메뉴 건너뛰기




Volumn 2017-October, Issue , 2017, Pages 1520-1529

Photographic Image Synthesis with Cascaded Refinement Networks

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; IMAGING SYSTEMS; PHOTOGRAPHY; SEMANTICS;

EID: 85039423419     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2017.168     Document Type: Conference Paper
Times cited : (1076)

References (52)
  • 1
    • 85081997770 scopus 로고    scopus 로고
    • Towards principled methods for training generative adversarial networks
    • M. Arjovsky and L. Bottou. Towards principled methods for training generative adversarial networks. In ICLR, 2017
    • (2017) ICLR
    • Arjovsky, M.1    Bottou, L.2
  • 3
    • 85083954075 scopus 로고    scopus 로고
    • Super-resolution with deep convolutional sufficient statistics
    • J. Bruna, P. Sprechmann, and Y. LeCun. Super-resolution with deep convolutional sufficient statistics. In ICLR, 2016
    • (2016) ICLR
    • Bruna, J.1    Sprechmann, P.2    LeCun, Y.3
  • 4
    • 84959180587 scopus 로고    scopus 로고
    • Robust reconstruction of indoor scenes
    • S. Choi, Q. Zhou, and V. Koltun. Robust reconstruction of indoor scenes. In CVPR, 2015
    • (2015) CVPR
    • Choi, S.1    Zhou, Q.2    Koltun, V.3
  • 6
    • 84965143571 scopus 로고    scopus 로고
    • Deep generative image models using a Laplacian pyramid of adversarial networks
    • E. L. Denton, S. Chintala, A. Szlam, and R. Fergus. Deep generative image models using a Laplacian pyramid of adversarial networks. In NIPS, 2015
    • (2015) NIPS
    • Denton, E.L.1    Chintala, S.2    Szlam, A.3    Fergus, R.4
  • 7
    • 85019269786 scopus 로고    scopus 로고
    • Generating images with perceptual similarity metrics based on deep networks
    • A. Dosovitskiy and T. Brox. Generating images with perceptual similarity metrics based on deep networks. In NIPS, 2016
    • (2016) NIPS
    • Dosovitskiy, A.1    Brox, T.2
  • 8
    • 85026286150 scopus 로고    scopus 로고
    • Learning to generate chairs, tables and cars with convolutional networks
    • A. Dosovitskiy, J. T. Springenberg, M. Tatarchenko, and T. Brox. Learning to generate chairs, tables and cars with convolutional networks. PAMI, 2016
    • (2016) PAMI
    • Dosovitskiy, A.1    Springenberg, J.T.2    Tatarchenko, M.3    Brox, T.4
  • 9
    • 85018936904 scopus 로고    scopus 로고
    • Unsupervised learning for physical interaction through video prediction
    • C. Finn, I. J. Goodfellow, and S. Levine. Unsupervised learning for physical interaction through video prediction. In NIPS, 2016
    • (2016) NIPS
    • Finn, C.1    Goodfellow, I.J.2    Levine, S.3
  • 10
    • 84986252211 scopus 로고    scopus 로고
    • Deep stereo: Learning to predict new views from the world's imagery
    • J. Flynn, I. Neulander, J. Philbin, and N. Snavely. Deep stereo: Learning to predict new views from the world's imagery. In CVPR, 2016
    • (2016) CVPR
    • Flynn, J.1    Neulander, I.2    Philbin, J.3    Snavely, N.4
  • 11
    • 84986325538 scopus 로고    scopus 로고
    • Image style transfer using convolutional neural networks
    • L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer using convolutional neural networks. In CVPR, 2016
    • (2016) CVPR
    • Gatys, L.A.1    Ecker, A.S.2    Bethge, M.3
  • 13
    • 85083951001 scopus 로고    scopus 로고
    • Explaining and harnessing adversarial examples
    • I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. In ICLR, 2015
    • (2015) ICLR
    • Goodfellow, I.J.1    Shlens, J.2    Szegedy, C.3
  • 15
    • 84877765715 scopus 로고    scopus 로고
    • Multiple choice learning: Learning to produce multiple structured outputs
    • A. Guzmán-Rivera, D. Batra, and P. Kohli. Multiple choice learning: Learning to produce multiple structured outputs. In NIPS, 2012
