubular regeneration
-
[CrossRef][PubMed]
-
Smeets, B.; Boor, P.; Dijkman, H.; Sharma, S.V.; Jirak, P.; Mooren, F.; Berger, K.; Bornemann, J.; Gelman, I.H.; Floege, J. et al. Proximal tubular cells contain a phenotypically distinct, scattered cell population involved in tubular regeneration. J. Pathol. 2013, 229, 645–659. [CrossRef][PubMed]
-
(2013)
J. Pathol
, vol.229
, pp. 645-659
-
-
Smeets, B.1
Boor, P.2
Dijkman, H.3
Sharma, S.V.4
Jirak, P.5
Mooren, F.6
Berger, K.7
Bornemann, J.8
Gelman, I.H.9
Floege, J.10
-
24
-
-
33748051419
-
Isolation and characterization of multipotent progenitor cells from the Bowman’s capsule of adult human kidneys
-
[CrossRef][PubMed]
-
Sagrinati, C.; Netti, G.S.; Mazzinghi, B.; Lazzeri, E.; Liotta, F.; Frosali, F.; Ronconi, E.; Meini, C.; Gacci, M.; Squecco, R. et al. Isolation and characterization of multipotent progenitor cells from the Bowman’s capsule of adult human kidneys. J. Am. Soc. Nephrol. JASN 2006, 17, 2443–2456. [CrossRef][PubMed]
-
(2006)
J. Am. Soc. Nephrol. JASN
, vol.17
, pp. 2443-2456
-
-
Sagrinati, C.1
Netti, G.S.2
Mazzinghi, B.3
Lazzeri, E.4
Liotta, F.5
Frosali, F.6
Ronconi, E.7
Meini, C.8
Gacci, M.9
Squecco, R.10
-
25
-
-
84864365555
-
Characterization of renal progenitors committed toward tubular lineage and their regenerative potential in renal tubular injury
-
[CrossRef][PubMed]
-
Angelotti, M.L.; Ronconi, E.; Ballerini, L.; Peired, A.; Mazzinghi, B.; Sagrinati, C.; Parente, E.; Gacci, M.; Carini, M.; Rotondi, M. et al. Characterization of renal progenitors committed toward tubular lineage and their regenerative potential in renal tubular injury. Stem Cells 2012, 30, 1714–1725. [CrossRef][PubMed]
-
(2012)
Stem Cells
, vol.30
, pp. 1714-1725
-
-
Angelotti, M.L.1
Ronconi, E.2
Ballerini, L.3
Peired, A.4
Mazzinghi, B.5
Sagrinati, C.6
Parente, E.7
Gacci, M.8
Carini, M.9
Rotondi, M.10
-
26
-
-
84871658697
-
Renal progenitors in non-diabetic and diabetic nephropathies.
-
[CrossRef][PubMed]
-
Romagnani, P.; Remuzzi, G. Renal progenitors in non-diabetic and diabetic nephropathies. Trends Endocrinol. Metab. TEM 2013, 24, 13–20. [CrossRef][PubMed]
-
(2013)
Trends Endocrinol. Metab. TEM
, vol.24
, pp. 13-20
-
-
Romagnani, P.1
Remuzzi, G.2
-
27
-
-
36849090211
-
Regenerative potential of embryonic renal multipotent progenitors in acute renal failure
-
[CrossRef][PubMed]
-
Lazzeri, E.; Crescioli, C.; Ronconi, E.; Mazzinghi, B.; Sagrinati, C.; Netti, G.S.; Angelotti, M.L.; Parente, E.; Ballerini, L.; Cosmi, L. et al. Regenerative potential of embryonic renal multipotent progenitors in acute renal failure. J. Am. Soc. Nephrol. JASN 2007, 18, 3128–3138. [CrossRef][PubMed]
-
(2007)
J. Am. Soc. Nephrol. JASN
, vol.18
, pp. 3128-3138
-
-
Lazzeri, E.1
Crescioli, C.2
Ronconi, E.3
Mazzinghi, B.4
Sagrinati, C.5
Netti, G.S.6
Angelotti, M.L.7
Parente, E.8
Ballerini, L.9
Cosmi, L.10
-
28
-
-
84857112728
-
Chronic kidney disease after acute kidney injury
-
[CrossRef][PubMed]
-
Coca, S.G.; Singanamala, S.; Parikh, C.R. Chronic kidney disease after acute kidney injury: A systematic review and meta-analysis. Kidney Int. 2012, 81, 442–448. [CrossRef][PubMed]
-
(2012)
A Systematic Review and Meta-Analysis. Kidney Int
, vol.81
, pp. 442-448
-
-
Coca, S.G.1
Singanamala, S.2
Parikh, C.R.3
-
29
-
-
37049233011
-
Inductive epitheliomesenchymal interaction in cultured organ rudiments of the mouse
-
[CrossRef][PubMed]
-
Grobstein, C. Inductive epitheliomesenchymal interaction in cultured organ rudiments of the mouse. Science 1953, 118, 52–55. [CrossRef][PubMed]
-
(1953)
Science
, vol.118
, pp. 52-55
-
-
Grobstein, C.1
-
30
-
-
84912124380
-
Induction and patterning of the metanephric nephron. Semin
-
[CrossRef][PubMed]
-
O’Brien, L.L.; McMahon, A.P. Induction and patterning of the metanephric nephron. Semin. Cell Dev. Biol. 2014, 36, 31–38. [CrossRef][PubMed]
-
(2014)
Cell Dev. Biol
, vol.36
, pp. 31-38
-
-
O’Brien, L.L.1
McMahon, A.P.2
-
31
-
-
0029553183
-
An overview of epithelio-mesenchymal transformation
-
[CrossRef][PubMed]
-
Hay, E.D. An overview of epithelio-mesenchymal transformation. Acta Anat. 1995, 154, 8–20. [CrossRef][PubMed]
-
(1995)
Acta Anat
, vol.154
, pp. 8-20
-
-
Hay, E.D.1
-
32
-
-
0027182741
-
WT-1 is required for early kidney development
-
[CrossRef]
-
Kreidberg, J.A.; Sariola, H.; Loring, J.M.; Maeda, M.; Pelletier, J.; Housman, D.; Jaenisch, R. WT-1 is required for early kidney development. Cell 1993, 74, 679–691. [CrossRef]
-
(1993)
Cell
, vol.74
, pp. 679-691
-
-
Kreidberg, J.A.1
Sariola, H.2
Loring, J.M.3
Maeda, M.4
Pelletier, J.5
Housman, D.6
Jaenisch, R.7
-
33
-
-
0029590072
-
Pax-2 controls multiple steps of urogenital development
-
[PubMed]
-
Torres, M.; Gomez-Pardo, E.; Dressler, G.R.; Gruss, P. Pax-2 controls multiple steps of urogenital development. Development 1995, 121, 4057–4065. [PubMed]
-
(1995)
Development
, vol.121
, pp. 4057-4065
-
-
Torres, M.1
Gomez-Pardo, E.2
Dressler, G.R.3
Gruss, P.4
-
34
-
-
33750455113
-
Six2 is required for suppression of nephrogenesis and progenitor renewal in the developing kidney
-
[CrossRef][PubMed]
-
Self, M.; Lagutin, O.V.; Bowling, B.; Hendrix, J.; Cai, Y.; Dressler, G.R.; Olivier, G. Six2 is required for suppression of nephrogenesis and progenitor renewal in the developing kidney. EMBO J. 2006, 25, 5214–5228. [CrossRef][PubMed]
-
(2006)
EMBO J
, vol.25
, pp. 5214-5228
-
-
Self, M.1
Lagutin, O.V.2
Bowling, B.3
Hendrix, J.4
Cai, Y.5
Dressler, G.R.6
Olivier, G.7
-
35
-
-
48149095359
-
Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development
-
[CrossRef][PubMed]
-
Kobayashi, A.; Valerius, M.T.; Mugford, J.W.; Carroll, T.J.; Self, M.; Oliver, G.; McMahon, A.P. Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell 2008, 3, 169–181. [CrossRef][PubMed]
-
(2008)
Cell Stem Cell
, vol.3
, pp. 169-181
-
-
Kobayashi, A.1
Valerius, M.T.2
Mugford, J.W.3
Carroll, T.J.4
Self, M.5
Oliver, G.6
McMahon, A.P.7
-
36
-
-
0032824988
-
Re-expression of the developmental gene Pax-2 during experimental acute tubular necrosis in mice 1
-
[CrossRef][PubMed]
-
Imgrund, M.; Grone, E.; Grone, H.J.; Kretzler, M.; Holzman, L.; Schlondorff, D.; Rothenpieler, U.W. Re-expression of the developmental gene Pax-2 during experimental acute tubular necrosis in mice 1. Kidney Int. 1999, 56, 1423–1431. [CrossRef][PubMed]
-
(1999)
Kidney Int
, vol.56
, pp. 1423-1431
-
-
Imgrund, M.1
Grone, E.2
Grone, H.J.3
Kretzler, M.4
Holzman, L.5
Schlondorff, D.6
Rothenpieler, U.W.7
-
37
-
-
34147107665
-
PAX2 is reactivated in urinary tract obstruction and partially protects collecting duct cells from programmed cell death
-
[CrossRef][PubMed]
-
Cohen, T.; Loutochin, O.; Amin, M.; Capolicchio, J.P.; Goodyer, P.; Jednak, R. PAX2 is reactivated in urinary tract obstruction and partially protects collecting duct cells from programmed cell death. Am. J. Physiol. Ren. Physiol. 2007, 292, F1267–F1273. [CrossRef][PubMed]
-
(2007)
Am. J. Physiol. Ren. Physiol
, vol.292
-
-
Cohen, T.1
Loutochin, O.2
Amin, M.3
Capolicchio, J.P.4
Goodyer, P.5
Jednak, R.6
-
38
-
-
73349108404
-
Wt1 is required for cardiovascular progenitor cell formation through transcriptional control of Snail and E-cadherin. Nat
-
[CrossRef][PubMed]
-
Martinez-Estrada, O.M.; Lettice, L.A.; Essafi, A.; Guadix, J.A.; Slight, J.; Velecela, V.; Hall, E.; Reichmann, J.; Devenney, P.S.; Hohenstein, P. et al. Wt1 is required for cardiovascular progenitor cell formation through transcriptional control of Snail and E-cadherin. Nat. Genet. 2010, 42, 89–93. [CrossRef][PubMed]
-
(2010)
Genet
, vol.42
, pp. 89-93
-
-
Martinez-Estrada, O.M.1
Lettice, L.A.2
Essafi, A.3
Guadix, J.A.4
Slight, J.5
Velecela, V.6
Hall, E.7
Reichmann, J.8
Devenney, P.S.9
Hohenstein, P.10
-
39
-
-
73949090678
-
TGF-b1 induced epithelial to mesenchymal transition (EMT) in human bronchial epithelial cells is enhanced by IL-1b but not abrogated by corticosteroids.
