메뉴 건너뛰기




Volumn 8, Issue 1, 2018, Pages

Recurrent Neural Networks for Multivariate Time Series with Missing Values

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; CLASSIFICATION; LEARNING; MASKING; NERVOUS SYSTEM; PREDICTION; TIME SERIES ANALYSIS; DEEP LEARNING; GATED RECURRENT UNIT NETWORK;

EID: 85045746406     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/s41598-018-24271-9     Document Type: Article
Times cited : (1825)

References (46)
  • 1
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin, D. B. Inference and missing data. Biom. 63, 581-592 (1976).
    • (1976) Biom. , vol.63 , pp. 581-592
    • Rubin, D.B.1
  • 2
    • 84971287198 scopus 로고    scopus 로고
    • Mimic-III, a freely accessible critical care database
    • Johnson, A. et al. Mimic-iii, a freely accessible critical care database. Sci. Data (2016).
    • (2016) Sci. Data
    • Johnson, A.1
  • 3
    • 85047673373 scopus 로고    scopus 로고
    • Missing data: Our view of the state of the art
    • Schafer, J. L. & Graham, J. W. Missing data: our view of the state of the art. Psychol. methods (2002).
    • (2002) Psychol. Methods
    • Schafer, J.L.1    Graham, J.W.2
  • 6
    • 79958034603 scopus 로고    scopus 로고
    • Wavelet variance analysis for gappy time series
    • Mondal, D. & Percival, D. B. Wavelet variance analysis for gappy time series. Annals Inst. Stat. Math. 62, 943-966 (2010).
    • (2010) Annals Inst. Stat. Math. , vol.62 , pp. 943-966
    • Mondal, D.1    Percival, D.B.2
  • 7
    • 79959690470 scopus 로고    scopus 로고
    • Comparison of correlation analysis techniques for irregularly sampled time series
    • Rehfeld, K., Marwan, N., Heitzig, J. & Kurths, J. Comparison of correlation analysis techniques for irregularly sampled time series. Nonlinear Process. Geophys. 18 (2011).
    • (2011) Nonlinear Process. Geophys. , vol.18
    • Rehfeld, K.1    Marwan, N.2    Heitzig, J.3    Kurths, J.4
  • 9
    • 77956944781 scopus 로고    scopus 로고
    • Spectral regularization algorithms for learning large incomplete matrices
    • Mazumder, R., Hastie, T. & Tibshirani, R. Spectral regularization algorithms for learning large incomplete matrices. J. machine learning research 11, 2287-2322 (2010).
    • (2010) J. Machine Learning Research , vol.11 , pp. 2287-2322
    • Mazumder, R.1    Hastie, T.2    Tibshirani, R.3
  • 10
    • 85008044987 scopus 로고    scopus 로고
    • Matrix factorization techniques for recommender systems
    • Koren, Y., Bell, R. & Volinsky, C. Matrix factorization techniques for recommender systems. Comput. 42 (2009).
    • (2009) Comput. , vol.42
    • Koren, Y.1    Bell, R.2    Volinsky, C.3
  • 11
    • 78651256743 scopus 로고    scopus 로고
    • Multiple imputation using chained equations: Issues and guidance for practice
    • White, I. R., Royston, P. & Wood, A. M. Multiple imputation using chained equations: issues and guidance for practice. Stat. medicine 30, 377-399 (2011).
    • (2011) Stat. Medicine , vol.30 , pp. 377-399
    • White, I.R.1    Royston, P.2    Wood, A.M.3
  • 13
    • 84958599888 scopus 로고    scopus 로고
    • Strategies for handling missing data in electronic health record derived data
    • Wells, B. J., Chagin, K. M., Nowacki, A. S. & Kattan, M. W. Strategies for handling missing data in electronic health record derived data. EGEMS 1 (2013).
    • (2013) EGEMS , vol.1
    • Wells, B.J.1    Chagin, K.M.2    Nowacki, A.S.3    Kattan, M.W.4
  • 16
    • 85083953689 scopus 로고    scopus 로고
    • Neural machine translation by jointly learning to align and translate
    • Bahdanau, D., Cho, K. & Bengio, Y. Neural machine translation by jointly learning to align and translate. ICLR (2015).
    • (2015) ICLR
    • Bahdanau, D.1    Cho, K.2    Bengio, Y.3
  • 18
    • 85032751458 scopus 로고    scopus 로고
    • Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
    • Hinton, G. et al. Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. Signal Process. Mag. IEEE 29, 82-97 (2012).
    • (2012) Signal Process. Mag. IEEE , vol.29 , pp. 82-97
    • Hinton, G.1
  • 20
    • 84898996981 scopus 로고    scopus 로고
    • A solution for missing data in recurrent neural networks with an application to blood glucose prediction
    • Tresp, V. & Briegel, T. A solution for missing data in recurrent neural networks with an application to blood glucose prediction. NIPS 971-977 (1998).
