-
1
-
-
84887369873
-
Measuring the objectness of image windows
-
B. Alexe, T. Deselaers, and V. Ferrari. Measuring the objectness of image windows. PAMI, 2012. 2
-
(2012)
PAMI
, pp. 2
-
-
Alexe, B.1
Deselaers, T.2
Ferrari, V.3
-
3
-
-
85083954148
-
Semantic image segmentation with deep convolutional nets and fully connected crfs
-
L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Semantic image segmentation with deep convolutional nets and fully connected crfs. ICLR, 2015. 2
-
(2015)
ICLR
, pp. 2
-
-
Chen, L.1
Papandreou, G.2
Kokkinos, I.3
Murphy, K.4
Yuille, A.L.5
-
4
-
-
33645146449
-
Histograms of oriented gradients for human detection
-
N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005. 1
-
(2005)
CVPR
, pp. 1
-
-
Dalal, N.1
Triggs, B.2
-
5
-
-
85198028989
-
Imagenet: A large-scale hierarchical image database
-
J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image database. In CVPR, 2009. 1, 3
-
(2009)
CVPR
, vol.1
, pp. 3
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.4
Li, K.5
Fei-Fei, L.6
-
6
-
-
84911443425
-
Scalable object detection using deep neural networks
-
D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov. Scalable object detection using deep neural networks. In CVPR, 2014. 2
-
(2014)
CVPR
, pp. 2
-
-
Erhan, D.1
Szegedy, C.2
Toshev, A.3
Anguelov, D.4
-
7
-
-
84952007662
-
The PASCAL visual object classes (VOC) challenge
-
M. Everingham, L. V. Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The PASCAL visual object classes (VOC) challenge. IJCV, 2010. 1, 2, 6
-
(2010)
IJCV
, vol.1
, Issue.2
, pp. 6
-
-
Everingham, M.1
Gool, L.V.2
Williams, C.K.I.3
Winn, J.4
Zisserman, A.5
-
9
-
-
84986248602
-
-
arXiv:1504.08083
-
R. Girshick. Fast R-CNN. arXiv:1504.08083, 2015. 2, 8
-
(2015)
Fast R-CNN
, vol.2
, pp. 8
-
-
Girshick, R.1
-
10
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014. 1, 2, 6
-
(2014)
CVPR
, vol.1
, Issue.2
, pp. 6
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
11
-
-
84959236250
-
Hypercolumns for object segmentation and finegrained localization
-
B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Hypercolumns for object segmentation and finegrained localization. In CVPR, 2015. 2
-
(2015)
CVPR
, pp. 2
-
-
Hariharan, B.1
Arbeláez, P.2
Girshick, R.3
Malik, J.4
-
12
-
-
84928278589
-
Spatial pyramid pooling in deep convolutional networks for visual recognition
-
K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional networks for visual recognition. In ECCV, 2014. 2
-
(2014)
ECCV
, pp. 2
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
13
-
-
84973867468
-
-
arXiv:1502.05082
-
J. Hosang, R. Benenson, P. Dollár, and B. Schiele. What makes for effective detection proposals? arXiv:1502.05082, 2015. 2, 6
-
(2015)
What Makes for Effective Detection Proposals?
, vol.2
, pp. 6
-
-
Hosang, J.1
Benenson, R.2
Dollár, P.3
Schiele, B.4
-
14
-
-
84911456672
-
RIGOR: Reusing Inference in Graph Cuts for generating Object Regions
-
8
-
A. Humayun, F. Li, and J. M. Rehg. RIGOR: Reusing Inference in Graph Cuts for generating Object Regions. In CVPR, 2014. 2, 6, 7, 8
-
(2014)
CVPR
, vol.2
, Issue.6
, pp. 7
-
-
Humayun, A.1
Li, F.2
Rehg, J.M.3
-
15
-
-
84959212200
-
Spatial pyramid pooling in deep convolutional networks for visual recognition
-
H. Kaiming, Z. Xiangyu, R. Shaoqing, and S. Jian. Spatial pyramid pooling in deep convolutional networks for visual recognition. In ECCV, 2014. 1
-
(2014)
ECCV
, pp. 1
-
-
Kaiming, H.1
Xiangyu, Z.2
Shaoqing, R.3
Jian, S.4
-
16
-
-
84946817713
-
Geodesic object proposals
-
8
-
P. Krähenbühl and V. Koltun. Geodesic object proposals. In ECCV, 2014. 2, 6, 7, 8
-
(2014)
ECCV
, vol.2
, Issue.6
, pp. 7
-
-
Krähenbühl, P.1
Koltun, V.2
-
17
-
-
84965120961
-
Learning to propose objects
-
P. Krähenbühl and V. Koltun. Learning to propose objects. In CVPR, 2015. 2
-
(2015)
CVPR
, pp. 2
-
-
Krähenbühl, P.1
Koltun, V.2
-
18
