-
5
-
-
56449095373
-
A unified architecture for natural language processing: Deep neural networks with multitask learning
-
R. Collobert and J.Weston. A unified architecture for natural language processing: Deep neural networks with multitask learning. In ICML, 2008.
-
(2008)
ICML
-
-
Collobert, R.1
Weston, J.2
-
6
-
-
84959227156
-
Context as supervisory signal: Discovering objects with predictable context
-
C. Doersch, A. Gupta, and A. A. Efros. Context as supervisory signal: Discovering objects with predictable context. In ECCV, 2014.
-
(2014)
ECCV
-
-
Doersch, C.1
Gupta, A.2
Efros, A.A.3
-
7
-
-
84973916088
-
Unsupervised visual representation learning by context prediction
-
C. Doersch, A. Gupta, and A. A. Efros. Unsupervised visual representation learning by context prediction. ICCV, 2015.
-
(2015)
ICCV
-
-
Doersch, C.1
Gupta, A.2
Efros, A.A.3
-
8
-
-
84872258949
-
What makes Paris look like Paris
-
C. Doersch, S. Singh, A. Gupta, J. Sivic, and A. Efros. What makes paris look like paris? ACM Transactions on Graphics, 2012.
-
(2012)
ACM Transactions on Graphics
-
-
Doersch, C.1
Singh, S.2
Gupta, A.3
Sivic, J.4
Efros, A.5
-
9
-
-
84919881041
-
Decaf: A deep convolutional activation feature for generic visual recognition
-
J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. Decaf: A deep convolutional activation feature for generic visual recognition. ICML, 2014.
-
(2014)
ICML
-
-
Donahue, J.1
Jia, Y.2
Vinyals, O.3
Hoffman, J.4
Zhang, N.5
Tzeng, E.6
Darrell, T.7
-
10
-
-
84959184995
-
Learning to generate chairs with convolutional neural networks
-
A. Dosovitskiy, J. T. Springenberg, and T. Brox. Learning to generate chairs with convolutional neural networks. CVPR, 2015.
-
(2015)
CVPR
-
-
Dosovitskiy, A.1
Springenberg, J.T.2
Brox, T.3
-
11
-
-
0033285309
-
Texture synthesis by nonparametric sampling
-
A. Efros and T. K. Leung. Texture synthesis by nonparametric sampling. In ICCV, 1999.
-
(1999)
ICCV
-
-
Efros, A.1
Leung, T.K.2
-
12
-
-
84952007662
-
The Pascal Visual Object Classes challenge: A retrospective
-
M. Everingham, S. A. Eslami, L. Van Gool, C. K. Williams, J.Winn, and A. Zisserman. The Pascal Visual Object Classes challenge: A retrospective. IJCV, 2014.
-
(2014)
IJCV
-
-
Everingham, M.1
Eslami, S.A.2
Van Gool, L.3
Williams, C.K.4
Winn, J.5
Zisserman, A.6
-
13
-
-
0019152630
-
Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
-
K. Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological cybernetics, 1980.
-
(1980)
Biological Cybernetics
-
-
Fukushima, K.1
-
14
-
-
85029359197
-
Fast r-cnn
-
R. Girshick. Fast r-cnn. ICCV, 2015.
-
(2015)
ICCV
-
-
Girshick, R.1
-
15
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014.
-
(2014)
CVPR
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
16
-
-
84937849144
-
Generative adversarial nets
-
I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D.Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In NIPS, 2014.
-
(2014)
NIPS
-
-
Goodfellow, I.1
Pouget-Abadie, J.2
Mirza, M.3
Xu, B.4
Warde-Farley, D.5
Ozair, S.6
Courville, A.7
Bengio, Y.8
-
17
-
-
84973902378
-
Unsupervised learning of spatiotemporally coherent metrics
-
R. Goroshin, J. Bruna, J. Tompson, D. Eigen, and Y. LeCun. Unsupervised learning of spatiotemporally coherent metrics. ICCV, 2015.
-
(2015)
ICCV
-
-
Goroshin, R.1
Bruna, J.2
Tompson, J.3
Eigen, D.4
LeCun, Y.5
-
18
-
-
84856686500
-
Semantic contours from inverse detectors
-
B. Hariharan, P. Arbeláez, L. Bourdev, S. Maji, and J. Malik. Semantic contours from inverse detectors. In ICCV, 2011.
-
(2011)
ICCV
-
-
Hariharan, B.1
Arbeláez, P.2
Bourdev, L.3
Maji, S.4
Malik, J.5
-
19
-
-
36949030203
-
Scene completion using millions of photographs
-
J. Hays and A. A. Efros. Scene completion using millions of photographs. SIGGRAPH, 2007.
-
(2007)
SIGGRAPH
-
-
Hays, J.1
Efros, A.A.2
-
20
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 2006.