    • (1998) NIPS , pp. 971-977
    • Tresp, V.1    Briegel, T.2
  • 22
    • 85045725364 scopus 로고    scopus 로고
    • Directly modeling missing data in sequences with rnns: Improved classification of clinical time series
    • Lipton, Z. C., Kale, D. & Wetzel, R. Directly modeling missing data in sequences with rnns: Improved classification of clinical time series. In Machine Learning for Healthcare Conference, 253-270 (2016).
    • (2016) Machine Learning for Healthcare Conference , pp. 253-270
    • Lipton, Z.C.1    Kale, D.2    Wetzel, R.3
  • 27
    • 33847640080 scopus 로고    scopus 로고
    • Temporal reasoning with medical data-a review with emphasis on medical natural language processing
    • Zhou, L. & Hripcsak, G. Temporal reasoning with medical data-a review with emphasis on medical natural language processing. J. biomedical informatics 40, 183-202 (2007).
    • (2007) J. Biomedical Informatics , vol.40 , pp. 183-202
    • Zhou, L.1    Hripcsak, G.2
  • 28
    • 84964067483 scopus 로고    scopus 로고
    • A study of k-nearest neighbour as an imputation method
    • Batista, G. E. & Monard, M. C. et al. A study of k-nearest neighbour as an imputation method. HIS 87, 48 (2002).
    • (2002) HIS , vol.87 , pp. 48
    • Batista, G.E.1    Monard, M.C.2
  • 29
    • 84878954210 scopus 로고    scopus 로고
    • Handling missing values in exploratory multivariate data analysis methods
    • Josse, J. & Husson, F. Handling missing values in exploratory multivariate data analysis methods. J. de la Société Française de Stat. 153, 79-99 (2012).
    • (2012) J. de la Société Française de Stat. , vol.153 , pp. 79-99
    • Josse, J.1    Husson, F.2
  • 30
    • 84855177476 scopus 로고    scopus 로고
    • Missforest-non-parametric missing value imputation for mixed-type data
    • Stekhoven, D. J. & Bühlmann, P. Missforest-non-parametric missing value imputation for mixed-type data. Bioinforma. 28, 112-118 (2011).
    • (2011) Bioinforma. , vol.28 , pp. 112-118
    • Stekhoven, D.J.1    Bühlmann, P.2
  • 34
    • 80555140075 scopus 로고    scopus 로고
    • Scikit-learn: Machine learning in Python
    • Pedregosa, F. et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825-2830 (2011).
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 2825-2830
    • Pedregosa, F.1
  • 37
    • 85083951076 scopus 로고    scopus 로고
    • Adam: A method for stochastic optimization
    • Kingma, D. & Ba, J. Adam: A method for stochastic optimization. ICLR (2015).
    • (2015) ICLR
    • Kingma, D.1    Ba, J.2
  • 38
    • 84971640658 scopus 로고    scopus 로고
    • Chollet, F. et al. Keras. https://github.com/keras-team/keras (2015).
    • (2015) Keras
    • Chollet, F.1
  • 40
    • 84877998691 scopus 로고    scopus 로고
    • Gesture unit segmentation using support vector machines: Segmenting gestures from rest positions
    • Madeo, R. C., Lima, C. A. & Peres, S. M. Gesture unit segmentation using support vector machines: segmenting gestures from rest positions. In SAC (2013).
    • (2013) SAC
    • Madeo, R.C.1    Lima, C.A.2    Peres, S.M.3
  • 41
    • 84875639259 scopus 로고    scopus 로고
    • Predicting in-hospital mortality of icu patients: The physionet/computing in cardiology challenge 2012
    • Silva, I., Moody, G., Scott, D. J., Celi, L. A. & Mark, R. G. Predicting in-hospital mortality of icu patients: The physionet/computing in cardiology challenge 2012. In CinC (2012).
    • (2012) CinC
    • Silva, I.1    Moody, G.2    Scott, D.J.3    Celi, L.A.4    Mark, R.G.5
  • 42
    • 85019171807 scopus 로고    scopus 로고
    • A theoretically grounded application of dropout in recurrent neural networks
    • Gal, Y. & Ghahramani, Z. A theoretically grounded application of dropout in recurrent neural networks. In Advances in Neural Information Processing Systems, 1019-1027 (2016).
    • (2016) Advances in Neural Information Processing Systems , pp. 1019-1027
    • Gal, Y.1    Ghahramani, Z.2
  • 46
    • 85027521403 scopus 로고    scopus 로고
    • Interpretable topic features for post-icu mortality prediction
    • Luo, Y.-F. & Rumshisky, A. Interpretable topic features for post-icu mortality prediction. In AMIA Annual Symposium Proceedings, 827 (2016).
    • (2016) AMIA Annual Symposium Proceedings , vol.827
    • Luo, Y.-F.1    Rumshisky, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.