-
2
-
-
0034958947
-
Epidemiology of severe sepsis in the United States: Analysis of incidence, outcome, and associated costs of care
-
Angus DC, Linde-Zwirble WT, Lidicker J, et al. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 2001;29:1303-10.
-
(2001)
Crit Care Med
, vol.29
, pp. 1303-1310
-
-
Angus, D.C.1
Linde-Zwirble, W.T.2
Lidicker, J.3
-
3
-
-
84894506061
-
Two decades of mortality trends among patients with severe sepsis: A comparative meta-analysis∗
-
Stevenson EK, Rubenstein AR, Radin GT, et al. Two decades of mortality trends among patients with severe sepsis: a comparative meta-analysis∗. Crit Care Med 2014;42:625.
-
(2014)
Crit Care Med
, vol.42
, pp. 625
-
-
Stevenson, E.K.1
Rubenstein, A.R.2
Radin, G.T.3
-
4
-
-
84875217632
-
Costs for Hospital Stays in the United States, 2010: Statistical Brief #146
-
Cost H, Project U, Rockville; MDAgency for Healthcare Research and QualityUSA
-
Pfuntner A, Wier LM, Steiner C. Costs for Hospital Stays in the United States, 2010: Statistical Brief #146. In Healthcare Cost and Utilization Project (HCUP) Statistical Briefs:Cost H, Project U, Rockville; MDAgency for Healthcare Research and QualityUSA, 2006. https://www. ncbi. nlm. nih. gov/ books/ NBK121966/.
-
(2006)
In Healthcare Cost and Utilization Project (HCUP) Statistical Briefs
-
-
Pfuntner, A.1
Wier, L.M.2
Steiner, C.3
-
6
-
-
84876665421
-
Benchmarking the incidence and mortality of severe sepsis in the United States
-
Gaieski DF, Edwards JM, Kallan MJ, et al. Benchmarking the incidence and mortality of severe sepsis in the United States. Crit Care Med 2013;41:1167-74.
-
(2013)
Crit Care Med
, vol.41
, pp. 1167-1174
-
-
Gaieski, D.F.1
Edwards, J.M.2
Kallan, M.J.3
-
7
-
-
0035829842
-
Early goal-directed therapy in the treatment of severe sepsis and septic shock
-
Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 2001;345:1368-77.
-
(2001)
N Engl J Med
, vol.345
, pp. 1368-1377
-
-
Rivers, E.1
Nguyen, B.2
Havstad, S.3
-
8
-
-
34247175892
-
Implementation of a bundle of quality indicators for the early management of severe sepsis and septic shock is associated with decreased mortality
-
Nguyen HB, Corbett SW, Steele R, et al. Implementation of a bundle of quality indicators for the early management of severe sepsis and septic shock is associated with decreased mortality. Crit Care Med 2007;35:1105-12.
-
(2007)
Crit Care Med
, vol.35
, pp. 1105-1112
-
-
Nguyen, H.B.1
Corbett, S.W.2
Steele, R.3
-
9
-
-
33744527833
-
Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock
-
Kumar A, Roberts D, Wood KE, et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med 2006;34:1589-96.
-
(2006)
Crit Care Med
, vol.34
, pp. 1589-1596
-
-
Kumar, A.1
Roberts, D.2
Wood, K.E.3
-
10
-
-
85053036807
-
Sccm/esicm/accp/ats/sis international sepsis definitions conference
-
Levy MM, et al. sccm/esicm/accp/ats/sis international sepsis definitions conference. Intensive Care Med 2001;2003:530-8.
-
(2001)
Intensive Care Med
, vol.2003
, pp. 530-538
-
-
Levy, M.M.1
-
11
-
-
84959273475
-
The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3)
-
Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016;315:801-10.
-
(2016)
JAMA
, vol.315
, pp. 801-810
-
-
Singer, M.1
Deutschman, C.S.2
Seymour, C.W.3
-
12
-
-
33750698270
-
Validation of physiological scoring systems in the accident and emergency department
-
Subbe CP, Slater A, Menon D, et al. Validation of physiological scoring systems in the accident and emergency department. Emerg Med J 2006;23:841-5.
