메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 669-677

Instance-level segmentation for autonomous driving with deep densely connected MRFs

Author keywords

[No Author keywords available]

Indexed keywords

BENCHMARKING; COMPUTER VISION; ENCODING (SYMBOLS); IMAGE SEGMENTATION; MARKOV PROCESSES; PATTERN RECOGNITION;

EID: 84986269578     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.79     Document Type: Conference Paper
Times cited : (234)

References (32)
  • 1
    • 77952844108 scopus 로고    scopus 로고
    • Fast high-dimensional filtering using the permutohedral lattice
    • 5
    • A. Adams, J. Baek, and M. A. Davis. Fast high-dimensional filtering using the permutohedral lattice. Computer Graphics Forum, 29 (2): 753-762, 2010.
    • (2010) Computer Graphics Forum , vol.29 , Issue.2 , pp. 753-762
    • Adams, A.1    Baek, J.2    Davis, M.A.3
  • 2
    • 84911409986 scopus 로고    scopus 로고
    • Seeing 3D chairs: Exemplar part-based 2D-3D alignment using a large dataset of CAD models
    • 2
    • M. Aubry, D. Maturana, A. Efros, B. Russell, and J. Sivic. Seeing 3D chairs: exemplar part-based 2D-3D alignment using a large dataset of CAD models. In CVPR, 2014.
    • (2014) CVPR
    • Aubry, M.1    Maturana, D.2    Efros, A.3    Russell, B.4    Sivic, J.5
  • 3
    • 0034844730 scopus 로고    scopus 로고
    • Interactive graph cuts for optimal boundary & region segmentation of objects in nd images
    • 2
    • Y. Boykov and M.-P. Jolly. Interactive graph cuts for optimal boundary & region segmentation of objects in nd images. In ICCV, 2001.
    • (2001) ICCV
    • Boykov, Y.1    Jolly, M.-P.2
  • 4
    • 4344598245 scopus 로고    scopus 로고
    • An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision
    • 1, 2
    • Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. PAMI, 26 (9): 1124-1137, 2004.
    • (2004) PAMI , vol.26 , Issue.9 , pp. 1124-1137
    • Boykov, Y.1    Kolmogorov, V.2
  • 5
    • 84911455504 scopus 로고    scopus 로고
    • Beat the Mturkers: Automatic image labeling from weak 3d supervision
    • 3, 6
    • L.-C. Chen, S. Fidler, A. Yuille, and R. Urtasun. Beat the MTurkers: Automatic Image Labeling from Weak 3D Supervision. In CVPR, 2014.
    • (2014) CVPR
    • Chen, L.-C.1    Fidler, S.2    Yuille, A.3    Urtasun, R.4
  • 6
    • 85083954148 scopus 로고    scopus 로고
    • Semantic image segmentation with deep convolutional nets and fully connected crfs
    • 6
    • L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Semantic image segmentation with deep convolutional nets and fully connected crfs. In ICLR, 2015.
    • (2015) ICLR
    • Chen, L.-C.1    Papandreou, G.2    Kokkinos, I.3    Murphy, K.4    Yuille, A.L.5
  • 7
    • 84877784179 scopus 로고    scopus 로고
    • 3D object detection and viewpoint estimation with a deformable 3d cuboid model
    • 3
    • S. Fidler, S. Dickinson, and R. Urtasun. 3D Object Detection and Viewpoint Estimation with a Deformable 3D Cuboid Model. In NIPS, 2012.
    • (2012) NIPS
    • Fidler, S.1    Dickinson, S.2    Urtasun, R.3
  • 8
    • 84866704163 scopus 로고    scopus 로고
    • Are we ready for autonomous driving the KITTI vision benchmark suite
    • 1, 2, 6
    • A. Geiger, P. Lenz, and R. Urtasun. Are we ready for Autonomous Driving The KITTI Vision Benchmark Suite. In CVPR, 2012.
    • (2012) CVPR
    • Geiger, A.1    Lenz, P.2    Urtasun, R.3
  • 10
    • 84952358220 scopus 로고    scopus 로고
    • Aligning 3D models to RGB-D images of cluttered scenes
    • 2
    • S. Gupta, P. A. Arbeláez, R. B. Girshick, and J. Malik. Aligning 3D models to RGB-D images of cluttered scenes. In CVPR, 2015.
    • (2015) CVPR
    • Gupta, S.1    Arbeláez, P.A.2    Girshick, R.B.3    Malik, J.4
  • 11
    • 85009860891 scopus 로고    scopus 로고
    • Learning rich features from RGB-D images for object detection and segmentation
    • 1, 2