-
[CrossRef][PubMed]
-
Doerner, A.M.; Zuraw, B.L. TGF-b1 induced epithelial to mesenchymal transition (EMT) in human bronchial epithelial cells is enhanced by IL-1b but not abrogated by corticosteroids. Respir. Res. 2009, 10, 100. [CrossRef][PubMed]
-
(2009)
Respir. Res
, vol.10
-
-
Doerner, A.M.1
Zuraw, B.L.2
-
40
-
-
0037405501
-
Central role for Rho in TGF-b1-induced b-smooth muscle actin expression during epithelial-mesenchymal transition
-
[CrossRef][PubMed]
-
Masszi, A.; di Ciano, C.; Sirokmany, G.; Arthur, W.T.; Rotstein, O.D.; Wang, J.; McCulloch, C.A.; Rosivall, L.; Mucsi, I.; Kapus, A. Central role for Rho in TGF-b1-induced b-smooth muscle actin expression during epithelial-mesenchymal transition. Am. J. Physiol. Ren. Physiol. 2003, 284, F911–F924. [CrossRef][PubMed]
-
(2003)
Am. J. Physiol. Ren. Physiol
, vol.284
-
-
Masszi, A.1
Di Ciano, C.2
Sirokmany, G.3
Arthur, W.T.4
Rotstein, O.D.5
Wang, J.6
McCulloch, C.A.7
Rosivall, L.8
Mucsi, I.9
Kapus, A.10
-
41
-
-
0032842887
-
Transforming growth factor-b regulates tubular epithelial-myofibroblast transdifferentiation in vitro
-
[CrossRef][PubMed]
-
Fan, J.M.; Ng, Y.Y.; Hill, P.A.; Nikolic-Paterson, D.J.; Mu, W.; Atkins, R.C.; Lan, H.Y. Transforming growth factor-b regulates tubular epithelial-myofibroblast transdifferentiation in vitro. Kidney Int. 1999, 56, 1455–1467. [CrossRef][PubMed]
-
(1999)
Kidney Int
, vol.56
, pp. 1455-1467
-
-
Fan, J.M.1
Ng, Y.Y.2
Hill, P.A.3
Nikolic-Paterson, D.J.4
Mu, W.5
Atkins, R.C.6
Lan, H.Y.7
-
42
-
-
84886600453
-
Epithelial-to-mesenchymal transition in fibrosis: Collagen type I expression is highly upregulated after EMT, but does not contribute to collagen deposition.
-
[CrossRef][PubMed]
-
Hosper, N.A.; van den Berg, P.P.; de Rond, S.; Popa, E.R.; Wilmer, M.J.; Masereeuw, R.; Bank, R.A. Epithelial-to-mesenchymal transition in fibrosis: Collagen type I expression is highly upregulated after EMT, but does not contribute to collagen deposition. Exp. Cell Res. 2013, 319, 3000–3009. [CrossRef][PubMed]
-
(2013)
Exp. Cell Res
, vol.319
, pp. 3000-3009
-
-
Hosper, N.A.1
Van Den Berg, P.P.2
De Rond, S.3
Popa, E.R.4
Wilmer, M.J.5
Masereeuw, R.6
Bank, R.A.7
-
43
-
-
0036322007
-
Evidence that fibroblasts derive from epithelium during tissue fibrosis
-
[CrossRef][PubMed]
-
Iwano, M.; Plieth, D.; Danoff, T.M.; Xue, C.; Okada, H.; Neilson, E.G. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J. Clin. Investig. 2002, 110, 341–350. [CrossRef][PubMed]
-
(2002)
J. Clin. Investig
, vol.110
, pp. 341-350
-
-
Iwano, M.1
Plieth, D.2
Danoff, T.M.3
Xue, C.4
Okada, H.5
Neilson, E.G.6
-
44
-
-
0029091682
-
Identification and characterization of a fibroblast marker: FSP1.
-
[CrossRef][PubMed]
-
Strutz, F.; Okada, H.; Lo, C.W.; Danoff, T.; Carone, R.L.; Tomaszewski, J.E.; Neilson, E.G. Identification and characterization of a fibroblast marker: FSP1. J. Cell Biol. 1995, 130, 393–405. [CrossRef][PubMed]
-
(1995)
J. Cell Biol
, vol.130
, pp. 393-405
-
-
Strutz, F.1
Okada, H.2
Lo, C.W.3
Danoff, T.4
Carone, R.L.5
Tomaszewski, J.E.6
Neilson, E.G.7
-
45
-
-
0030670132
-
Early role of Fsp1 in epithelial-mesenchymal transformation
-
[PubMed]
-
Okada, H.; Danoff, T.M.; Kalluri, R.; Neilson, E.G. Early role of Fsp1 in epithelial-mesenchymal transformation. Am. J. Physiol. 1997, 273, F563–F574. [PubMed]
-
(1997)
Am. J. Physiol
, vol.273
-
-
Okada, H.1
Danoff, T.M.2
Kalluri, R.3
Neilson, E.G.4
-
46
-
-
84887004755
-
Lack of specificity of fibroblast-specific protein 1 in cardiac remodeling and fibrosis.
-
[CrossRef][PubMed]
-
Kong, P.; Christia, P.; Saxena, A.; Su, Y.; Frangogiannis, N.G. Lack of specificity of fibroblast-specific protein 1 in cardiac remodeling and fibrosis. Am. J. Physiol. Heart Circ. Physiol. 2013, 305, H1363–H1372. [CrossRef][PubMed]
-
(2013)
Am. J. Physiol. Heart Circ. Physiol
, vol.305
-
-
Kong, P.1
Christia, P.2
Saxena, A.3
Su, Y.4
Frangogiannis, N.G.5
-
47
-
-
78651083174
-
Fibroblast-specific protein 1 identifies an inflammatory subpopulation of macrophages in the liver
-
[CrossRef][PubMed]
-
Osterreicher, C.H.; Penz-Osterreicher, M.; Grivennikov, S.I.; Guma, M.; Koltsova, E.K.; Datz, C.; Sasik, R.; Hardiman, G.; Karin, M.; Brenner, D.A. Fibroblast-specific protein 1 identifies an inflammatory subpopulation of macrophages in the liver. Proc. Natl. Acad. Sci. USA 2011, 108, 308–313. [CrossRef][PubMed]
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 308-313
-
-
Osterreicher, C.H.1
Penz-Osterreicher, M.2
Grivennikov, S.I.3
Guma, M.4
Koltsova, E.K.5
Datz, C.6
Sasik, R.7
Hardiman, G.8
Karin, M.9
Brenner, D.A.10
-
48
-
-
21544440606
-
Characterization of renal interstitial fibroblast-specific protein 1/S100A4-positive cells in healthy and inflamed rodent kidneys.
