메뉴 건너뛰기




Volumn 22, Issue 5, 2018, Pages 1589-1604

Deep EHR: A Survey of Recent Advances in Deep Learning Techniques for Electronic Health Record (EHR) Analysis

Author keywords

Clinical informatics; deep learning; electronic health records; machine learning; survey

Indexed keywords

CLINICAL RESEARCH; E-LEARNING; EHEALTH; LEARNING SYSTEMS; RECORDS MANAGEMENT; SURVEYING; SURVEYS;

EID: 85032736236     PISSN: 21682194     EISSN: 21682208     Source Type: Journal    
DOI: 10.1109/JBHI.2017.2767063     Document Type: Article
Times cited : (1003)

References (63)
  • 1
    • 84925245442 scopus 로고    scopus 로고
    • Uses of electronic health records for public health surveillance to advance public health
    • G. S. Birkhead, M. Klompas, and N. R. Shah, "Uses of electronic health records for public health surveillance to advance public health, " Annu. Rev. Public Health, vol. 36, pp. 345-59, 2015.
    • (2015) Annu. Rev. Public Health , vol.36 , pp. 345-359
    • Birkhead, G.S.1    Klompas, M.2    Shah, N.R.3
  • 5
    • 80052312723 scopus 로고    scopus 로고
    • Secondary use of EHR: Data quality issues and informatics opportunities
    • T. Botsis, G. Hartvigsen, F. Chen, and C. Weng, "Secondary use of EHR: Data quality issues and informatics opportunities, " in Proc. AMIA Joint Summits Transl. Sci., 2010, vol. 2010, pp. 1-5.
    • (2010) Proc. AMIA Joint Summits Transl. Sci , vol.2010 , pp. 1-5
    • Botsis, T.1    Hartvigsen, G.2    Chen, F.3    Weng, C.4
  • 6
    • 84861235431 scopus 로고    scopus 로고
    • Translational genetics: Mining electronic health records: Towards better research applications and clinical care
    • P. B. Jensen, L. J. Jensen, and S. Brunak, "Translational genetics: Mining electronic health records: Towards better research applications and clinical care, " Nature Rev.-Genetics, vol. 13, pp. 395-405, 2012.
    • (2012) Nature Rev.-Genetics , vol.13 , pp. 395-405
    • Jensen, P.B.1    Jensen, L.J.2    Brunak, S.3
  • 7
    • 50649122567 scopus 로고    scopus 로고
    • Extracting information from textual documents in the electronic health record: A review of recent research
    • S. M. Meystre, G. K. Savova, K. C. Kipper-Schuler, and J. F. Hurdle, "Extracting information from textual documents in the electronic health record: A review of recent research, " IMIA Yearbook Med. Informat. Methods Inf. Med., vol. 47, no. 1, pp. 128-44, 2008.
    • (2008) IMIA Yearbook Med. Informat. Methods Inf. Med , vol.47 , Issue.1 , pp. 128-144
    • Meystre, S.M.1    Savova, G.K.2    Kipper-Schuler, K.C.3    Hurdle, J.F.4
  • 8
    • 80053271549 scopus 로고    scopus 로고
    • A study of machine-learning-based approaches to extract clinical entities and their assertions from discharge summaries
    • M. Jiang et al., "A study of machine-learning-based approaches to extract clinical entities and their assertions from discharge summaries, " J. Amer. Med. Informat. Assoc., vol. 18, no. 5, pp. 601-606, 2011.
    • (2011) J. Amer. Med. Informat. Assoc , vol.18 , Issue.5 , pp. 601-606
    • Jiang, M.1
  • 9
    • 84964989291 scopus 로고    scopus 로고
    • Predicting patients trajectory of physiological data using temporal trends in similar patients:Asystem for near-Term prognostics
    • S. Ebadollahi, J. Sun, D. Gotz, J. Hu, D. Sow, and C. Neti, "Predicting patients trajectory of physiological data using temporal trends in similar patients:Asystem for near-Term prognostics, " in Proc. AMIA Annu. Symp., 2010, pp. 192-196.
