-
1
-
-
0017133178
-
Inference and missing data
-
Rubin, D. B. Inference and missing data. Biom. 63, 581-592 (1976).
-
(1976)
Biom.
, vol.63
, pp. 581-592
-
-
Rubin, D.B.1
-
2
-
-
84971287198
-
Mimic-III, a freely accessible critical care database
-
Johnson, A. et al. Mimic-iii, a freely accessible critical care database. Sci. Data (2016).
-
(2016)
Sci. Data
-
-
Johnson, A.1
-
3
-
-
85047673373
-
Missing data: Our view of the state of the art
-
Schafer, J. L. & Graham, J. W. Missing data: our view of the state of the art. Psychol. methods (2002).
-
(2002)
Psychol. Methods
-
-
Schafer, J.L.1
Graham, J.W.2
-
5
-
-
0003641574
-
-
Springer-Verlag New York
-
De Boor, C., De Boor, C., Mathématicien, E.-U., De Boor, C. & De Boor, C. A practical guide to splines 27 (Springer-Verlag, New York, 1978).
-
(1978)
A Practical Guide to Splines 27
-
-
De Boor, C.1
De Boor, C.2
Mathématicien, E.-U.3
De Boor, C.4
De Boor, C.5
-
6
-
-
79958034603
-
Wavelet variance analysis for gappy time series
-
Mondal, D. & Percival, D. B. Wavelet variance analysis for gappy time series. Annals Inst. Stat. Math. 62, 943-966 (2010).
-
(2010)
Annals Inst. Stat. Math.
, vol.62
, pp. 943-966
-
-
Mondal, D.1
Percival, D.B.2
-
7
-
-
79959690470
-
Comparison of correlation analysis techniques for irregularly sampled time series
-
Rehfeld, K., Marwan, N., Heitzig, J. & Kurths, J. Comparison of correlation analysis techniques for irregularly sampled time series. Nonlinear Process. Geophys. 18 (2011).
-
(2011)
Nonlinear Process. Geophys.
, vol.18
-
-
Rehfeld, K.1
Marwan, N.2
Heitzig, J.3
Kurths, J.4
-
9
-
-
77956944781
-
Spectral regularization algorithms for learning large incomplete matrices
-
Mazumder, R., Hastie, T. & Tibshirani, R. Spectral regularization algorithms for learning large incomplete matrices. J. machine learning research 11, 2287-2322 (2010).
-
(2010)
J. Machine Learning Research
, vol.11
, pp. 2287-2322
-
-
Mazumder, R.1
Hastie, T.2
Tibshirani, R.3
-
10
-
-
85008044987
-
Matrix factorization techniques for recommender systems
-
Koren, Y., Bell, R. & Volinsky, C. Matrix factorization techniques for recommender systems. Comput. 42 (2009).
-
(2009)
Comput.
, vol.42
-
-
Koren, Y.1
Bell, R.2
Volinsky, C.3
-
11
-
-
78651256743
-
Multiple imputation using chained equations: Issues and guidance for practice
-
White, I. R., Royston, P. & Wood, A. M. Multiple imputation using chained equations: issues and guidance for practice. Stat. medicine 30, 377-399 (2011).
-
(2011)
Stat. Medicine
, vol.30
, pp. 377-399
-
-
White, I.R.1
Royston, P.2
Wood, A.M.3
-
12
-
-
79951982954
-
Multiple imputation by chained equations: What is it and how does it work?
-
Azur, M. J., Stuart, E. A., Frangakis, C. & Leaf, P. J. Multiple imputation by chained equations: what is it and how does it work? Int. journal methods psychiatric research 20, 40-49 (2011).
-
(2011)
Int. Journal Methods Psychiatric Research
, vol.20
, pp. 40-49
-
-
Azur, M.J.1
Stuart, E.A.2
Frangakis, C.3
Leaf, P.J.4
-
13
-
-
84958599888
-
Strategies for handling missing data in electronic health record derived data
-
Wells, B. J., Chagin, K. M., Nowacki, A. S. & Kattan, M. W. Strategies for handling missing data in electronic health record derived data. EGEMS 1 (2013).