-
(2006)
Science
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
21
-
-
84973897623
-
Learning image representations tied to ego-motion
-
D. Jayaraman and K. Grauman. Learning image representations tied to ego-motion. In ICCV, 2015.
-
(2015)
ICCV
-
-
Jayaraman, D.1
Grauman, K.2
-
22
-
-
84913580146
-
Caffe: Convolutional architecture for fast feature embedding
-
Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. B. Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. In ACM Multimedia, 2014.
-
(2014)
ACM Multimedia
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.B.6
Guadarrama, S.7
Darrell, T.8
-
23
-
-
85083951076
-
Adam: A method for stochastic optimization
-
D. Kingma and J. Ba. Adam: A method for stochastic optimization. ICLR, 2015.
-
(2015)
ICLR
-
-
Kingma, D.1
Ba, J.2
-
24
-
-
85083952489
-
Auto-encoding variational bayes
-
D. P. Kingma and M. Welling. Auto-encoding variational bayes. ICLR, 2014.
-
(2014)
ICLR
-
-
Kingma, D.P.1
Welling, M.2
-
26
-
-
84876231242
-
ImageNet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural networks. In NIPS, 2012.
-
(2012)
NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
27
-
-
0000359337
-
Backpropagation applied to handwritten zip code recognition
-
Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural computation, 1989.
-
(1989)
Neural Computation
-
-
LeCun, Y.1
Boser, B.2
Denker, J.S.3
Henderson, D.4
Howard, R.E.5
Hubbard, W.6
Jackel, L.D.7
-
28
-
-
84959205572
-
Fully convolutional networks for semantic segmentation
-
J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR, 2015.
-
(2015)
CVPR
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
29
-
-
84858736606
-
Beyond categories: The visual memex model for reasoning about object relationships
-
T. Malisiewicz and A. Efros. Beyond categories: The visual memex model for reasoning about object relationships. In NIPS, 2009.
-
(2009)
NIPS
-
-
Malisiewicz, T.1
Efros, A.2
-
30
-
-
84898956512
-
Distributed representations of words and phrases and their compositionality
-
T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words and phrases and their compositionality. In NIPS, 2013.
-
(2013)
NIPS
-
-
Mikolov, T.1
Sutskever, I.2
Chen, K.3
Corrado, G.S.4
Dean, J.5
-
31
-
-
33749236045
-
Building the GIST of a scene: The role of global image features in recognition
-
A. Oliva and A. Torralba. Building the gist of a scene: The role of global image features in recognition. Progress in brain research, 2006.
-
(2006)
Progress in Brain Research
-
-
Oliva, A.1
Torralba, A.2
-
32
-
-
19844370110
-
An iterative regularization method for total variation-based image restoration
-
S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin. An iterative regularization method for total variation-based image restoration. Multiscale Modeling & Simulation, 2005.
-
(2005)
Multiscale Modeling & Simulation
-
-
Osher, S.1
Burger, M.2
Goldfarb, D.3
Xu, J.4
Yin, W.5
-
33
-
-
85083950271
-
Unsupervised representation learning with deep convolutional generative adversarial networks
-
A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. ICLR, 2016.
-
(2016)
ICLR
-
-
Radford, A.1
Metz, L.2
Chintala, S.3
-
34
-
-
84973912614
-
Learning temporal embeddings for complex video analysis
-
V. Ramanathan, K. Tang, G. Mori, and L. Fei-Fei. Learning temporal embeddings for complex video analysis. ICCV, 2015.
-
(2015)
ICCV
-
-
Ramanathan, V.1
Tang, K.2
Mori, G.3
Fei-Fei, L.4
-
36
-
-
84876218917
-
Disentangling factors of variation for facial expression recognition
-
S. Rifai, Y. Bengio, A. Courville, P. Vincent, and M. Mirza. Disentangling factors of variation for facial expression recognition. In ECCV, 2012.
-
(2012)
ECCV
-
-
Rifai, S.1
Bengio, Y.2
Courville, A.3
Vincent, P.4
Mirza, M.5
-
37
-
-
84947041871
-
Imagenet large scale visual recognition challenge
-
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. Imagenet large scale visual recognition challenge. IJCV, 2015.
-
(2015)
IJCV
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
Berg, A.C.11
Fei-Fei, L.12
-
38
-
-
56449089103
-
Extracting and composing robust features with denoising autoencoders
-
P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and composing robust features with denoising autoencoders. In ICML, 2008.
-
(2008)
ICML
-
-
Vincent, P.1
Larochelle, H.2
Bengio, Y.3
Manzagol, P.-A.4
-
39
-
-
84973889989
-
Unsupervised learning of visual representations using videos
-
X.Wang and A. Gupta. Unsupervised learning of visual representations using videos. ICCV, 2015.
-
(2015)
ICCV
-
-
Wang, X.1
Gupta, A.2
-
40
-
-
85009899017
-
Visualizing and understanding convolutional networks
-
M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In ECCV, 2014.
-
(2014)
ECCV
-
-
Zeiler, M.D.1
Fergus, R.2
|