-
(2006)
Emerg Med J
, vol.23
, pp. 841-845
-
-
Subbe, C.P.1
Slater, A.2
Menon, D.3
-
13
-
-
0028893025
-
The natural history of the systemic inflammatory response syndrome (SIRS)
-
Rangel-Frausto MS, Pittet D, Costigan M, et al. The natural history of the systemic inflammatory response syndrome (SIRS). A prospective study. JAMA 1995;273:117-23.
-
(1995)
A Prospective Study. JAMA
, vol.273
, pp. 117-123
-
-
Rangel-Frausto, M.S.1
Pittet, D.2
Costigan, M.3
-
14
-
-
0030015661
-
The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/ failure. on behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine
-
Vincent JL, Moreno R, Takala J, et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/ failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med 1996;22:707-10.
-
(1996)
Intensive Care Med
, vol.22
, pp. 707-710
-
-
Vincent, J.L.1
Moreno, R.2
Takala, J.3
-
15
-
-
84971287198
-
MIMIC-III, a freely accessible critical care database
-
Johnson AE, Pollard TJ, Shen L, et al. MIMIC-III, a freely accessible critical care database. Sci Data 2016;3:160035.
-
(2016)
Sci Data
, vol.3
, pp. 160035
-
-
Johnson, A.E.1
Pollard, T.J.2
Shen, L.3
-
16
-
-
77958007735
-
STRIDE--An integrated standards-based translational research informatics platform
-
Lowe HJ, Ferris TA, Hernandez PM, et al. STRIDE--An integrated standards-based translational research informatics platform. AMIA Annu Symp Proc 2009;2009:391-5.
-
(2009)
AMIA Annu Symp Proc
, vol.2009
, pp. 391-395
-
-
Lowe, H.J.1
Ferris, T.A.2
Hernandez, P.M.3
-
19
-
-
84938704873
-
A targeted real-time early warning score (TREWScore) for septic shock
-
Henry KE, Hager DN, Pronovost PJ, et al. A targeted real-time early warning score (TREWScore) for septic shock. Sci Transl Med 2015;7:299ra122.
-
(2015)
Sci Transl Med
, vol.7
, pp. 299ra122
-
-
Henry, K.E.1
Hager, D.N.2
Pronovost, P.J.3
-
20
-
-
84859952902
-
Is the Modified Early Warning Score (MEWS) superior to clinician judgement in detecting critical illness in the pre-hospital environment?
-
Fullerton JN, Price CL, Silvey NE, et al. Is the Modified Early Warning Score (MEWS) superior to clinician judgement in detecting critical illness in the pre-hospital environment? Resuscitation 2012;83:557-62.
-
(2012)
Resuscitation
, vol.83
, pp. 557-562
-
-
Fullerton, J.N.1
Price, C.L.2
Silvey, N.E.3
-
21
-
-
84897573740
-
A theory of learning from different domains
-
Ben-David S, Blitzer J, Crammer K, et al. A theory of learning from different domains. Mach Learn 2010;79:151-75.
-
(2010)
Mach Learn
, vol.79
, pp. 151-175
-
-
Ben-David, S.1
Blitzer, J.2
Crammer, K.3
-
23
-
-
85018664128
-
Prediction of Sepsis in the Intensive Care Unit with Minimal Electronic Health Record Data: A Machine Learning Approach
-
Desautels T, Calvert J, Hoffman J, et al. Prediction of Sepsis in the Intensive Care Unit With Minimal Electronic Health Record Data: A Machine Learning Approach. JMIR Med Inform 2016;4:e28.