    • (2010) Proc. AMIA Annu. Symp , pp. 192-196
    • Ebadollahi, S.1    Sun, J.2    Gotz, D.3    Hu, J.4    Sow, D.5    Neti, C.6
  • 10
    • 80052891202 scopus 로고    scopus 로고
    • Combining PubMed knowledge and EHR data to develop a weighted Bayesian network for pancreatic cancer prediction
    • D. Zhao and C. Weng, "Combining PubMed knowledge and EHR data to develop a weighted Bayesian network for pancreatic cancer prediction, " J. Biomed. Informat., vol. 44, no. 5, pp. 859-868, 2011.
    • (2011) J. Biomed. Informat , vol.44 , Issue.5 , pp. 859-868
    • Zhao, D.1    Weng, C.2
  • 11
    • 84875243337 scopus 로고    scopus 로고
    • Using methods from the data-mining and machine-learning literature for disease classification and prediction: A case study examining classification of heart failure subtypes
    • P. C. Austin, J. V. Tu, J. E. Ho, D. Levy, and D. S. Lee, "Using methods from the data-mining and machine-learning literature for disease classification and prediction: A case study examining classification of heart failure subtypes, " J. Clin. Epidemiol., vol. 66, no. 4, pp. 398-407, 2013.
    • (2013) J. Clin. Epidemiol , vol.66 , Issue.4 , pp. 398-407
    • Austin, P.C.1    Tu, J.V.2    Ho, J.E.3    Levy, D.4    Lee, D.S.5
  • 12
    • 33845439066 scopus 로고    scopus 로고
    • Medication-related clinical decision support in computerized provider order entry systems: A review
    • G. J. Kuperman et al., "Medication-related clinical decision support in computerized provider order entry systems: A review, " J. Amer. Med. Informat. Assoc., vol. 14, no. 1, pp. 29-40, 2007.
    • (2007) J. Amer. Med. Informat. Assoc , vol.14 , Issue.1 , pp. 29-40
    • Kuperman, G.J.1
  • 15
    • 84968813824 scopus 로고    scopus 로고
    • Deep patient: An unsupervised representation to predict the future of patients from the electronic health records
    • Apr, Art 26094
    • R. Miotto, L. Li, B. A. Kidd, and J. T. Dudley, "Deep patient: An unsupervised representation to predict the future of patients from the electronic health records, " Sci. Rep., vol. 6, no. Apr., 2016, Art. no. 26094.
    • (2016) Sci. Rep , vol.6
    • Miotto, R.1    Li, L.2    Kidd, B.A.3    Dudley, J.T.4
  • 16
    • 85072823095 scopus 로고    scopus 로고
    • Structured predictionmodels for RNNbased sequence labeling in clinical text
    • A. N. Jagannatha and H. Yu, "Structured predictionmodels for RNNbased sequence labeling in clinical text, " in Proc. Empirical Methods Natural Lang. Process., 2016, pp. 856-865.
    • (2016) Proc. Empirical Methods Natural Lang. Process , pp. 856-865
    • Jagannatha, A.N.1    Yu, H.2
  • 18
    • 84936934560 scopus 로고    scopus 로고
    • Disease inference from health-related questions via sparsely connected deep learning
    • Aug
    • L. Nie, M. Wang, L. Zhang, S. Yan, B. Zhang, and T.-S. Chua, "Disease inference from health-related questions via sparsely connected deep learning, " IEEE Trans. Knowl. Data Eng., vol. 27, no. 8, pp. 2107-2119, Aug. 2015.
    • (2015) IEEE Trans. Knowl. Data Eng , vol.27 , Issue.8 , pp. 2107-2119
    • Nie, L.1    Wang, M.2    Zhang, L.3    Yan, S.4    Zhang, B.5    Chua, T.-S.6
  • 21
    • 84987971648 scopus 로고    scopus 로고
    • DeepCare:Adeep dynamic memory model for predictive medicine
    • Springer International Publishing Apr