-
[CrossRef][PubMed]
-
Le Hir, M.; Hegyi, I.; Cueni-Loffing, D.; Loffing, J.; Kaissling, B. Characterization of renal interstitial fibroblast-specific protein 1/S100A4-positive cells in healthy and inflamed rodent kidneys. Histochem. Cell Biol. 2005, 123, 335–346. [CrossRef][PubMed]
-
(2005)
Histochem. Cell Biol
, vol.123
, pp. 335-346
-
-
Le Hir, M.1
Hegyi, I.2
Cueni-Loffing, D.3
Loffing, J.4
Kaissling, B.5
-
49
-
-
23044457914
-
Antibodies against macrophages that overlap in specificity with fibroblasts
-
[CrossRef][PubMed]
-
Inoue, T.; Plieth, D.; Venkov, C.D.; Xu, C.; Neilson, E.G. Antibodies against macrophages that overlap in specificity with fibroblasts. Kidney Int. 2005, 67, 2488–2493. [CrossRef][PubMed]
-
(2005)
Kidney Int
, vol.67
, pp. 2488-2493
-
-
Inoue, T.1
Plieth, D.2
Venkov, C.D.3
Xu, C.4
Neilson, E.G.5
-
50
-
-
84882289111
-
Origin and function of myofibroblasts in kidney fibrosis
-
[CrossRef][PubMed]
-
LeBleu, V.S.; Taduri, G.; O’Connell, J.; Teng, Y.; Cooke, V.G.; Woda, C.; Sugimoto, H.; Kalluri, R. Origin and function of myofibroblasts in kidney fibrosis. Nat. Med. 2013, 19, 1047–1053. [CrossRef][PubMed]
-
(2013)
Nat. Med
, vol.19
, pp. 1047-1053
-
-
Lebleu, V.S.1
Taduri, G.2
O’Connell, J.3
Teng, Y.4
Cooke, V.G.5
Woda, C.6
Sugimoto, H.7
Kalluri, R.8
-
51
-
-
77957252460
-
Tubular overexpression of transforming growth factor-b1 induces autophagy and fibrosis but not mesenchymal transition of renal epithelial cells.
-
[CrossRef][PubMed]
-
Koesters, R.; Kaissling, B.; Lehir, M.; Picard, N.; Theilig, F.; Gebhardt, R.; Glick, A.B.; Hahnel, B.; Hosser, H.; Grone, H.J. et al. Tubular overexpression of transforming growth factor-b1 induces autophagy and fibrosis but not mesenchymal transition of renal epithelial cells. Am. J. Pathol. 2010, 177, 632–643. [CrossRef][PubMed]
-
(2010)
Am. J. Pathol
, vol.177
, pp. 632-643
-
-
Koesters, R.1
Kaissling, B.2
Lehir, M.3
Picard, N.4
Theilig, F.5
Gebhardt, R.6
Glick, A.B.7
Hahnel, B.8
Hosser, H.9
Grone, H.J.10
-
52
-
-
73949096744
-
Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis
-
[CrossRef][PubMed]
-
Humphreys, B.D.; Lin, S.L.; Kobayashi, A.; Hudson, T.E.; Nowlin, B.T.; Bonventre, J.V.; Valerius, M.T.; McMahon, A.P.; Duffield, J.S. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am. J. Pathol. 2010, 176, 85–97. [CrossRef][PubMed]
-
(2010)
. Am. J. Pathol
, vol.176
, pp. 85-97
-
-
Humphreys, B.D.1
Lin, S.L.2
Kobayashi, A.3
Hudson, T.E.4
Nowlin, B.T.5
Bonventre, J.V.6
Valerius, M.T.7
McMahon, A.P.8
Duffield, J.S.9
-
53
-
-
77950565076
-
Autophagy is a component of epithelial cell fate in obstructive uropathy
-
[CrossRef][PubMed]
-
Li, L.; Zepeda-Orozco, D.; Black, R.; Lin, F. Autophagy is a component of epithelial cell fate in obstructive uropathy. Am. J. Pathol. 2010, 176, 1767–1778. [CrossRef][PubMed]
-
(2010)
Am. J. Pathol
, vol.176
, pp. 1767-1778
-
-
Li, L.1
Zepeda-Orozco, D.2
Black, R.3
Lin, F.4
-
54
-
-
84936816666
-
Novel approach for the detection of tubular cell migration into the interstitium during renal fibrosis in rats
-
[CrossRef][PubMed]
-
Nakasatomi, M.; Maeshima, A.; Mishima, K.; Ikeuchi, H.; Sakairi, T.; Kaneko, Y.; Hiromura, K.; Nojima, Y. Novel approach for the detection of tubular cell migration into the interstitium during renal fibrosis in rats. Fibrogenesis Tissue Repair 2015, 8, 12. [CrossRef][PubMed]
-
(2015)
Fibrogenesis Tissue Repair
, vol.8
, pp. 12
-
-
Nakasatomi, M.1
Maeshima, A.2
Mishima, K.3
Ikeuchi, H.4
Sakairi, T.5
Kaneko, Y.6
Hiromura, K.7
Nojima, Y.8
-
55
-
-
84961291972
-
Origin of myofibroblasts and cellular events triggering fibrosis
-
[CrossRef][PubMed]
-
Mack, M.; Yanagita, M. Origin of myofibroblasts and cellular events triggering fibrosis. Kidney Int. 2015, 87, 297–307. [CrossRef][PubMed]
-
(2015)
Kidney Int
, vol.87
, pp. 297-307
-
-
Mack, M.1
Yanagita, M.2
-
56
-
-
79551521517
-
Epithelial-mesenchymal transition (EMT) in kidney fibrosis: Fact or fantasy?
-
[CrossRef][PubMed]
-
Kriz, W.; Kaissling, B.; le Hir, M. Epithelial-mesenchymal transition (EMT) in kidney fibrosis: Fact or fantasy? J. Clin. Investig. 2011, 121, 468–474. [CrossRef][PubMed]
-
(2011)
J. Clin. Investig
, vol.121
, pp. 468-474
-
-
Kriz, W.1
Kaissling, B.2
Le Hir, M.3
-
57
-
-
84941000153
-
Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease.
-
[CrossRef][PubMed]
-
Grande, M.T.; Sanchez-Laorden, B.; Lopez-Blau, C.; de Frutos, C.A.; Boutet, A.; Arevalo, M.; Rowe, R.G.; Weiss, S.J.; Lopez-Novoa, J.M.; Nieto, M.A. Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease. Nat. Med. 2015, 21, 989–997. [CrossRef][PubMed]
-
(2015)
Nat. Med
, vol.21
, pp. 989-997
-
-
Grande, M.T.1
Sanchez-Laorden, B.2
Lopez-Blau, C.3
De Frutos, C.A.4
Boutet, A.5
Arevalo, M.6
Rowe, R.G.7
Weiss, S.J.8
Lopez-Novoa, J.M.9
Nieto, M.A.10
-
58
-
-
52049109615
-
The renal stem cell system in kidney repair and regeneration
-
[CrossRef]
-
Anglani, F.; Ceol, M.; Mezzabotta, F.; Torregrossa, R.; Tiralongo, E.; Tosetto, E.; Del Prete, D.; D’Angelo, A. The renal stem cell system in kidney repair and regeneration. Front. Biosci. A J. Virtual Libr. 2008, 13, 6395–6405. [CrossRef]
-
(2008)
Front. Biosci. A J. Virtual Libr
, vol.13
, pp. 6395-6405
-
-
Anglani, F.1
Ceol, M.2
Mezzabotta, F.3
Torregrossa, R.4
Tiralongo, E.5
Tosetto, E.6
Del Prete, D.7
D’Angelo, A.8
-
59
-
-
84878607516
-
Epithelial-mesenchymal transition of renal tubules: Divergent processes of repairing in acute or chronic injury?
-
[CrossRef][PubMed]
-
Jiang, Y.S.; Jiang, T.; Huang, B.; Chen, P.S.; Ouyang, J. Epithelial-mesenchymal transition of renal tubules: Divergent processes of repairing in acute or chronic injury? Med. Hypotheses 2013, 81, 73–75. [CrossRef][PubMed]
-
(2013)
Med. Hypotheses
, vol.81
, pp. 73-75
-
-
Jiang, Y.S.1
Jiang, T.2
Huang, B.3
Chen, P.S.4
Ouyang, J.5
-
60
-
-
79951909505
-
Glomerular parietal epithelial cells of adult murine kidney undergo EMT to generate cells with traits of renal progenitors
-
[PubMed]
-
Swetha, G.; Chandra, V.; Phadnis, S.; Bhonde, R. Glomerular parietal epithelial cells of adult murine kidney undergo EMT to generate cells with traits of renal progenitors. J. Cell. Mol. Med. 2011, 15, 396–413. [PubMed]
-
(2011)
J. Cell. Mol. Med
, vol.15
-
-
Swetha, G.1
Chandra, V.2
Phadnis, S.3
Bhonde, R.4
-
61
-
-
84859004997
-
WT1 and Pax2 re-expression is required for epithelial-mesenchymal transition in 5/6 nephrectomized rats and cultured kidney tubular epithelial cells
-
[CrossRef][PubMed]
-
Huang, B.; Pi, L.; Chen, C.; Yuan, F.; Zhou, Q.; Teng, J.; Jiang, T. WT1 and Pax2 re-expression is required for epithelial-mesenchymal transition in 5/6 nephrectomized rats and cultured kidney tubular epithelial cells. Cells Tissues Organs 2012, 195, 296–312. [CrossRef][PubMed]
-
(2012)
Cells Tissues Organs
, vol.195
, pp. 296-312
-
-
Huang, B.1
Pi, L.2
Chen, C.3
Yuan, F.4
Zhou, Q.5
Teng, J.6
Jiang, T.7
-
62
-
-
84899439468
-
Cell atavistic transition: Paired box 2 re-expression occurs in mature tubular epithelial cells during acute kidney injury and is regulated by Angiotensin II
-
[CrossRef][PubMed]
-
Jiang, Y.; Jiang, T.; Ouyang, J.; Zhou, Q.; Liang, Y.; Cui, Y.; Chen, P.; Huang, B. Cell atavistic transition: Paired box 2 re-expression occurs in mature tubular epithelial cells during acute kidney injury and is regulated by Angiotensin II. PLoS ONE 2014, 9, e93563. [CrossRef][PubMed]
-
(2014)
Plos ONE
, vol.9
-
-
Jiang, Y.1
Jiang, T.2
Ouyang, J.3
Zhou, Q.4
Liang, Y.5
Cui, Y.6
Chen, P.7
Huang, B.8
-
63
-
-
84884299771
-
Direct transcriptional reprogramming of adult cells to embryonic nephron progenitors
-
[CrossRef][PubMed]
-
Hendry, C.E.; Vanslambrouck, J.M.; Ineson, J.; Suhaimi, N.; Takasato, M.; Rae, F.; Little, M.H. Direct transcriptional reprogramming of adult cells to embryonic nephron progenitors. J. Am. Soc. Nephrol. JASN 2013, 24, 1424–1434. [CrossRef][PubMed]
-
(2013)
J. Am. Soc. Nephrol. JASN
, vol.24
, pp. 1424-1434
-
-
Hendry, C.E.1
Vanslambrouck, J.M.2
Ineson, J.3
Suhaimi, N.4
Takasato, M.5
Rae, F.6
Little, M.H.7
-
64
-
-
34248209601
-
Slug is required for cell survival during partial epithelial-mesenchymal transition of HGF-induced tubulogenesis.