-
(2016)
JMIR Med Inform
, vol.4
, pp. e28
-
-
Desautels, T.1
Calvert, J.2
Hoffman, J.3
-
24
-
-
84969784621
-
High-performance detection and early prediction of septic shock for alcohol-use disorder patients
-
Calvert J, Desautels T, Chettipally U, et al. High-performance detection and early prediction of septic shock for alcohol-use disorder patients. Ann Med Surg 2016;8:50-5.
-
(2016)
Ann Med Surg
, vol.8
, pp. 50-55
-
-
Calvert, J.1
Desautels, T.2
Chettipally, U.3
-
25
-
-
85014773638
-
Discharge recommendation based on a novel technique of homeostatic analysis
-
Calvert JS, Price DA, Barton CW, et al. Discharge recommendation based on a novel technique of homeostatic analysis. J Am Med Inform Assoc 2017;24:24-9.
-
(2017)
J Am Med Inform Assoc
, vol.24
, pp. 24-29
-
-
Calvert, J.S.1
Price, D.A.2
Barton, C.W.3
-
26
-
-
84971255250
-
A computational approach to mortality prediction of alcohol use disorder inpatients
-
Calvert J, Mao Q, Rogers AJ, et al. A computational approach to mortality prediction of alcohol use disorder inpatients. Comput Biol Med 2016;75:74-9.
-
(2016)
Comput Biol Med
, vol.75
, pp. 74-79
-
-
Calvert, J.1
Mao, Q.2
Rogers, A.J.3
-
27
-
-
84988564562
-
Using electronic health record collected clinical variables to predict medical intensive care unit mortality
-
Calvert J, Mao Q, Hoffman JL, et al. Using electronic health record collected clinical variables to predict medical intensive care unit mortality. Ann Med Surg 2016;11:52-7.
-
(2016)
Ann Med Surg
, vol.11
, pp. 52-57
-
-
Calvert, J.1
Mao, Q.2
Hoffman, J.L.3
-
28
-
-
84901367807
-
Identifying patients with severe sepsis using administrative claims: Patient-level validation of the angus implementation of the international consensus conference definition of severe sepsis
-
Iwashyna TJ, Odden A, Rohde J, et al. Identifying patients with severe sepsis using administrative claims: patient-level validation of the angus implementation of the international consensus conference definition of severe sepsis. Med Care 2014;52:e39.
-
(2014)
Med Care
, vol.52
, pp. e39
-
-
Iwashyna, T.J.1
Odden, A.2
Rohde, J.3
-
29
-
-
84894101089
-
From vital signs to clinical outcomes for patients with sepsis: A machine learning basis for a clinical decision support system
-
Gultepe E, Green JP, Nguyen H, et al. From vital signs to clinical outcomes for patients with sepsis: a machine learning basis for a clinical decision support system. J Am Med Inform Assoc 2014;21:315-25.
-
(2014)
J Am Med Inform Assoc
, vol.21
, pp. 315-325
-
-
Gultepe, E.1
Green, J.P.2
Nguyen, H.3
-
30
-
-
0003384426
-
Septic shock diagnosis by neural networks and rule based systems
-
Schmitt M, Teodorescu HN, Jain A, eds.et al, New York: Springer
-
Brause R, Hamker F, Paetz J. Septic shock diagnosis by neural networks and rule based systems. In: Schmitt M, Teodorescu HN, Jain A, eds. et alComputational intelligence techniques in medical diagnosis and prognosis. New York: Springer, 2002:323-56.
-
(2002)
Computational Intelligence Techniques in Medical Diagnosis and Prognosis
, pp. 323-356
-
-
Brause, R.1
Hamker, F.2
Paetz, J.3
-
32
-
-
85017113914
-
Creating an automated trigger for sepsis clinical decision support at emergency department triage using machine learning
-
Horng S, Sontag DA, Halpern Y, et al. Creating an automated trigger for sepsis clinical decision support at emergency department triage using machine learning. PLoS One 2017;12:e0174708.
-
(2017)
PLoS One
, vol.12
-
-
Horng, S.1
Sontag, D.A.2
Halpern, Y.3
|