    • T. Pham, T. Tran, D. Phung, and S. Venkatesh, "DeepCare:Adeep dynamic memory model for predictive medicine, " in Pacific-Asia Conf. Knowl. Discovery Data Mining, Springer International Publishing, Apr. 2016, pp. 30-41.
    • (2016) Pacific-Asia Conf. Knowl. Discovery Data Mining , pp. 30-41
    • Pham, T.1    Tran, T.2    Phung, D.3    Venkatesh, S.4
  • 22
    • 85029767500 scopus 로고    scopus 로고
    • Doctor AI: Predicting clinical events via recurrent neural networks
    • Dec
    • E. Choi, M. T. Bahadori, and J. Sun, "Doctor AI: Predicting clinical events via recurrent neural networks, " in Machine Learn. Healthcare Conf., Dec. 2015, pp. 301-318.
    • (2015) Machine Learn. Healthcare Conf , pp. 301-318
    • Choi, E.1    Bahadori, M.T.2    Sun, J.3
  • 24
    • 84927945601 scopus 로고    scopus 로고
    • Learning vector representation of medical objects via EMR-driven nonnegative restricted Boltzmann machines (eNRBM)
    • T. Tran, T. D. Nguyen, D. Phung, and S. Venkatesh, "Learning vector representation of medical objects via EMR-driven nonnegative restricted Boltzmann machines (eNRBM), " J. Biomed. Informat., vol. 54, pp. 96-105, 2015.
    • (2015) J. Biomed. Informat , vol.54 , pp. 96-105
    • Tran, T.1    Nguyen, T.D.2    Phung, D.3    Venkatesh, S.4
  • 25
    • 85014952213 scopus 로고    scopus 로고
    • Deep learning for health informatics
    • Jan
    • D. Ravi et al., "Deep learning for health informatics, " IEEE J. Biomed. Health Informat., vol. 21, no. 1, pp. 4-21, Jan. 2017.
    • (2017) IEEE J. Biomed. Health Informat , vol.21 , Issue.1 , pp. 4-21
    • Ravi, D.1
  • 26
    • 84965045926 scopus 로고    scopus 로고
    • Quality of EHR data extractions for studies of preterm birth in a tertiary care center: Guidelines for obtaining reliable data
    • L. A. Knake et al., "Quality of EHR data extractions for studies of preterm birth in a tertiary care center: Guidelines for obtaining reliable data, " BMC Pediatrics, vol. 16, no. 1, pp. 59-66, 2016.
    • (2016) BMC Pediatrics , vol.16 , Issue.1 , pp. 59-66
    • Knake, L.A.1
  • 27
    • 85021145223 scopus 로고    scopus 로고
    • Deep learning in medical image analysis
    • D. Shen, G. Wu, and H.-I. Suk, "Deep learning in medical image analysis, " Annu. Rev. Biomed. Eng., vol. 19, no. 1, pp. 221-248, 2017.
    • (2017) Annu. Rev. Biomed. Eng , vol.19 , Issue.1 , pp. 221-248
    • Shen, D.1    Wu, G.2    Suk, H.-I.3
  • 29
    • 84867539048 scopus 로고    scopus 로고
    • A few useful things to know about machine learning
    • P. Domingos, "A few useful things to know about machine learning, " Commun. ACM, vol. 55, no. 10, pp. 78-87, 2012.
    • (2012) Commun ACM , vol.55 , Issue.10 , pp. 78-87
    • Domingos, P.1
  • 30
    • 85029228436 scopus 로고    scopus 로고
    • THE ASIMOV INSTITUTE Sep. 14
    • F. van Veen, "The neural network zoo, " THE ASIMOV INSTITUTE, Sep. 14, 2016. [Online]. Available: http://www.asimovinstitute.org/neuralnetwork-zoo/
    • (2016) The Neural Network Zoo
    • Van Veen, F.1
  • 31
    • 84958549938 scopus 로고    scopus 로고
    • Minimizing computation in convolutional neural networks
    • New York, NY, USA Springer
    • J. Cong and B. Xiao, "Minimizing computation in convolutional neural networks, " in Artificial Neural Networks and Machine Learning. New York, NY, USA: Springer, 2014, pp. 281-290.
    • (2014) Artificial Neural Networks and Machine Learning , pp. 281-290
    • Cong, J.1    Xiao, B.2
  • 33