-
[CrossRef][PubMed]
-
Leroy, P.; Mostov, K.E. Slug is required for cell survival during partial epithelial-mesenchymal transition of HGF-induced tubulogenesis. Mol. Biol. Cell 2007, 18, 1943–1952. [CrossRef][PubMed]
-
(2007)
Mol. Biol. Cell
, vol.18
, pp. 1943-1952
-
-
Leroy, P.1
Mostov, K.E.2
-
65
-
-
84909606776
-
Transient SNAIL1 expression is necessary for metastatic competence in breast cancer
-
[CrossRef][PubMed]
-
Tran, H.D.; Luitel, K.; Kim, M.; Zhang, K.; Longmore, G.D.; Tran, D.D. Transient SNAIL1 expression is necessary for metastatic competence in breast cancer. Cancer Res. 2014, 74, 6330–6340. [CrossRef][PubMed]
-
(2014)
Cancer Res
, vol.74
, pp. 6330-6340
-
-
Tran, H.D.1
Luitel, K.2
Kim, M.3
Zhang, K.4
Longmore, G.D.5
Tran, D.D.6
-
66
-
-
84893480332
-
Renal cells from spermatogonial germline stem cells protect against kidney injury
-
[CrossRef][PubMed]
-
De Chiara, L.; Fagoonee, S.; Ranghino, A.; Bruno, S.; Camussi, G.; Tolosano, E.; Silengo, L.; Altruda, F. Renal cells from spermatogonial germline stem cells protect against kidney injury. J. Am. Soc. Nephrol. JASN 2014, 25, 316–328. [CrossRef][PubMed]
-
(2014)
J. Am. Soc. Nephrol. JASN
, vol.25
, pp. 316-328
-
-
De Chiara, L.1
Fagoonee, S.2
Ranghino, A.3
Bruno, S.4
Camussi, G.5
Tolosano, E.6
Silengo, L.7
Altruda, F.8
-
67
-
-
84902161379
-
Genetic and chemical correction of cholesterol accumulation and impaired autophagy in hepatic and neural cells derived from Niemann-Pick Type C patient-specific iPS cells
-
[CrossRef][PubMed]
-
Maetzel, D.; Sarkar, S.; Wang, H.; Abi-Mosleh, L.; Xu, P.; Cheng, A.W.; Gao, Q.; Mitalipova, M.; Jaenisch, R. Genetic and chemical correction of cholesterol accumulation and impaired autophagy in hepatic and neural cells derived from Niemann-Pick Type C patient-specific iPS cells. Stem Cell Rep 2014, 2, 866–880. [CrossRef][PubMed]
-
(2014)
Stem Cell Rep
, vol.2
, pp. 866-880
-
-
Maetzel, D.1
Sarkar, S.2
Wang, H.3
Abi-Mosleh, L.4
Xu, P.5
Cheng, A.W.6
Gao, Q.7
Mitalipova, M.8
Jaenisch, R.9
-
68
-
-
84875140407
-
Genetic correction of a LRRK2 mutation in human iPSCs links parkinsonian neurodegeneration to ERK-dependent changes in gene expression
-
[CrossRef][PubMed]
-
Reinhardt, P.; Schmid, B.; Burbulla, L.F.; Schondorf, D.C.; Wagner, L.; Glatza, M.; Hoing, S.; Hargus, G.; Heck, S.A.; Dhingra, A. et al. Genetic correction of a LRRK2 mutation in human iPSCs links parkinsonian neurodegeneration to ERK-dependent changes in gene expression. Cell Stem Cell 2013, 12, 354–367. [CrossRef][PubMed]
-
(2013)
Cell Stem Cell
, vol.12
, pp. 354-367
-
-
Reinhardt, P.1
Schmid, B.2
Burbulla, L.F.3
Schondorf, D.C.4
Wagner, L.5
Glatza, M.6
Hoing, S.7
Hargus, G.8
Heck, S.A.9
Dhingra, A.10
-
69
-
-
84940204339
-
Gene expression profiling for human iPS-derived motor neurons from sporadic ALS patients reveals a strong association between mitochondrial functions and neurodegeneration.
-
[CrossRef][PubMed]
-
Alves, C.J.; Dariolli, R.; Jorge, F.M.; Monteiro, M.R.; Maximino, J.R.; Martins, R.S.; Strauss, B.E.; Krieger, J.E.; Callegaro, D.; Chadi, G. Gene expression profiling for human iPS-derived motor neurons from sporadic ALS patients reveals a strong association between mitochondrial functions and neurodegeneration. Front. Cell. Neurosci. 2015, 9, 289. [CrossRef][PubMed]
-
(2015)
Front. Cell. Neurosci
, vol.9
-
-
Alves, C.J.1
Dariolli, R.2
Jorge, F.M.3
Monteiro, M.R.4
Maximino, J.R.5
Martins, R.S.6
Strauss, B.E.7
Krieger, J.E.8
Callegaro, D.9
Chadi, G.10
-
70
-
-
84942114523
-
High-Throughput Screening Using iPSC-Derived Neuronal Progenitors to Identify Compounds Counteracting Epigenetic Gene Silencing in Fragile X Syndrome
-
[CrossRef][PubMed]
-
Kaufmann, M.; Schuffenhauer, A.; Fruh, I.; Klein, J.; Thiemeyer, A.; Rigo, P.; Gomez-Mancilla, B.; Heidinger-Millot, V.; Bouwmeester, T.; Schopfer, U. et al. High-Throughput Screening Using iPSC-Derived Neuronal Progenitors to Identify Compounds Counteracting Epigenetic Gene Silencing in Fragile X Syndrome. J. Biomol. Screen. 2015, 20, 1101–1111. [CrossRef][PubMed]
-
(2015)
J. Biomol. Screen
, vol.20
, pp. 1101-1111
-
-
Kaufmann, M.1
Schuffenhauer, A.2
Fruh, I.3
Klein, J.4
Thiemeyer, A.5
Rigo, P.6
Gomez-Mancilla, B.7
Heidinger-Millot, V.8
Bouwmeester, T.9
Schopfer, U.10
-
71
-
-
85051604758
-
Induced pluripotent stem cells: Applications in regenerative medicine, disease modeling, and drug discovery.
-
[CrossRef][PubMed]
-
Singh, V.K.; Kalsan, M.; Kumar, N.; Saini, A.; Chandra, R. Induced pluripotent stem cells: Applications in regenerative medicine, disease modeling, and drug discovery. Front. Cell Dev. Biol. 2015, 3, 2. [CrossRef][PubMed]
-
(2015)
Front. Cell Dev. Biol
, vol.3
-
-
Singh, V.K.1
Kalsan, M.2
Kumar, N.3
Saini, A.4
Chandra, R.5
-
72
-
-
71449109765
-
Direct cell reprogramming is a stochastic process amenable to acceleration
-
[CrossRef][PubMed]
-
Hanna, J.; Saha, K.; Pando, B.; van Zon, J.; Lengner, C.J.; Creyghton, M.P.; van Oudenaarden, A.; Jaenisch, R. Direct cell reprogramming is a stochastic process amenable to acceleration. Nature 2009, 462, 595–601. [CrossRef][PubMed]
-
(2009)
Nature
, vol.462
, pp. 595-601
-
-
Hanna, J.1
Saha, K.2
Pando, B.3
Van Zon, J.4
Lengner, C.J.5
Creyghton, M.P.6
Van Oudenaarden, A.7
Jaenisch, R.8
-
73
-
-
84902205262
-
All roads lead to induced pluripotent stem cells: The technologies of iPSC generation
-
[CrossRef][PubMed]
-
Hu, K. All roads lead to induced pluripotent stem cells: The technologies of iPSC generation. Stem Cells Dev. 2014, 23, 1285–1300. [CrossRef][PubMed]
-
(2014)
Stem Cells Dev
, vol.23
, pp. 1285-1300
-
-
Hu, K.1
-
74
-
-
84906871399
-
Routes to induced pluripotent stem cells
-
[CrossRef][PubMed]
-
Ruetz, T.; Kaji, K. Routes to induced pluripotent stem cells. Curr. Opin. Genet. Dev. 2014, 28, 38–42. [CrossRef][PubMed]
-
(2014)
Curr. Opin. Genet. Dev
, vol.28
, pp. 38-42
-
-
Ruetz, T.1
Kaji, K.2
-
75
-
-
84995308173
-
Current advances in the generation of human iPS cells: Implications in cell-based regenerative medicine.
