-
1
-
-
0036769103
-
Developments in young infants' reasoning about occluded objects
-
A. Aguiar and R. Baillargeon. Developments in young infants' reasoning about occluded objects. Cognitive psychology, 2002.
-
(2002)
Cognitive Psychology
-
-
Aguiar, A.1
Baillargeon, R.2
-
2
-
-
84990051868
-
-
arXiv
-
L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. ArXiv, 2016.
-
(2016)
Deeplab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected Crfs.
-
-
Chen, L.-C.1
Papandreou, G.2
Kokkinos, I.3
Murphy, K.4
Yuille, A.L.5
-
3
-
-
84986244054
-
Attention to scale: Scale-Aware semantic image segmentation
-
L.-C. Chen, Y. Yang, J. Wang, W. Xu, and A. L. Yuille. Attention to scale: Scale-Aware semantic image segmentation. In CVPR, 2016.
-
(2016)
CVPR
-
-
Chen, L.-C.1
Yang, Y.2
Wang, J.3
Xu, W.4
Yuille, A.L.5
-
4
-
-
85039423419
-
Photographic image synthesis with cascaded refinement networks
-
Q. Chen and V. Koltun. Photographic image synthesis with cascaded refinement networks. In ICCV, 2017.
-
(2017)
ICCV
-
-
Chen, Q.1
Koltun, V.2
-
5
-
-
84959224495
-
Multi-instance object segmentation with occlusion handling
-
Y.-T. Chen, X. Liu, and M.-H. Yang. Multi-instance object segmentation with occlusion handling. In CVPR, 2015.
-
(2015)
CVPR
-
-
Chen, Y.-T.1
Liu, X.2
Yang, M.-H.3
-
6
-
-
85041931014
-
Instance-sensitive fully convolutional networks
-
J. Dai, K. He, Y. Li, S. Ren, and J. Sun. Instance-sensitive fully convolutional networks. In ECCV, 2016.
-
(2016)
ECCV
-
-
Dai, J.1
He, K.2
Li, Y.3
Ren, S.4
Sun, J.5
-
7
-
-
84973890848
-
Boxsup: Exploiting bounding boxes to supervise convolutional networks for semantic segmentation
-
J. Dai, K. He, and J. Sun. Boxsup: Exploiting bounding boxes to supervise convolutional networks for semantic segmentation. In ICCV, 2015.
-
(2015)
ICCV
-
-
Dai, J.1
He, K.2
Sun, J.3
-
8
-
-
84986282070
-
Instance-Aware semantic segmentation via multi-Task network cascades
-
J. Dai, K. He, and J. Sun. Instance-Aware semantic segmentation via multi-Task network cascades. In CVPR, 2016.
-
(2016)
CVPR
-
-
Dai, J.1
He, K.2
Sun, J.3
-
9
-
-
85198028989
-
ImageNet: A large-scale hierarchical image database
-
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical Image Database. In CVPR, 2009.
-
(2009)
CVPR
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.-J.4
Li, K.5
Fei-Fei, L.6
-
10
-
-
84973897611
-
Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture
-
D. Eigen and R. Fergus. Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In ICCV, 2015.
-
(2015)
ICCV
-
-
Eigen, D.1
Fergus, R.2
-
11
-
-
80052880752
-
A segmentation-Aware object detection model with occlusion handling
-
T. Gao, B. Packer, and D. Koller. A segmentation-Aware object detection model with occlusion handling. In CVPR, 2011.
-
(2011)
CVPR
-
-
Gao, T.1
Packer, B.2
Koller, D.3
-
13
-
-
85029359197
-
Fast R-CNN
-
R. Girshick. Fast R-CNN. In ICCV, 2015.
-
(2015)
ICCV
-
-
Girshick, R.1
-
14
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014.
-
(2014)
CVPR
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
16
-
-
84887383675
-
Beyond the line of sight: Labeling the underlying surfaces
-
R. Guo and D. Hoiem. Beyond the line of sight: Labeling the underlying surfaces. In ECCV, 2012.
-
(2012)
ECCV
-
-
Guo, R.1
Hoiem, D.2
-
17
-
-
84856686500
-
Semantic contours from inverse detectors
-
B. Hariharan, P. A. Arbeláez, L. D. Bourdev, S. Maji, and J. Malik. Semantic contours from inverse detectors. In ICCV, 2011.
-
(2011)
ICCV
-
-
Hariharan, B.1
Arbeláez, P.A.2
Bourdev, L.D.3
Maji, S.4
Malik, J.5
-
18
-
-
84928278589
-
Spatial pyramid pooling in deep convolutional networks for visual recognition
-
K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional networks for visual recognition. In ECCV, 2014.