    • (2012) NIPS
    • Guzmán-Rivera, A.1    Batra, D.2    Kohli, P.3
  • 16
    • 85030759098 scopus 로고    scopus 로고
    • Image-to-image translation with conditional adversarial networks
    • P. Isola, J. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation with conditional adversarial networks. In CVPR, 2017
    • (2017) CVPR
    • Isola, P.1    Zhu, J.2    Zhou, T.3    Efros, A.A.4
  • 17
    • 85019245160 scopus 로고    scopus 로고
    • Perceptual losses for real-time style transfer and super-resolution
    • J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for real-time style transfer and super-resolution. In ECCV, 2016
    • (2016) ECCV
    • Johnson, J.1    Alahi, A.2    Fei-Fei, L.3
  • 20
    • 85041928470 scopus 로고    scopus 로고
    • Photorealism: 50 Years of Hyperrealistic Painting
    • O. Letze. Photorealism: 50 Years of Hyperrealistic Painting. Hatje Cantz, 2013
    • (2013) Hatje Cantz
    • Letze, O.1
  • 21
    • 84959205572 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation
    • J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR, 2015
    • (2015) CVPR
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 22
    • 84893676344 scopus 로고    scopus 로고
    • Rectifier nonlinearities improve neural network acoustic models
    • A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier nonlinearities improve neural network acoustic models. In ICML, 2013
    • (2013) ICML
    • Maas, A.L.1    Hannun, A.Y.2    Ng, A.Y.3
  • 25
    • 85083952137 scopus 로고    scopus 로고
    • Deep multi-scale video prediction beyond mean square error
    • M. Mathieu, C. Couprie, and Y. LeCun. Deep multi-scale video prediction beyond mean square error. In ICLR, 2016
    • (2016) ICLR
    • Mathieu, M.1    Couprie, C.2    LeCun, Y.3
  • 27
    • 85019234593 scopus 로고    scopus 로고
    • Synthesizing the preferred inputs for neurons in neural networks via deep generator networks
    • A. Nguyen, A. Dosovitskiy, J. Yosinski, T. Brox, and J. Clune. Synthesizing the preferred inputs for neurons in neural networks via deep generator networks. In NIPS, 2016
    • (2016) NIPS
    • Nguyen, A.1    Dosovitskiy, A.2    Yosinski, J.3    Brox, T.4    Clune, J.5
  • 28
    • 85041919547 scopus 로고    scopus 로고
    • Plug & play generative networks: Conditional iterative generation of images in latent space
    • A. Nguyen, J. Yosinski, Y. Bengio, A. Dosovitskiy, and J. Clune. Plug & play generative networks: Conditional iterative generation of images in latent space. In CVPR, 2017
    • (2017) CVPR
    • Nguyen, A.1    Yosinski, J.2    Bengio, Y.3    Dosovitskiy, A.4    Clune, J.5
  • 29
    • 84946206172 scopus 로고    scopus 로고
    • Deep neural networks are easily fooled: High confidence predictions for unrecognizable images
    • A. Nguyen, J. Yosinski, and J. Clune. Deep neural networks are easily fooled: High confidence predictions for unrecognizable images. In CVPR, 2015
    • (2015) CVPR
    • Nguyen, A.1    Yosinski, J.2    Clune, J.3
  • 30
    • 85029586812 scopus 로고    scopus 로고
    • Deconvolution and checkerboard artifacts
    • A. Odena, V. Dumoulin, and C. Olah. Deconvolution and checkerboard artifacts. Distill, 2016. http://distill.pub/2016/deconv-checkerboard
    • (2016) Distill
    • Odena, A.1    Dumoulin, V.2    Olah, C.3
  • 31
    • 84965178314 scopus 로고    scopus 로고
    • Actionconditional video prediction using deep networks in Atari games
    • J. Oh, X. Guo, H. Lee, R. L. Lewis, and S. P. Singh. Actionconditional video prediction using deep networks in Atari games. In NIPS, 2015
    • (2015) NIPS
    • Oh, J.1    Guo, X.2    Lee, H.3    Lewis, R.L.4    Singh, S.P.5