    • S. Gupta, R. Girshick, P. Arbelaez, and J. Malik. Learning rich features from RGB-D images for object detection and segmentation. In ECCV, 2014.
    • (2014) ECCV
    • Gupta, S.1    Girshick, R.2    Arbelaez, P.3    Malik, J.4
  • 13
    • 84911430631 scopus 로고    scopus 로고
    • An exemplar-based CRF for multiinstance object segmentation
    • 1
    • X. He and S. Gould. An Exemplar-based CRF for Multiinstance Object Segmentation. In CVPR, 2014.
    • (2014) CVPR
    • He, X.1    Gould, S.2
  • 14
    • 84898828634 scopus 로고    scopus 로고
    • Scene collaging: Analysis and synthesis of natural images with semantic layers
    • 2
    • P. Isola and C. Liu. Scene Collaging: Analysis and Synthesis of Natural Images with Semantic Layers. In ICCV, 2013.
    • (2013) ICCV
    • Isola, P.1    Liu, C.2
  • 15
    • 85162351107 scopus 로고    scopus 로고
    • Efficient inference in fully connected crfs with Gaussian edge potentials
    • 1, 2, 3, 5, 7, 8
    • P. Krähenbühl and V. Koltun. Efficient inference in fully connected crfs with Gaussian edge potentials. In NIPS, pages 109-117, 2011.
    • (2011) NIPS , pp. 109-117
    • Krähenbühl, P.1    Koltun, V.2
  • 16
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • 1
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 20
    • 84898778816 scopus 로고    scopus 로고
    • Parsing IKEA objects: Fine pose estimation
    • 2
    • J. Lim, H. Pirsiavash, and A. Torralba. Parsing IKEA Objects: Fine Pose Estimation. In ICCV, 2013.
    • (2013) ICCV
    • Lim, J.1    Pirsiavash, H.2    Torralba, A.3
  • 21
    • 84911442106 scopus 로고    scopus 로고
    • Visual semantic search: Retrieving videos via complex textual queries
    • 1
    • D. Lin, S. Fidler, C. Kong, and R. Urtasun. Visual Semantic Search: Retrieving Videos via Complex Textual Queries. In CVPR, 2014.
    • (2014) CVPR
    • Lin, D.1    Fidler, S.2    Kong, C.3    Urtasun, R.4
  • 24
    • 84877632511 scopus 로고    scopus 로고
    • Grabcut: Interactive foreground extraction using iterated graph cuts
    • 1, 2
    • C. Rother, V. Kolmogorov, and A. Blake. Grabcut: Interactive foreground extraction using iterated graph cuts. In SIGGRAPH, 2004.
    • (2004) SIGGRAPH
    • Rother, C.1    Kolmogorov, V.2    Blake, A.3
  • 26
    • 84959205514 scopus 로고    scopus 로고
    • Instance segmentation of indoor scenes using a coverage loss
    • 2, 7
    • N. Silberman, D. Sontag, and R. Fergus. Instance Segmentation of Indoor Scenes using a Coverage Loss. In ECCV, 2014.
    • (2014) ECCV
    • Silberman, N.1    Sontag, D.2    Fergus, R.3
  • 28
    • 84911399031 scopus 로고    scopus 로고
    • Scene parsing with object instances and occlusion ordering
    • 1, 2
    • J. Tighe, M. Niethammer, and S. Lazebnik. Scene Parsing with Object Instances and Occlusion Ordering. In CVPR, 2014.
    • (2014) CVPR
    • Tighe, J.1    Niethammer, M.2    Lazebnik, S.3
  • 29
    • 84959241859 scopus 로고    scopus 로고
    • Holistic 3D scene understanding from a single geo-tagged image
    • 1
    • S. Wang, S. Fidler, and R. Urtasun. Holistic 3D Scene Understanding from a Single Geo-tagged Image. In CVPR, 2015.
    • (2015) CVPR
    • Wang, S.1    Fidler, S.2    Urtasun, R.3
  • 31
    • 84866687133 scopus 로고    scopus 로고
    • Describing the scene as a whole: Joint object detection, scene classification and semantic segmentation
    • 2
    • J. Yao, S. Fidler, and R. Urtasun. Describing the scene as a whole: Joint object detection, scene classification and semantic segmentation. In CVPR, 2012.
    • (2012) CVPR
    • Yao, J.1    Fidler, S.2    Urtasun, R.3
  • 32
    • 84973891613 scopus 로고    scopus 로고
    • Monocular object instance segmentation and depth ordering with cnns
    • 1, 2, 3, 6, 7, 8
    • Z. Zhang, A. Schwing, S. Fidler, and R. Urtasun. Monocular object instance segmentation and depth ordering with cnns. In ICCV, 2015.
    • (2015) ICCV
    • Zhang, Z.1    Schwing, A.2    Fidler, S.3    Urtasun, R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.