-
(2014)
ECCV
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
19
-
-
84986274465
-
Deep residual learning for image recognition
-
K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR, 2016.
-
(2016)
CVPR
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
20
-
-
84866685941
-
Occlusion reasoning for object detection under arbitrary viewpoint
-
E. Hsiao and M. Hebert. Occlusion reasoning for object detection under arbitrary viewpoint. In CVPR, 2012.
-
(2012)
CVPR
-
-
Hsiao, E.1
Hebert, M.2
-
21
-
-
84898828634
-
Scene collaging: Analysis and synthesis of natural images with semantic layers
-
P. Isola and C. Liu. Scene collaging: Analysis and synthesis of natural images with semantic layers. In ICCV, 2013.
-
(2013)
ICCV
-
-
Isola, P.1
Liu, C.2
-
22
-
-
85030759098
-
Image-To-image translation with conditional adversarial networks
-
P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-To-image translation with conditional adversarial networks. In CVPR, 2017.
-
(2017)
CVPR
-
-
Isola, P.1
Zhu, J.-Y.2
Zhou, T.3
Efros, A.A.4
-
23
-
-
84973915370
-
Amodal completion and size constancy in natural scenes
-
A. Kar, S. Tulsiani, J. Carreira, and J. Malik. Amodal completion and size constancy in natural scenes. In ICCV, 2015.
-
(2015)
ICCV
-
-
Kar, A.1
Tulsiani, S.2
Carreira, J.3
Malik, J.4
-
24
-
-
84959200010
-
Learning to propose objects
-
P. Krähenbühl and V. Koltun. Learning to propose objects. In CVPR, 2015.
-
(2015)
CVPR
-
-
Krähenbühl, P.1
Koltun, V.2
-
25
-
-
85018887662
-
Precomputed real-Time texture synthesis with markovian generative adversarial networks
-
C. Li and M.Wand. Precomputed real-Time texture synthesis with markovian generative adversarial networks. In ECCV, 2016.
-
(2016)
ECCV
-
-
Li, C.1
Wand, M.2
-
27
-
-
85044275810
-
Amodal instance segmentation
-
K. Li and J. Malik. Amodal instance segmentation. In ECCV, 2016.
-
(2016)
ECCV
-
-
Li, K.1
Malik, J.2
-
28
-
-
84986261676
-
Efficient piecewise training of deep structured models for semantic segmentation
-
G. Lin, C. Shen, , and I. Van den Hengel, Anton Reid. Efficient piecewise training of deep structured models for semantic segmentation. In CVPR, 2016.
-
(2016)
CVPR
-
-
Lin, G.1
Shen, C.2
Hengel Den I.Van3
Reid, A.4
-
29
-
-
84937834115
-
Microsoft coco: Common objects in context
-
T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollr, and C. L. Zitnick. Microsoft coco: Common objects in context. In ECCV, 2014.
-
(2014)
ECCV
-
-
Lin, T.-Y.1
Maire, M.2
Belongie, S.3
Hays, J.4
Perona, P.5
Ramanan, D.6
Dollr, P.7
Zitnick, C.L.8
-
30
-
-
84973860883
-
Semantic image segmentation via deep parsing network
-
Z. Liu, X. Li, P. Luo, C.-C. Loy, and X. Tang. Semantic image segmentation via deep parsing network. In ICCV, 2015.
-
(2015)
ICCV
-
-
Liu, Z.1
Li, X.2
Luo, P.3
Loy, C.-C.4
Tang, X.5
-
31
-
-
84959205572
-
Fully convolutional networks for semantic segmentation
-
J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR, 2015.
-
(2015)
CVPR
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
32
-
-
85083952137
-
Deep multi-scale video prediction beyond mean square error
-
M. Mathieu, C. Couprie, and Y. LeCun. Deep multi-scale video prediction beyond mean square error. In ICLR, 2016.
-
(2016)
ICLR
-
-
Mathieu, M.1
Couprie, C.2
LeCun, Y.3
-
35
-
-
84973879016
-
Learning deconvolution network for semantic segmentation
-
H. Noh, S. Hong, and B. Han. Learning deconvolution network for semantic segmentation. In ICCV, 2015.
-
(2015)
ICCV
-
-
Noh, H.1
Hong, S.2
Han, B.3
-
36
-
-
84965124068
-
Weakly-And semi-supervised learning of a dcnn for semantic image segmentation
-
G. Papandreou, L.-C. Chen, K. Murphy, and A. L. Yuille. Weakly-And semi-supervised learning of a dcnn for semantic image segmentation. In ICCV, 2015.