    • 84994249138 scopus 로고    scopus 로고
    • Musical audio synthesis using autoencoding neural nets
    • A. M. Sarroff andM. Casey, "Musical audio synthesis using autoencoding neural nets, " in Proc. Int. Comput. Music Conf., 2014, pp. 14-20.
    • (2014) Proc. Int. Comput. Music Conf , pp. 14-20
    • Sarroff, A.M.1    Casey, M.2
  • 34
    • 84952008061 scopus 로고    scopus 로고
    • Named entity recognition in Chinese clinical text using deep neural network
    • Y. Wu, M. Jiang, J. Lei, and H. Xu, "Named entity recognition in Chinese clinical text using deep neural network, " Stud. Health Technol. Informat., vol. 216, pp. 624-628, 2015.
    • (2015) Stud. Health Technol. Informat , vol.216 , pp. 624-628
    • Wu, Y.1    Jiang, M.2    Lei, J.3    Xu, H.4
  • 35
    • 85019682515 scopus 로고    scopus 로고
    • Brundlefly at SemEval-2016 Task 12: Recurrent neural networks vs. joint inference for clinical temporal information extraction
    • J. A. Fries, "Brundlefly at SemEval-2016 Task 12: Recurrent neural networks vs. joint inference for clinical temporal information extraction, " in Proc. 10th Int. Workshop Semantic Eval., 2016, pp. 1274-1279.
    • (2016) Proc. 10th Int. Workshop Semantic Eval , pp. 1274-1279
    • Fries, J.A.1
  • 36
    • 85047223922 scopus 로고    scopus 로고
    • Clinical relation extraction with deep learning
    • X. Lv, Y. Guan, J. Yang, and J. Wu, "Clinical relation extraction with deep learning, " Int. J. Hybrid Inf. Technol., vol. 9, no. 7, pp. 237-248, 2016.
    • (2016) Int. J. Hybrid Inf. Technol , vol.9 , Issue.7 , pp. 237-248
    • Lv, X.1    Guan, Y.2    Yang, J.3    Wu, J.4
  • 38
    • 85018677909 scopus 로고    scopus 로고
    • Using recurrent neural network models for early detection of heart failure onset
    • E. Choi, A. Schuetz, W. F. Stewart, and J. Sun, "Using recurrent neural network models for early detection of heart failure onset, " J. Amer. Med. Informat. Assoc., vol. 292, no. 3, pp. 344-350, 2016.
    • (2016) J. Amer. Med. Informat. Assoc , vol.292 , Issue.3 , pp. 344-350
    • Choi, E.1    Schuetz, A.2    Stewart, W.F.3    Sun, J.4
  • 39
    • 85014902153 scopus 로고    scopus 로고
    • Learning low-dimensional representations of medical concepts methods background
    • Y. Choi, C. Y.-I. Chiu, and D. Sontag, "Learning low-dimensional representations of medical concepts methods background, " in Proc. AMIA Summit Clin. Res. Informat., 2016, pp. 41-50.
    • (2016) Proc. AMIA Summit Clin. Res. Informat , pp. 41-50
    • Choi, Y.1    Chiu, C.Y.-I.2    Sontag, D.3
  • 40
    • 84966421136 scopus 로고    scopus 로고
    • Temporal pattern and association discovery of diagnosis codes using deep learning
    • S. Mehrabi et al., "Temporal pattern and association discovery of diagnosis codes using deep learning, " in Proc. 2015 Int. Conf. Healthcare Informat., 2015, pp. 408-416.
    • (2015) Proc. 2015 Int. Conf. Healthcare Informat , pp. 408-416
    • Mehrabi, S.1
  • 42
    • 85120076596 scopus 로고    scopus 로고
    • Applying deep learning on electronic health records in Swedish to predict healthcare-Associated infections
    • O. Jacobson and H. Dalianis, "Applying deep learning on electronic health records in Swedish to predict healthcare-Associated infections, " in Proc. 15th Workshop Biomed. Natural Lang. Process., 2016, pp. 191-195.
    • (2016) Proc. 15th Workshop Biomed. Natural Lang. Process , pp. 191-195