-
[CrossRef][PubMed]
-
Revilla, A.; Gonzalez, C.; Iriondo, A.; Fernandez, B.; Prieto, C.; Marin, C.; Liste, I. Current advances in the generation of human iPS cells: Implications in cell-based regenerative medicine. J. Tissue Eng. Regen. Med. 2015. [CrossRef][PubMed]
-
(2015)
J. Tissue Eng. Regen. Med
-
-
Revilla, A.1
Gonzalez, C.2
Iriondo, A.3
Fernandez, B.4
Prieto, C.5
Marin, C.6
Liste, I.7
-
76
-
-
84939873823
-
Induced pluripotent stem cells and their implication for regenerative medicine
-
[CrossRef][PubMed]
-
Csobonyeiova, M.; Polak, S.; Koller, J.; Danisovic, L. Induced pluripotent stem cells and their implication for regenerative medicine. Cell Tissue Bank. 2015, 16, 171–180. [CrossRef][PubMed]
-
(2015)
Cell Tissue Bank
, vol.16
, pp. 171-180
-
-
Csobonyeiova, M.1
Polak, S.2
Koller, J.3
Danisovic, L.4
-
77
-
-
84877015046
-
Review of the methods for human iPSC derivation. Methods Mol
-
[PubMed]
-
Malik, N.; Rao, M.S. A review of the methods for human iPSC derivation. Methods Mol. Biol. 2013, 997, 23–33. [PubMed]
-
(2013)
Biol
, vol.997
, pp. 23-33
-
-
Malik, N.1
Rao, M.2
-
78
-
-
48449084118
-
Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells
-
[CrossRef][PubMed]
-
Marson, A.; Levine, S.S.; Cole, M.F.; Frampton, G.M.; Brambrink, T.; Johnstone, S.; Guenther, M.G.; Johnston, W.K.; Wernig, M.; Newman, J. et al. Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell 2008, 134, 521–533. [CrossRef][PubMed]
-
(2008)
Cell
, vol.134
, pp. 521-533
-
-
Marson, A.1
Levine, S.S.2
Cole, M.F.3
Frampton, G.M.4
Brambrink, T.5
Johnstone, S.6
Guenther, M.G.7
Johnston, W.K.8
Wernig, M.9
Newman, J.10
-
79
-
-
53549133376
-
Oct4/Sox2-regulated miR-302 targets cyclin D1 in human embryonic stem cells.
-
[CrossRef][PubMed]
-
Card, D.A.; Hebbar, P.B.; Li, L.; Trotter, K.W.; Komatsu, Y.; Mishina, Y.; Archer, T.K. Oct4/Sox2-regulated miR-302 targets cyclin D1 in human embryonic stem cells. Mol. Cell. Biol. 2008, 28, 6426–6438. [CrossRef][PubMed]
-
(2008)
Mol. Cell. Biol
, vol.28
, pp. 6426-6438
-
-
Card, D.A.1
Hebbar, P.B.2
Li, L.3
Trotter, K.W.4
Komatsu, Y.5
Mishina, Y.6
Archer, T.K.7
-
80
-
-
79953881831
-
Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency
-
[CrossRef][PubMed]
-
Anokye-Danso, F.; Trivedi, C.M.; Juhr, D.; Gupta, M.; Cui, Z.; Tian, Y.; Zhang, Y.; Yang, W.; Gruber, P.J.; Epstein, J.A. et al. Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 2011, 8, 376–388. [CrossRef][PubMed]
-
(2011)
Cell Stem Cell
, vol.8
, pp. 376-388
-
-
Anokye-Danso, F.1
Trivedi, C.M.2
Juhr, D.3
Gupta, M.4
Cui, Z.5
Tian, Y.6
Zhang, Y.7
Yang, W.8
Gruber, P.J.9
Epstein, J.A.10
-
81
-
-
84874325911
-
MicroRNA-302 increases reprogramming efficiency via repression of NR2F2
-
[CrossRef][PubMed]
-
Hu, S.; Wilson, K.D.; Ghosh, Z.; Han, L.; Wang, Y.; Lan, F.; Ransohoff, K.J.; Burridge, P.; Wu, J.C. MicroRNA-302 increases reprogramming efficiency via repression of NR2F2. Stem Cells 2013, 31, 259–268. [CrossRef][PubMed]
-
(2013)
Stem Cells
, vol.31
, pp. 259-268
-
-
Hu, S.1
Wilson, K.D.2
Ghosh, Z.3
Han, L.4
Wang, Y.5
Lan, F.6
Ransohoff, K.J.7
Burridge, P.8
Wu, J.C.9
-
82
-
-
79955780736
-
Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nat
-
[CrossRef][PubMed]
-
Subramanyam, D.; Lamouille, S.; Judson, R.L.; Liu, J.Y.; Bucay, N.; Derynck, R.; Blelloch, R. Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nat. Biotechnol. 2011, 29, 443–448. [CrossRef][PubMed]
-
(2011)
Biotechnol
, vol.29
, pp. 443-448
-
-
Subramanyam, D.1
Lamouille, S.2
Judson, R.L.3
Liu, J.Y.4
Bucay, N.5
Derynck, R.6
Blelloch, R.7
-
83
-
-
84860342025
-
The expanding role of miR-302-367 in pluripotency and reprogramming
-
[CrossRef][PubMed]
-
Lipchina, I.; Studer, L.; Betel, D. The expanding role of miR-302-367 in pluripotency and reprogramming. Cell Cycle 2012, 11, 1517–1523. [CrossRef][PubMed]
-
(2012)
Cell Cycle
, vol.11
, pp. 1517-1523
-
-
Lipchina, I.1
Studer, L.2
Betel, D.3
-
84
-
-
84874708151
-
CCN2/CTGF increases expression of miR-302 microRNAs, which target the TGFb type II receptor with implications for nephropathic cell phenotypes
-
[CrossRef][PubMed]
-
Faherty, N.; Curran, S.P.; O’Donovan, H.; Martin, F.; Godson, C.; Brazil, D.P.; Crean, J.K. CCN2/CTGF increases expression of miR-302 microRNAs, which target the TGFb type II receptor with implications for nephropathic cell phenotypes. J. Cell Sci. 2012, 125, 5621–5629. [CrossRef][PubMed]
-
(2012)
J. Cell Sci
, vol.125
, pp. 5621-5629
-
-
Faherty, N.1
Curran, S.P.2
O’Donovan, H.3
Martin, F.4
Godson, C.5
Brazil, D.P.6
Crean, J.K.7
-
85
-
-
85114275180
-
-
American Society of Nephrology, ASN, Kidney Week: San Diego, CA, USA
-
De Chiara, L.; Andrews, D.; Godson, C.; Crean, J. Targeting the Polycomb Repressor Complex Chromatin Remodeling Machinery for Therapeutic Benefit in Diabetic Nephropathy; American Society of Nephrology, ASN, Kidney Week: San Diego, CA, USA, 2015.