-
(2013)
EGEMS
, vol.1
-
-
Wells, B.J.1
Chagin, K.M.2
Nowacki, A.S.3
Kattan, M.W.4
-
16
-
-
85083953689
-
Neural machine translation by jointly learning to align and translate
-
Bahdanau, D., Cho, K. & Bengio, Y. Neural machine translation by jointly learning to align and translate. ICLR (2015).
-
(2015)
ICLR
-
-
Bahdanau, D.1
Cho, K.2
Bengio, Y.3
-
18
-
-
85032751458
-
Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
-
Hinton, G. et al. Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. Signal Process. Mag. IEEE 29, 82-97 (2012).
-
(2012)
Signal Process. Mag. IEEE
, vol.29
, pp. 82-97
-
-
Hinton, G.1
-
20
-
-
84898996981
-
A solution for missing data in recurrent neural networks with an application to blood glucose prediction
-
Tresp, V. & Briegel, T. A solution for missing data in recurrent neural networks with an application to blood glucose prediction. NIPS 971-977 (1998).
-
(1998)
NIPS
, pp. 971-977
-
-
Tresp, V.1
Briegel, T.2
-
22
-
-
85045725364
-
Directly modeling missing data in sequences with rnns: Improved classification of clinical time series
-
Lipton, Z. C., Kale, D. & Wetzel, R. Directly modeling missing data in sequences with rnns: Improved classification of clinical time series. In Machine Learning for Healthcare Conference, 253-270 (2016).
-
(2016)
Machine Learning for Healthcare Conference
, pp. 253-270
-
-
Lipton, Z.C.1
Kale, D.2
Wetzel, R.3
-
23
-
-
85029767500
-
Doctor ai: Predicting clinical events via recurrent neural networks
-
Choi, E., Bahadori, M. T., Schuetz, A., Stewart, W. F. & Sun, J. Doctor ai: Predicting clinical events via recurrent neural networks. In Machine Learning for Healthcare Conference, 301-318 (2016).
-
(2016)
Machine Learning for Healthcare Conference
, pp. 301-318
-
-
Choi, E.1
Bahadori, M.T.2
Schuetz, A.3
Stewart, W.F.4
Sun, J.5
-
24
-
-
84987971648
-
Deepcare: A deep dynamic memory model for predictive medicine
-
Pham, T., Tran, T., Phung, D. & Venkatesh, S. Deepcare: A deep dynamic memory model for predictive medicine. In Advances in Knowledge Discovery and Data Mining, 30-41 (2016).
-
(2016)
Advances in Knowledge Discovery and Data Mining
, pp. 30-41
-
-
Pham, T.1
Tran, T.2
Phung, D.3
Venkatesh, S.4
-
25
-
-
85014889431
-
-
arXiv preprint arXiv: 1606.01865
-
Che, Z., Purushotham, S., Cho, K., Sontag, D. & Liu, Y. Recurrent neural networks for multivariate time series with missing values. arXiv preprint arXiv:1606.01865 (2016).
-
(2016)
Recurrent Neural Networks for Multivariate Time Series with Missing Values
-
-
Che, Z.1
Purushotham, S.2
Cho, K.3
Sontag, D.4
Liu, Y.5
-
27
-
-
33847640080
-
Temporal reasoning with medical data-a review with emphasis on medical natural language processing
-
Zhou, L. & Hripcsak, G. Temporal reasoning with medical data-a review with emphasis on medical natural language processing. J. biomedical informatics 40, 183-202 (2007).
-
(2007)
J. Biomedical Informatics
, vol.40
, pp. 183-202
-
-
Zhou, L.1
Hripcsak, G.2
-
28
-
-
84964067483
-
A study of k-nearest neighbour as an imputation method
-
Batista, G. E. & Monard, M. C. et al. A study of k-nearest neighbour as an imputation method. HIS 87, 48 (2002).
-
(2002)
HIS
, vol.87
, pp. 48
-
-
Batista, G.E.1
Monard, M.C.2
-
29
-
-
84878954210
-
Handling missing values in exploratory multivariate data analysis methods
-
Josse, J. & Husson, F. Handling missing values in exploratory multivariate data analysis methods. J. de la Société Française de Stat. 153, 79-99 (2012).