    • Jacobson, O.1    Dalianis, H.2
  • 43
    • 84927125365 scopus 로고    scopus 로고
    • Identifying informative risk factors and predicting bone disease progression via deep belief networks
    • H. Li, X. Li, M. Ramanathan, and A. Zhang, "Identifying informative risk factors and predicting bone disease progression via deep belief networks, " Methods, vol. 69, no. 3, pp. 257-265, 2014.
    • (2014) Methods , vol.69 , Issue.3 , pp. 257-265
    • Li, H.1    Li, X.2    Ramanathan, M.3    Zhang, A.4
  • 44
    • 84991721533 scopus 로고    scopus 로고
    • Risk prediction with electronic health records: A deep learning approach
    • Y. Cheng, F. Wang, P. Zhang, H. Xu, and J. Hu, "Risk prediction with electronic health records: A deep learning approach, " in Proc. SIAM Int. Conf. Data Mining, 2015, pp. 432-440.
    • (2015) Proc SIAM Int. Conf. Data Mining , pp. 432-440
    • Cheng, Y.1    Wang, F.2    Zhang, P.3    Xu, H.4    Hu, J.5
  • 47
    • 85010338129 scopus 로고    scopus 로고
    • Predicting clinical events by combining static and dynamic information using recurrent neural networks
    • Oct
    • C. Esteban, O. Staeck, Y. Yang, and V. Tresp, "Predicting clinical events by combining static and dynamic information using recurrent neural networks, " in Healthcare Info. (ICHI), 2016 IEEE Int. Conf., Oct. 2016, pp. 93-101.
    • (2016) Healthcare Info. (ICHI) 2016 IEEE Int. Conf. , pp. 93-101
    • Esteban, C.1    Staeck, O.2    Yang, Y.3    Tresp, V.4
  • 49
    • 84992084119 scopus 로고    scopus 로고
    • Semi-supervised learning of the electronic health record with denoising autoencoders for phenotype stratification
    • Art 039800
    • B. K. Beaulieu-Jones and C. S. Greene, "Semi-supervised learning of the electronic health record with denoising autoencoders for phenotype stratification, " J. biomedical informat., vol. 64, pp. 168-178, 2016, Art. no. 039800.
    • (2016) J. Biomedical Informat , vol.64 , pp. 168-178
    • Beaulieu-Jones, B.K.1    Greene, C.S.2
  • 50
    • 84879468407 scopus 로고    scopus 로고
    • Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data
    • Art. no. e66341
    • T. A. Lasko, J. C. Denny, and M. A. Levy, "Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data, " PLoS ONE, vol. 8, no. 6, 2013, Art. no. e66341.
    • (2013) PLoS ONE , vol.8 , Issue.6
    • Lasko, T.A.1    Denny, J.C.2    Levy, M.A.3
  • 55
    • 84982966378 scopus 로고    scopus 로고
    • Incremental knowledge base construction using Deep-Dive
    • C. De Sa et al., "Incremental knowledge base construction using Deep-Dive, " VLDB J., vol. 26, pp. 81-105, 2017.
    • (2017) VLDB J , vol.26 , pp. 81-105
    • De Sa, C.1
  • 56
    • 84971287198 scopus 로고    scopus 로고
    • MIMIC-III, a freely accessible critical care database
    • Art 160035
    • A. E. Johnson et al., "MIMIC-III, a freely accessible critical care database, " Sci. Data, vol. 3, 2016, Art. no. 160035.
    • (2016) Sci. Data , vol.3
    • Johnson, A.E.1
  • 59
    • 85027974126 scopus 로고    scopus 로고
    • Interpretable deep models for ICU outcome prediction
    • Z. Che, S. Purushotham, R. Khemani, and Y. Liu, "Interpretable deep models for ICU outcome prediction, " in Proc. AMIA Annu. Symp., 2016, vol. 2016, pp. 371-380.
    • (2016) Proc. AMIA Annu. Symp , vol.2016 , pp. 371-380
    • Che, Z.1    Purushotham, S.2    Khemani, R.3    Liu, Y.4
  • 63


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.