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012. 2
-
(2012)
NIPS
, pp. 2
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.3
-
21
-
-
84937834115
-
-
arXiv:1405.0312, 6
-
T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona, D. Ramanan, C. L. Zitnick, and P. Dollár. Microsoft COCO: Common objects in context. arXiv:1405.0312, 2015. 1, 2, 5, 6
-
(2015)
Microsoft COCO: Common Objects in Context
, vol.1
, Issue.2
, pp. 5
-
-
Lin, T.-Y.1
Maire, M.2
Belongie, S.3
Bourdev, L.4
Girshick, R.5
Hays, J.6
Perona, P.7
Ramanan, D.8
Zitnick, C.L.9
Dollár, P.10
-
22
-
-
84953933150
-
Is object localization for free?-Weakly-supervised learning with convolutional neural networks
-
M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Is object localization for free?-Weakly-supervised learning with convolutional neural networks. In CVPR, 2015. 2
-
(2015)
CVPR
, pp. 2
-
-
Oquab, M.1
Bottou, L.2
Laptev, I.3
Sivic, J.4
-
23
-
-
84925305292
-
Recurrent conv. Neural networks for scene labeling
-
P. O. Pinheiro and R. Collobert. Recurrent conv. neural networks for scene labeling. In ICML, 2014. 2
-
(2014)
ICML
, pp. 2
-
-
Pinheiro, P.O.1
Collobert, R.2
-
24
-
-
84973900209
-
-
arXiv:1503.00848, 8
-
J. Pont-Tuset, P. Arbeláez, J. Barron, F. Marques, and J. Malik. Multiscale combinatorial grouping for image segmentation and object proposal generation. In arXiv:1503.00848, 2015. 2, 6, 7, 8
-
(2015)
Multiscale Combinatorial Grouping for Image Segmentation and Object Proposal Generation
, vol.2
, Issue.6
, pp. 7
-
-
Pont-Tuset, J.1
Arbeláez, P.2
Barron, J.3
Marques, F.4
Malik, J.5
-
26
-
-
85083951635
-
Overfeat: Integrated recognition, localization and detection using convolutional networks
-
P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Overfeat: Integrated recognition, localization and detection using convolutional networks. In ICLR, 2014. 5
-
(2014)
ICLR
, pp. 5
-
-
Sermanet, P.1
Eigen, D.2
Zhang, X.3
Mathieu, M.4
Fergus, R.5
LeCun, Y.6
-
27
-
-
85083953063
-
Very deep convolutional networks for large-scale image recognition
-
5
-
K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015. 2, 3, 5
-
(2015)
ICLR
, vol.2
, pp. 3
-
-
Simonyan, K.1
Zisserman, A.2
-
28
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. JMLR, 2014. 5
-
(2014)
JMLR
, pp. 5
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
29
-
-
84937522268
-
Going deeper with convolutions
-
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In CVPR, 2015. 2
-
(2015)
CVPR
, pp. 2
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
30
-
-
84962336509
-
-
arXiv:1412.1441
-
C. Szegedy, S. Reed, D. Erhan, and D. Anguelov. Scalable, high-quality object detection. In arXiv:1412.1441, 2014. 2
-
(2014)
Scalable, High-quality Object Detection
, pp. 2
-
-
Szegedy, C.1
Reed, S.2
Erhan, D.3
Anguelov, D.4
-
31
-
-
84906347637
-
Selective search for object recog
-
8
-
J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders. Selective search for object recog. IJCV, 2013. 2, 6, 7, 8
-
(2013)
IJCV
, vol.2
, Issue.6
, pp. 7
-
-
Uijlings, J.1
Van De Sande, K.2
Gevers, T.3
Smeulders, A.4
-
32
-
-
2142812371
-
Robust real-time face detection
-
P. Viola and M. J. Jones. Robust real-time face detection. IJCV, 2004. 1
-
(2004)
IJCV
, pp. 1
-
-
Viola, P.1
Jones, M.J.2
-
33
-
-
84959233955
-
Segdeepm: Exploiting segmentation and context in deep neural networks for object detection
-
Z. Y. Zhu, R. Urtasun, R. Salakhutdinov, and S. Fidler. segdeepm: Exploiting segmentation and context in deep neural networks for object detection. In CVPR, 2015. 1
-
(2015)
CVPR
, pp. 1
-
-
Zhu, Z.Y.1
Urtasun, R.2
Salakhutdinov, R.3
Fidler, S.4
-
34
-
-
84952018709
-
Edge boxes: Locating object proposals from edges
-
8
-
C. L. Zitnick and P. Dollár. Edge boxes: Locating object proposals from edges. In ECCV, 2014. 2, 6, 7, 8
-
(2014)
ECCV
, vol.2
, Issue.6
, pp. 7
-
-
Zitnick, C.L.1
Dollár, P.2
|