-
(2015)
ICCV
-
-
Papandreou, G.1
Chen, L.-C.2
Murphy, K.3
Yuille, A.L.4
-
37
-
-
84986294165
-
Context encoders: Feature learning by inpainting
-
D. Pathak, P. Krähenbühl, J. Donahue, T. Darrell, and A. Efros. Context encoders: Feature learning by inpainting. In CVPR, 2016.
-
(2016)
CVPR
-
-
Pathak, D.1
Krähenbühl, P.2
Donahue, J.3
Darrell, T.4
Efros, A.5
-
41
-
-
84986308404
-
You only look once: Unified, real-time object detection
-
J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified, real-time object detection. CVPR, 2016.
-
(2016)
CVPR
-
-
Redmon, J.1
Divvala, S.2
Girshick, R.3
Farhadi, A.4
-
42
-
-
84960980241
-
Faster R-CNN: Towards real-Time object detection with region proposal networks
-
S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-Time object detection with region proposal networks. In NIPS, 2015.
-
(2015)
NIPS
-
-
Ren, S.1
He, K.2
Girshick, R.3
Sun, J.4
-
44
-
-
85062871023
-
Labelme3d: Building a database of 3d scenes from user annotations
-
B. C. Russell and A. Torralba. Labelme3d: Building a database of 3d scenes from user annotations. In CVPR, 2009.
-
(2009)
CVPR
-
-
Russell, B.C.1
Torralba, A.2
-
46
-
-
84911399031
-
Scene parsing with object instances and occlusion ordering
-
J. Tighe, M. Niethammer, and S. Lazebnik. Scene parsing with object instances and occlusion ordering. In CVPR, 2014.
-
(2014)
CVPR
-
-
Tighe, J.1
Niethammer, M.2
Lazebnik, S.3
-
47
-
-
33845597355
-
The layout consistent random field for recognizing and segmenting partially occluded objects
-
J. Winn and J. Shotton. The layout consistent random field for recognizing and segmenting partially occluded objects. In CVPR, 2006.
-
(2006)
CVPR
-
-
Winn, J.1
Shotton, J.2
-
48
-
-
84904687911
-
Beyond pascal: A benchmark for 3d object detection in the wild
-
Y. Xiang, R. Mottaghi, and S. Savarese. Beyond pascal: A benchmark for 3d object detection in the wild. In WACV, 2014.
-
(2014)
WACV
-
-
Xiang, Y.1
Mottaghi, R.2
Savarese, S.3
-
50
-
-
85013877252
-
-
arXiv
-
R. Yeh, C. Chen, T. Y. Lim, M. Hasegawa-Johnson, and M. N. Do. Semantic image inpainting with perceptual and contextual losses. ArXiv, 2016.
-
(2016)
Semantic Image Inpainting with Perceptual and Contextual Losses.
-
-
Yeh, R.1
Chen, C.2
Lim, T.Y.3
Hasegawa-Johnson, M.4
Do, M.N.5
-
51
-
-
84990062696
-
A multipath network for object detection
-
S. Zagoruyko, A. Lerer, T.-Y. Lin, P. O. Pinheiro, S. Gross, S. Chintala, and P. Dollár. A multipath network for object detection. In BMVC, 2016.
-
(2016)
BMVC
-
-
Zagoruyko, S.1
Lerer, A.2
Lin, T.-Y.3
Pinheiro, P.O.4
Gross, S.5
Chintala, S.6
Dollár, P.7
-
52
-
-
84986269578
-
Instance-level segmentation for autonomous driving with deep densely connected mrfs
-
Z. Zhang, S. Fidler, and R. Urtasun. Instance-level segmentation for autonomous driving with deep densely connected mrfs. In CVPR, 2016.
-
(2016)
CVPR
-
-
Zhang, Z.1
Fidler, S.2
Urtasun, R.3
-
53
-
-
84973861983
-
Conditional random, Fields as recurrent neural networks
-
S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang, and P. H. Torr. Conditional random fields as recurrent neural networks. In ICCV, 2015.
-
(2015)
ICCV
-
-
Zheng, S.1
Jayasumana, S.2
Romera-Paredes, B.3
Vineet, V.4
Su, Z.5
Du, D.6
Huang, C.7
Torr, P.H.8
-
54
-
-
85028006260
-
Target-driven visual navigation in indoor scenes using deep reinforcement learning
-
Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and A. Farhadi. Target-driven visual navigation in indoor scenes using deep reinforcement learning. In ICRA, 2017.
-
(2017)
ICRA
-
-
Zhu, Y.1
Mottaghi, R.2
Kolve, E.3
Lim, J.J.4
Gupta, A.5
Fei-Fei, L.6
Farhadi, A.7
|