  • 34
    • 0034291204 scopus 로고    scopus 로고
    • A parametric texture model based on joint statistics of complex wavelet coefficients
    • J. Portilla and E. P. Simoncelli. A parametric texture model based on joint statistics of complex wavelet coefficients. IJCV, 40(1), 2000
    • (2000) IJCV , vol.40 , Issue.1
    • Portilla, J.1    Simoncelli, E.P.2
  • 35
    • 85083950271 scopus 로고    scopus 로고
    • Unsupervised representation learning with deep convolutional generative adversarial networks
    • A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. In ICLR, 2016
    • (2016) ICLR
    • Radford, A.1    Metz, L.2    Chintala, S.3
  • 38
    • 85011287288 scopus 로고    scopus 로고
    • U-Net: Convolutional networks for biomedical image segmentation
    • O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolutional networks for biomedical image segmentation. In MICCAI, 2015
    • (2015) MICCAI
    • Ronneberger, O.1    Fischer, P.2    Brox, T.3
  • 42
    • 84881536861 scopus 로고    scopus 로고
    • Indoor segmentation and support inference from RGBD images
    • N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor segmentation and support inference from RGBD images. In ECCV, 2012
    • (2012) ECCV
    • Silberman, N.1    Hoiem, D.2    Kohli, P.3    Fergus, R.4
  • 43
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015
    • (2015) ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 44
    • 84969544782 scopus 로고    scopus 로고
    • Unsupervised learning of video representations using LSTMs
    • N. Srivastava, E. Mansimov, and R. Salakhutdinov. Unsupervised learning of video representations using LSTMs. In ICML, 2015
    • (2015) ICML
    • Srivastava, N.1    Mansimov, E.2    Salakhutdinov, R.3
  • 45
    • 85041920327 scopus 로고    scopus 로고
    • Multi-view 3D models from single images with a convolutional network
    • M. Tatarchenko, A. Dosovitskiy, and T. Brox. Multi-view 3D models from single images with a convolutional network. In ECCV, 2016
    • (2016) ECCV
    • Tatarchenko, M.1    Dosovitskiy, A.2    Brox, T.3
  • 47
    • 84990022453 scopus 로고    scopus 로고
    • Generative image modeling using style and structure adversarial networks
    • X. Wang and A. Gupta. Generative image modeling using style and structure adversarial networks. In ECCV, 2016
    • (2016) ECCV
    • Wang, X.1    Gupta, A.2
  • 48
    • 85018923844 scopus 로고    scopus 로고
    • Visual dynamics: Probabilistic future frame synthesis via cross convolutional networks
    • T. Xue, J. Wu, K. L. Bouman, and B. Freeman. Visual dynamics: Probabilistic future frame synthesis via cross convolutional networks. In NIPS, 2016
    • (2016) NIPS
    • Xue, T.1    Wu, J.2    Bouman, K.L.3    Freeman, B.4
  • 49
    • 85018933379 scopus 로고    scopus 로고
    • Attribute2Image: Conditional image generation from visual attributes
    • X. Yan, J. Yang, K. Sohn, and H. Lee. Attribute2Image: Conditional image generation from visual attributes. In ECCV, 2016
    • (2016) ECCV
    • Yan, X.1    Yang, J.2    Sohn, K.3    Lee, H.4
  • 50
    • 85083952059 scopus 로고    scopus 로고
    • Multi-scale context aggregation by dilated convolutions
    • F. Yu and V. Koltun. Multi-scale context aggregation by dilated convolutions. In ICLR, 2016
    • (2016) ICLR
    • Yu, F.1    Koltun, V.2
  • 52
    • 85030465393 scopus 로고    scopus 로고
    • Generative visual manipulation on the natural image manifold
    • J.-Y. Zhu, P. Krähenbühl, E. Shechtman, and A. A. Efros. Generative visual manipulation on the natural image manifold. In ECCV, 2016.
    • (2016) ECCV
    • Zhu, J.-Y.1    Krähenbühl, P.2    Shechtman, E.3    Efros, A.A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.