-
(2015)
Targeting the Polycomb Repressor Complex Chromatin Remodeling Machinery for Therapeutic Benefit in Diabetic Nephropathy
-
-
De Chiara, L.1
Andrews, D.2
Godson, C.3
Crean, J.4
-
86
-
-
79955419817
-
Snail and the microRNA-200 family act in opposition to regulate epithelial-to-mesenchymal transition and germ layer fate restriction in differentiating ESCs
-
[CrossRef][PubMed]
-
Gill, J.G.; Langer, E.M.; Lindsley, R.C.; Cai, M.; Murphy, T.L.; Kyba, M.; Murphy, K.M. Snail and the microRNA-200 family act in opposition to regulate epithelial-to-mesenchymal transition and germ layer fate restriction in differentiating ESCs. Stem Cells 2011, 29, 764–776. [CrossRef][PubMed]
-
(2011)
Stem Cells
, vol.29
, pp. 764-776
-
-
Gill, J.G.1
Langer, E.M.2
Lindsley, R.C.3
Cai, M.4
Murphy, T.L.5
Kyba, M.6
Murphy, K.M.7
-
87
-
-
84922606875
-
The epithelial-mesenchymal transition factor SNAIL paradoxically enhances reprogramming
-
[CrossRef][PubMed]
-
Unternaehrer, J.J.; Zhao, R.; Kim, K.; Cesana, M.; Powers, J.T.; Ratanasirintrawoot, S.; Onder, T.; Shibue, T.; Weinberg, R.A.; Daley, G.Q. The epithelial-mesenchymal transition factor SNAIL paradoxically enhances reprogramming. Stem Cell Rep. 2014, 3, 691–698. [CrossRef][PubMed]
-
(2014)
Stem Cell Rep
, vol.3
, pp. 691-698
-
-
Unternaehrer, J.J.1
Zhao, R.2
Kim, K.3
Cesana, M.4
Powers, J.T.5
Ratanasirintrawoot, S.6
Onder, T.7
Shibue, T.8
Weinberg, R.A.9
Daley, G.Q.10
-
88
-
-
77956320116
-
Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming
-
[CrossRef][PubMed]
-
Samavarchi-Tehrani, P.; Golipour, A.; David, L.; Sung, H.K.; Beyer, T.A.; Datti, A.; Woltjen, K.; Nagy, A.; Wrana, J.L. Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell 2010, 7, 64–77. [CrossRef][PubMed]
-
(2010)
Cell Stem Cell
, vol.7
, pp. 64-77
-
-
Samavarchi-Tehrani, P.1
Golipour, A.2
David, L.3
Sung, H.K.4
Beyer, T.A.5
Datti, A.6
Woltjen, K.7
Nagy, A.8
Wrana, J.L.9
-
89
-
-
76249119007
-
Opposing microRNA families regulate self-renewal in mouse embryonic stem cells
-
[CrossRef][PubMed]
-
Melton, C.; Judson, R.L.; Blelloch, R. Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature 2010, 463, 621–626. [CrossRef][PubMed]
-
(2010)
Nature
, vol.463
, pp. 621-626
-
-
Melton, C.1
Judson, R.L.2
Blelloch, R.3
-
90
-
-
84863882612
-
MicroRNAs as novel regulators of stem cell pluripotency and somatic cell reprogramming
-
[CrossRef][PubMed]
-
Li, M.A.; He, L. microRNAs as novel regulators of stem cell pluripotency and somatic cell reprogramming. Bioessays 2012, 34, 670–680. [CrossRef][PubMed]
-
(2012)
Bioessays
, vol.34
, pp. 670-680
-
-
Li, M.A.1
He, L.2
-
91
-
-
50849142559
-
A high-efficiency system for the generation and study of human induced pluripotent stem cells
-
[CrossRef][PubMed]
-
Maherali, N.; Ahfeldt, T.; Rigamonti, A.; Utikal, J.; Cowan, C.; Hochedlinger, K. A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem Cell 2008, 3, 340–345. [CrossRef][PubMed]
-
(2008)
Cell Stem Cell
, vol.3
, pp. 340-345
-
-
Maherali, N.1
Ahfeldt, T.2
Rigamonti, A.3
Utikal, J.4
Cowan, C.5
Hochedlinger, K.6
-
92
-
-
84938229064
-
A Comparative View on Human Somatic Cell Sources for iPSC Generation
-
[CrossRef][PubMed]
-
Raab, S.; Klingenstein, M.; Liebau, S.; Linta, L. A Comparative View on Human Somatic Cell Sources for iPSC Generation. Stem Cells Int. 2014, 2014, 768391. [CrossRef][PubMed]
-
(2014)
Stem Cells Int
, vol.2014
-
-
Raab, S.1
Klingenstein, M.2
Liebau, S.3
Linta, L.4
-
93
-
-
84922391415
-
A genome-wide RNAi screen identifies opposing functions of Snai1 and Snai2 on the Nanog dependency in reprogramming.
-
[CrossRef][PubMed]
-
Gingold, J.A.; Fidalgo, M.; Guallar, D.; Lau, Z.; Sun, Z.; Zhou, H.; Faiola, F.; Huang, X.; Lee, D.F.; Waghray, A. et al. A genome-wide RNAi screen identifies opposing functions of Snai1 and Snai2 on the Nanog dependency in reprogramming. Mol. Cell 2014, 56, 140–152. [CrossRef][PubMed]
-
(2014)
Mol. Cell
, vol.56
, pp. 140-152
-
-
Gingold, J.A.1
Fidalgo, M.2
Guallar, D.3
Lau, Z.4
Sun, Z.5
Zhou, H.6
Faiola, F.7
Huang, X.8
Lee, D.F.9
Waghray, A.10
-
94
-
-
84908151229
-
Histone core modifications regulating nucleosome structure and dynamics.
-
[CrossRef][PubMed]
-
Tessarz, P.; Kouzarides, T. Histone core modifications regulating nucleosome structure and dynamics. Nat. Rev. Mol. Cell Biol. 2014, 15, 703–708. [CrossRef][PubMed]
-
(2014)
Nat. Rev. Mol. Cell Biol
, vol.15
, pp. 703-708
-
-
Tessarz, P.1
Kouzarides, T.2
-
95
-
-
84870792079
-
Perceiving the epigenetic landscape through histone readers
-
[CrossRef][PubMed]
-
Musselman, C.A.; Lalonde, M.E.; Cote, J.; Kutateladze, T.G. Perceiving the epigenetic landscape through histone readers. Nat. Struct. Mol. Biol. 2012, 19, 1218–1227. [CrossRef][PubMed]
-
(2012)
Nat. Struct. Mol. Biol
, vol.19
, pp. 1218-1227
-
-
Musselman, C.A.1
Lalonde, M.E.2
Cote, J.3
Kutateladze, T.G.4
-
96
-
-
84865790047
-
An integrated encyclopedia of DNA elements in the human genome
-
Consortium E.P. An integrated encyclopedia of DNA elements in the human genome. Nature 2012, 489, 57–74.
-
(2012)
Nature
, vol.489
, pp. 57-74
-
-
Consortium, E.P.1
-
97
-
-
78650304236
-
Charting histone modifications and the functional organization of mammalian genomes
-
[CrossRef][PubMed]
-
Zhou, V.W.; Goren, A.; Bernstein, B.E. Charting histone modifications and the functional organization of mammalian genomes. Nat. Rev. Genet. 2011, 12, 7–18. [CrossRef][PubMed]
-
(2011)
. Nat. Rev. Genet
, vol.12
, pp. 7-18
-
-
Zhou, V.W.1
Goren, A.2
Bernstein, B.E.3
-
98
-
-
33847076849
-
Chromatin modifications and their function
-
[CrossRef][PubMed]
-
Kouzarides, T. Chromatin modifications and their function. Cell 2007, 128, 693–705. [CrossRef][PubMed]
-
(2007)
Cell
, vol.128
, pp. 693-705
-
-
Kouzarides, T.1
-
99
-
-
84867009687
-
Asymmetrically modified nucleosomes
-
[CrossRef][PubMed]
-
Voigt, P.; LeRoy, G.; Drury, W.J., 3rd; Zee, B.M.; Son, J.; Beck, D.B.; Young, N.L.; Garcia, B.A.; Reinberg, D. Asymmetrically modified nucleosomes. Cell 2012, 151, 181–193. [CrossRef][PubMed]
-
(2012)
Cell
, vol.151
, pp. 181-193
-
-
Voigt, P.1
Leroy, G.2
Drury, W.J.3
Zee, B.M.4
Son, J.5
Beck, D.B.6
Young, N.L.7
Garcia, B.A.8
Reinberg, D.9
-
100
-
-
33646070846
-
A bivalent chromatin structure marks key developmental genes in embryonic stem cells
-
[CrossRef][PubMed]
-
Bernstein, B.E.; Mikkelsen, T.S.; Xie, X.; Kamal, M.; Huebert, D.J.; Cuff, J.; Fry, B.; Meissner, A.; Wernig, M.; Plath, K. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 2006, 125, 315–326. [CrossRef][PubMed]
-
(2006)
Cell
, vol.125
, pp. 315-326
-
-
Bernstein, B.E.1
Mikkelsen, T.S.2
Xie, X.3
Kamal, M.4
Huebert, D.J.5
Cuff, J.6
Fry, B.7
Meissner, A.8
Wernig, M.9
Plath, K.10
-
101
-
-
84940889106
-
Recruiting polycomb to chromatin
-
[CrossRef][PubMed]
-
Van Kruijsbergen, I.; Hontelez, S.; Veenstra, G.J. Recruiting polycomb to chromatin. Int. J. Biochem. Cell Biol. 2015, 67, 177–187. [CrossRef][PubMed]
-
(2015)
Int. J. Biochem. Cell Biol
, vol.67
, pp. 177-187
-
-