-
(2012)
J. de la Société Française de Stat.
, vol.153
, pp. 79-99
-
-
Josse, J.1
Husson, F.2
-
30
-
-
84855177476
-
Missforest-non-parametric missing value imputation for mixed-type data
-
Stekhoven, D. J. & Bühlmann, P. Missforest-non-parametric missing value imputation for mixed-type data. Bioinforma. 28, 112-118 (2011).
-
(2011)
Bioinforma.
, vol.28
, pp. 112-118
-
-
Stekhoven, D.J.1
Bühlmann, P.2
-
34
-
-
80555140075
-
Scikit-learn: Machine learning in Python
-
Pedregosa, F. et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825-2830 (2011).
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
-
36
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. Dropout: a simple way to prevent neural networks from overfitting. JMLR 15 (2014).
-
(2014)
JMLR
, vol.15
-
-
Srivastava, N.1
Hinton, G.E.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
37
-
-
85083951076
-
Adam: A method for stochastic optimization
-
Kingma, D. & Ba, J. Adam: A method for stochastic optimization. ICLR (2015).
-
(2015)
ICLR
-
-
Kingma, D.1
Ba, J.2
-
38
-
-
84971640658
-
-
Chollet, F. et al. Keras. https://github.com/keras-team/keras (2015).
-
(2015)
Keras
-
-
Chollet, F.1
-
40
-
-
84877998691
-
Gesture unit segmentation using support vector machines: Segmenting gestures from rest positions
-
Madeo, R. C., Lima, C. A. & Peres, S. M. Gesture unit segmentation using support vector machines: segmenting gestures from rest positions. In SAC (2013).
-
(2013)
SAC
-
-
Madeo, R.C.1
Lima, C.A.2
Peres, S.M.3
-
41
-
-
84875639259
-
Predicting in-hospital mortality of icu patients: The physionet/computing in cardiology challenge 2012
-
Silva, I., Moody, G., Scott, D. J., Celi, L. A. & Mark, R. G. Predicting in-hospital mortality of icu patients: The physionet/computing in cardiology challenge 2012. In CinC (2012).
-
(2012)
CinC
-
-
Silva, I.1
Moody, G.2
Scott, D.J.3
Celi, L.A.4
Mark, R.G.5
-
42
-
-
85019171807
-
A theoretically grounded application of dropout in recurrent neural networks
-
Gal, Y. & Ghahramani, Z. A theoretically grounded application of dropout in recurrent neural networks. In Advances in Neural Information Processing Systems, 1019-1027 (2016).
-
(2016)
Advances in Neural Information Processing Systems
, pp. 1019-1027
-
-
Gal, Y.1
Ghahramani, Z.2
-
43
-
-
84954158331
-
Deep computational phenotyping
-
Che, Z., Kale, D., Li, W., Bahadori, M. T. & Liu, Y. Deep computational phenotyping. In SIGKDD (2015).
-
(2015)
SIGKDD
-
-
Che, Z.1
Kale, D.2
Li, W.3
Bahadori, M.T.4
Liu, Y.5
-
44
-
-
85045766966
-
-
arXiv preprint arXiv: 1710.08531
-
Purushotham, S., Meng, C., Che, Z. & Liu, Y. Benchmark of deep learning models on large healthcare mimic datasets. arXiv preprint arXiv:1710.08531 (2017).
-
(2017)
Benchmark of Deep Learning Models on Large Healthcare Mimic Datasets
-
-
Purushotham, S.1
Meng, C.2
Che, Z.3
Liu, Y.4
-
46
-
-
85027521403
-
Interpretable topic features for post-icu mortality prediction
-
Luo, Y.-F. & Rumshisky, A. Interpretable topic features for post-icu mortality prediction. In AMIA Annual Symposium Proceedings, 827 (2016).
-
(2016)
AMIA Annual Symposium Proceedings
, vol.827
-
-
Luo, Y.-F.1
Rumshisky, A.2
|