Van Kruijsbergen, I.1
Hontelez, S.2
Veenstra, G.J.3
-
102
-
-
84896894869
-
EZH2 expands breast stem cells through activation of NOTCH1 signaling
-
[CrossRef][PubMed]
-
Gonzalez, M.E.; Moore, H.M.; Li, X.; Toy, K.A.; Huang, W.; Sabel, M.S.; Kidwell, K.M.; Kleer, C.G. EZH2 expands breast stem cells through activation of NOTCH1 signaling. Proc. Natl. Acad. Sci. USA 2014, 111, 3098–3103. [CrossRef][PubMed]
-
(2014)
Proc. Natl. Acad. Sci. USA
, vol.111
, pp. 3098-3103
-
-
Gonzalez, M.E.1
Moore, H.M.2
Li, X.3
Toy, K.A.4
Huang, W.5
Sabel, M.S.6
Kidwell, K.M.7
Kleer, C.G.8
-
103
-
-
84925394779
-
Diverse involvement of EZH2 in cancer epigenetics
-
[PubMed]
-
Volkel, P.; Dupret, B.; le Bourhis, X.; Angrand, P.O. Diverse involvement of EZH2 in cancer epigenetics. Am. J. Transl. Res. 2015, 7, 175–193. [PubMed]
-
(2015)
Am. J. Transl. Res
, vol.7
, pp. 175-193
-
-
Volkel, P.1
Dupret, B.2
Le Bourhis, X.3
Angrand, P.O.4
-
104
-
-
84856533341
-
EZH2 supports nasopharyngeal carcinoma cell aggressiveness by forming a co-repressor complex with HDAC1/HDAC2 and Snail to inhibit E-cadherin
-
[CrossRef][PubMed]
-
Tong, Z.T.; Cai, M.Y.; Wang, X.G.; Kong, L.L.; Mai, S.J.; Liu, Y.H.; Zhang, H.B.; Liao, Y.J.; Zheng, F.; Zhu, W. et al. EZH2 supports nasopharyngeal carcinoma cell aggressiveness by forming a co-repressor complex with HDAC1/HDAC2 and Snail to inhibit E-cadherin. Oncogene 2012, 31, 583–594. [CrossRef][PubMed]
-
(2012)
Oncogene
, vol.31
, pp. 583-594
-
-
Tong, Z.T.1
Cai, M.Y.2
Wang, X.G.3
Kong, L.L.4
Mai, S.J.5
Liu, Y.H.6
Zhang, H.B.7
Liao, Y.J.8
Zheng, F.9
Zhu, W.10
-
105
-
-
84962039979
-
Enhancer of zeste homolog 2 (EZH2) promotes tumour cell migration and invasion via epigenetic repression of E-cadherin in renal cell carcinoma
-
[CrossRef][PubMed]
-
Liu, L.; Xu, Z.; Zhong, L.; Wang, H.; Jiang, S.; Long, Q.; Xu, J.; Guo, J. Enhancer of zeste homolog 2 (EZH2) promotes tumour cell migration and invasion via epigenetic repression of E-cadherin in renal cell carcinoma. BJU Int. 2014. [CrossRef][PubMed]
-
(2014)
BJU Int
-
-
Liu, L.1
Xu, Z.2
Zhong, L.3
Wang, H.4
Jiang, S.5
Long, Q.6
Xu, J.7
Guo, J.8
-
106
-
-
84873273556
-
Polycomb group protein EZH2-mediated E-cadherin repression promotes metastasis of oral tongue squamous cell carcinoma. Mol
-
[CrossRef][PubMed]
-
Wang, C.; Liu, X.; Chen, Z.; Huang, H.; Jin, Y.; Kolokythas, A.; Wang, A.; Dai, Y.; Wong, D.T.; Zhou, X. Polycomb group protein EZH2-mediated E-cadherin repression promotes metastasis of oral tongue squamous cell carcinoma. Mol. Carcinog. 2013, 52, 229–236. [CrossRef][PubMed]
-
(2013)
Carcinog
, vol.52
, pp. 229-236
-
-
Wang, C.1
Liu, X.2
Chen, Z.3
Huang, H.4
Jin, Y.5
Kolokythas, A.6
Wang, A.7
Dai, Y.8
Wong, D.T.9
Zhou, X.10
-
107
-
-
57649124289
-
Repression of E-cadherin by the polycomb group protein EZH2 in cancer
-
[CrossRef][PubMed]
-
Cao, Q.; Yu, J.; Dhanasekaran, S.M.; Kim, J.H.; Mani, R.S.; Tomlins, S.A.; Mehra, R.; Laxman, B.; Cao, X.; Yu, J. et al. Repression of E-cadherin by the polycomb group protein EZH2 in cancer. Oncogene 2008, 27, 7274–7284. [CrossRef][PubMed]
-
(2008)
Oncogene
, vol.27
, pp. 7274-7284
-
-
Cao, Q.1
Yu, J.2
Dhanasekaran, S.M.3
Kim, J.H.4
Mani, R.S.5
Tomlins, S.A.6
Mehra, R.7
Laxman, B.8
Cao, X.9
Yu, J.10
-
108
-
-
47949125993
-
Polycomb complex 2 is required for E-cadherin repression by the Snail1 transcription factor.
-
[CrossRef][PubMed]
-
Herranz, N.; Pasini, D.; Diaz, V.M.; Franci, C.; Gutierrez, A.; Dave, N.; Escriva, M.; Hernandez-Munoz, I.; Di Croce, L.; Helin, K. et al. Polycomb complex 2 is required for E-cadherin repression by the Snail1 transcription factor. Mol. Cell. Biol. 2008, 28, 4772–4781. [CrossRef][PubMed]
-
(2008)
Mol. Cell. Biol
, vol.28
, pp. 4772-4781
-
-
Herranz, N.1
Pasini, D.2
Diaz, V.M.3
Franci, C.4
Gutierrez, A.5
Dave, N.6
Escriva, M.7
Hernandez-Munoz, I.8
Di Croce, L.9
Helin, K.10
-
109
-
-
84922496665
-
Snail2/Slug cooperates with Polycomb repressive complex 2 (PRC2) to regulate neural crest development
-
[CrossRef][PubMed]
-
Tien, C.L.; Jones, A.; Wang, H.; Gerigk, M.; Nozell, S.; Chang, C. Snail2/Slug cooperates with Polycomb repressive complex 2 (PRC2) to regulate neural crest development. Development 2015, 142, 722–731. [CrossRef][PubMed]
-
(2015)
Development
, vol.142
, pp. 722-731
-
-
Tien, C.L.1
Jones, A.2
Wang, H.3
Gerigk, M.4
Nozell, S.5
Chang, C.6
-
110
-
-
84908349815
-
Regulates epithelial-mesenchymal transition of cancer cells induced by TGF-b. Biochem.
-
[CrossRef][PubMed]
-
Oktyabri, D.; Tange, S.; Terashima, M.; Ishimura, A.; Suzuki, T. EED regulates epithelial-mesenchymal transition of cancer cells induced by TGF-b. Biochem. Biophys. Res. Commun. 2014, 453, 124–130. [CrossRef][PubMed]
-
(2014)
Biophys. Res. Commun
, vol.453
, pp. 124-130
-
-
Oktyabri, D.1
Tange, S.2
Terashima, M.3
Ishimura, A.4
Suzuki, T.5
-
111
-
-
84931560384
-
Ezh2 maintains retinal progenitor proliferation, transcriptional integrity, and the timing of late differentiation.
-
[CrossRef][PubMed]
-
Zhang, J.; Taylor, R.J.; La Torre, A.; Wilken, M.S.; Cox, K.E.; Reh, T.A.; Vetter, M.L. Ezh2 maintains retinal progenitor proliferation, transcriptional integrity, and the timing of late differentiation. Dev. Biol. 2015, 403, 128–138. [CrossRef][PubMed]
-
(2015)
Dev. Biol
, vol.403
, pp. 128-138
-
-
Zhang, J.1
Taylor, R.J.2
La Torre, A.3
Wilken, M.S.4
Cox, K.E.5
Reh, T.A.6
Vetter, M.L.7
-
112
-
-
62149122634
-
Ezh2 orchestrates gene expression for the stepwise differentiation of tissue-specific stem cells
-
[CrossRef][PubMed]
-
Ezhkova, E.; Pasolli, H.A.; Parker, J.S.; Stokes, N.; Su, I.H.; Hannon, G.; Tarakhovsky, A.; Fuchs, E. Ezh2 orchestrates gene expression for the stepwise differentiation of tissue-specific stem cells. Cell 2009, 136, 1122–1135. [CrossRef][PubMed]
-
(2009)
Cell
, vol.136
, pp. 1122-1135
-
-
Ezhkova, E.1
Pasolli, H.A.2
Parker, J.S.3
Stokes, N.4
Su, I.H.5
Hannon, G.6
Tarakhovsky, A.7
Fuchs, E.8
-
113
-
-
53649093784
-
Accumulation of malignant renal stem cells is associated with epigenetic changes in normal renal progenitor genes
-
[CrossRef][PubMed]
-
Metsuyanim, S.; Pode-Shakked, N.; Schmidt-Ott, K.M.; Keshet, G.; Rechavi, G.; Blumental, D.; Dekel, B. Accumulation of malignant renal stem cells is associated with epigenetic changes in normal renal progenitor genes. Stem Cells 2008, 26, 1808–1817. [CrossRef][PubMed]
-
(2008)
Stem Cells
, vol.26
, pp. 1808-1817
-
-
Metsuyanim, S.1
Pode-Shakked, N.2
Schmidt-Ott, K.M.3
Keshet, G.4
Rechavi, G.5
Blumental, D.6
Dekel, B.7
-
114
-
-
84892577376
-
In situ histone landscape of nephrogenesis
-
[CrossRef][PubMed]
-
McLaughlin, N.; Wang, F.; Saifudeen, Z.; el-Dahr, S.S. In situ histone landscape of nephrogenesis. Epigenetics 2014, 9, 222–235. [CrossRef][PubMed]
-
(2014)
Epigenetics
, vol.9
, pp. 222-235
-
-
McLaughlin, N.1
Wang, F.2
Saifudeen, Z.3
El-Dahr, S.S.4
-
115
-
-
84886665688
-
Reactivation of NCAM1 defines a subpopulation of human adult kidney epithelial cells with clonogenic and stem/progenitor properties.
-
[CrossRef][PubMed]
-
Buzhor, E.; Omer, D.; Harari-Steinberg, O.; Dotan, Z.; Vax, E.; Pri-Chen, S.; Metsuyanim, S.; Pleniceanu, O.; Goldstein, R.S.; Dekel, B. Reactivation of NCAM1 defines a subpopulation of human adult kidney epithelial cells with clonogenic and stem/progenitor properties. Am. J. Pathol. 2013, 183, 1621–1633. [CrossRef][PubMed]
-
(2013)
Am. J. Pathol
, vol.183
, pp. 1621-1633
-
-
Buzhor, E.1
Omer, D.2
Harari-Steinberg, O.3
Dotan, Z.4
Vax, E.5
Pri-Chen, S.6
Metsuyanim, S.7
Pleniceanu, O.8
Goldstein, R.S.9
Dekel, B.10
-
116
-
-
84943423371
-
Ezh2 mediated H3K27me3 activity facilitates somatic transition during human pluripotent reprogramming.
-
[CrossRef][PubMed]
-
Rao, R.A.; Dhele, N.; Cheemadan, S.; Ketkar, A.; Jayandharan, G.R.; Palakodeti, D.; Rampalli, S. Ezh2 mediated H3K27me3 activity facilitates somatic transition during human pluripotent reprogramming. Sci. Rep. 2015, 5, 8229. [CrossRef][PubMed]
-
(2015)
Sci. Rep
, vol.5
-
-
Rao, R.A.1
Dhele, N.2
Cheemadan, S.3
Ketkar, A.4
Jayandharan, G.R.5
Palakodeti, D.6
Rampalli, S.7
-
117
-
-
84921487831
-
Wilms tumor suppressor, WT1, suppresses epigenetic silencing of the b-catenin gene
-
[CrossRef][PubMed]
-
Akpa, M.M.; Iglesias, D.M.; Chu, L.L.; Cybulsky, M.; Bravi, C.; Goodyer, P.R. Wilms tumor suppressor, WT1, suppresses epigenetic silencing of the b-catenin gene. J. Biol. Chem. 2015, 290, 2279–2288. [CrossRef][PubMed]
-
(2015)
J. Biol. Chem
, vol.290
, pp. 2279-2288
-
-
Akpa, M.M.1
Iglesias, D.M.2
Chu, L.L.3
Cybulsky, M.4
Bravi, C.5
Goodyer, P.R.6
-
118
-
-
84919917039
-
JARID2 is involved in transforming growth factor-_-induced epithelial-mesenchymal transition of lung and colon cancer cell lines
-
[CrossRef][PubMed]
-
Tange, S.; Oktyabri, D.; Terashima, M.; Ishimura, A.; Suzuki, T. JARID2 is involved in transforming growth factor-_-induced epithelial-mesenchymal transition of lung and colon cancer cell lines. PLoS ONE 2014, 9, e115684. [CrossRef][PubMed]
-
(2014)
Plos ONE
, vol.9
-
-
Tange, S.1
Oktyabri, D.2
Terashima, M.3
Ishimura, A.4
Suzuki, T.5
-
119
-
-
78649328949
-
Global profiling of histone and DNA methylation reveals epigenetic-based regulation of gene expression during epithelial to mesenchymal transition in prostate cells
-
[CrossRef][PubMed]
-
Ke, X.S.; Qu, Y.; Cheng, Y.; Li, W.C.; Rotter, V.; Oyan, A.M.; Kalland, K.H. Global profiling of histone and DNA methylation reveals epigenetic-based regulation of gene expression during epithelial to mesenchymal transition in prostate cells. BMC Genom. 2010, 11, 669. [CrossRef][PubMed]
-
(2010)
BMC Genom
, vol.11
-
-
Ke, X.S.1
Qu, Y.2
Cheng, Y.3
Li, W.C.4
Rotter, V.5
Oyan, A.M.6
Kalland, K.H.7
-
120
-
-
84927152566
-
Snail and Slug collaborate on EMT and tumor metastasis through miR-101-mediated EZH2 axis in oral tongue squamous cell carcinoma
-
[CrossRef][PubMed]
-
Zheng, M.; Jiang, Y.P.; Chen, W.; Li, K.D.; Liu, X.; Gao, S.Y.; Feng, H.; Wang, S.S.; Jiang, J.; Ma, X.R. et al. Snail and Slug collaborate on EMT and tumor metastasis through miR-101-mediated EZH2 axis in oral tongue squamous cell carcinoma. Oncotarget 2015, 6, 6797–6810. [CrossRef][PubMed]
-
(2015)
Oncotarget
, vol.6
, pp. 6797-6810
-
-
Zheng, M.1
Jiang, Y.P.2
Chen, W.3
Li, K.D.4
Liu, X.5
Gao, S.Y.6
Feng, H.7
Wang, S.S.8
Jiang, J.9
Ma, X.R.10
-
121
-
-
0038756636
-
Transforming growth factor b-1 induces snail transcription factor in epithelial cell lines: Mechanisms for epithelial mesenchymal transitions
-
[CrossRef][PubMed]
-
Peinado, H.; Quintanilla, M.; Cano, A. Transforming growth factor b-1 induces snail transcription factor in epithelial cell lines: Mechanisms for epithelial mesenchymal transitions. J. Biol. Chem. 2003, 278, 21113–21123. [CrossRef][PubMed]
-
(2003)
J. Biol. Chem
, vol.278
, pp. 21113-21123
-
-
Peinado, H.1
Quintanilla, M.2
Cano, A.3
-
122
-
-
58149239733
-
Roles of TGF-b family signaling in stem cell renewal and differentiation
-
[CrossRef][PubMed]
-
Watabe, T.; Miyazono, K. Roles of TGF-b family signaling in stem cell renewal and differentiation. Cell Res. 2009, 19, 103–115. [CrossRef][PubMed]
-
(2009)
Cell Res
, vol.19
, pp. 103-115
-
-
Watabe, T.1
Miyazono, K.2
-
123
-
-
27144554645
-
TGF-b control of cell proliferation
-
[CrossRef][PubMed]
-
Huang, S.S.; Huang, J.S. TGF-b control of cell proliferation. J. Cell. Biochem. 2005, 96, 447–462. [CrossRef][PubMed]
-
(2005)
J. Cell. Biochem
, vol.96
, pp. 447-462
-
-
Huang, S.S.1
Huang, J.S.2
-
124
-
-
0036144377
-
TGF-b induces apoptosis through Smad-mediated expression of DAP-kinase.
-
[CrossRef][PubMed]
-
Jang, C.W.; Chen, C.H.; Chen, C.C.; Chen, J.Y.; Su, Y.H.; Chen, R.H. TGF-b induces apoptosis through Smad-mediated expression of DAP-kinase. Nat. Cell Biol. 2002, 4, 51–58. [CrossRef][PubMed]
-
(2002)
Nat. Cell Biol
, vol.4
, pp. 51-58
-
-
Jang, C.W.1
Chen, C.H.2
Chen, C.C.3
Chen, J.Y.4
Su, Y.H.5
Chen, R.H.6
-
125
-
-
61749097816
-
TGF-b superfamily signaling in embryonic development and homeostasis.
-
[CrossRef][PubMed]
-
Wu, M.Y.; Hill, C.S. TGF-b superfamily signaling in embryonic development and homeostasis. Dev. Cell 2009, 16, 329–343. [CrossRef][PubMed]
-
(2009)
Dev. Cell
, vol.16
, pp. 329-343
-
-
Wu, M.Y.1
Hill, C.S.2
-
126
-
-
80155137594
-
Master transcription factors determine cell-type-specific responses to TGF-b signaling
-
[CrossRef][PubMed]
-
Mullen, A.C.; Orlando, D.A.; Newman, J.J.; Loven, J.; Kumar, R.M.; Bilodeau, S.; Reddy, J.; Guenther, M.G.; DeKoter, R.P.; Young, R.A. Master transcription factors determine cell-type-specific responses to TGF-b signaling. Cell 2011, 147, 565–576. [CrossRef][PubMed]
-
(2011)
Cell
, vol.147
, pp. 565-576
-
-
Mullen, A.C.1
Orlando, D.A.2
Newman, J.J.3
Loven, J.4
Kumar, R.M.5
Bilodeau, S.6
Reddy, J.7
Guenther, M.G.8
Dekoter, R.P.9
Young, R.A.10
-
127
-
-
85114275651
-
Identification of a potent signaling pathway that orchestrates both reprogramming and transdifferentiation
-
2015, Stockholm, Sweden, 26 June 2015
-
Ruetz, T.; Pfisterer, U.; DiStefano, B.; Johnsson, A.; Choen, E.; Linnarsson, S.; Graf, T.; Parmar, M.; Kaji, K. Identification of a potent signaling pathway that orchestrates both reprogramming and transdifferentiation. In Proceedings of the International Society for Stem Cell Research, Annual Meeting 2015, Stockholm, Sweden, 26 June 2015.
-
Proceedings of the International Society for Stem Cell Research, Annual Meeting
-
-
Ruetz, T.1
Pfisterer, U.2
Distefano, B.3
Johnsson, A.4
Choen, E.5
Linnarsson, S.6
Graf, T.7
Parmar, M.8
Kaji, K.9
-
128
-
-
85114281491
-
-
Dublin, Ireland. Unpublished work
-
Andrews, D.; Oliviero, G.; de Chiara, L.; Cagney, G.; Crean, J. University College Dublin, Dublin, Ireland. Unpublished work. 2015.
-
(2015)
University College Dublin
-
-
Andrews, D.1
Oliviero, G.2
De Chiara, L.3
Cagney, G.4
Crean, J.5
|