-
1
-
-
84925245442
-
Uses of electronic health records for public health surveillance to advance public health
-
G. S. Birkhead, M. Klompas, and N. R. Shah, "Uses of electronic health records for public health surveillance to advance public health, " Annu. Rev. Public Health, vol. 36, pp. 345-59, 2015.
-
(2015)
Annu. Rev. Public Health
, vol.36
, pp. 345-359
-
-
Birkhead, G.S.1
Klompas, M.2
Shah, N.R.3
-
4
-
-
85029356947
-
-
Office Nat. Coordinator Health Inf. Technol., Washington, DC, USA, Tech. Rep
-
E. Jamoom and N. Yang, "Table of electronic health record adoption and use among office-based physicians in the U.S., by State: 2015 National Electronic Health Records Survey, " Office Nat. Coordinator Health Inf. Technol., Washington, DC, USA, Tech. Rep., 2016.
-
(2016)
Table of Electronic Health Record Adoption and Use among Office-based Physicians in the U.S., by State: 2015 National Electronic Health Records Survey
-
-
Jamoom, E.1
Yang, N.2
-
5
-
-
80052312723
-
Secondary use of EHR: Data quality issues and informatics opportunities
-
T. Botsis, G. Hartvigsen, F. Chen, and C. Weng, "Secondary use of EHR: Data quality issues and informatics opportunities, " in Proc. AMIA Joint Summits Transl. Sci., 2010, vol. 2010, pp. 1-5.
-
(2010)
Proc. AMIA Joint Summits Transl. Sci
, vol.2010
, pp. 1-5
-
-
Botsis, T.1
Hartvigsen, G.2
Chen, F.3
Weng, C.4
-
6
-
-
84861235431
-
Translational genetics: Mining electronic health records: Towards better research applications and clinical care
-
P. B. Jensen, L. J. Jensen, and S. Brunak, "Translational genetics: Mining electronic health records: Towards better research applications and clinical care, " Nature Rev.-Genetics, vol. 13, pp. 395-405, 2012.
-
(2012)
Nature Rev.-Genetics
, vol.13
, pp. 395-405
-
-
Jensen, P.B.1
Jensen, L.J.2
Brunak, S.3
-
7
-
-
50649122567
-
Extracting information from textual documents in the electronic health record: A review of recent research
-
S. M. Meystre, G. K. Savova, K. C. Kipper-Schuler, and J. F. Hurdle, "Extracting information from textual documents in the electronic health record: A review of recent research, " IMIA Yearbook Med. Informat. Methods Inf. Med., vol. 47, no. 1, pp. 128-44, 2008.
-
(2008)
IMIA Yearbook Med. Informat. Methods Inf. Med
, vol.47
, Issue.1
, pp. 128-144
-
-
Meystre, S.M.1
Savova, G.K.2
Kipper-Schuler, K.C.3
Hurdle, J.F.4
-
8
-
-
80053271549
-
A study of machine-learning-based approaches to extract clinical entities and their assertions from discharge summaries
-
M. Jiang et al., "A study of machine-learning-based approaches to extract clinical entities and their assertions from discharge summaries, " J. Amer. Med. Informat. Assoc., vol. 18, no. 5, pp. 601-606, 2011.
-
(2011)
J. Amer. Med. Informat. Assoc
, vol.18
, Issue.5
, pp. 601-606
-
-
Jiang, M.1
-
9
-
-
84964989291
-
Predicting patients trajectory of physiological data using temporal trends in similar patients:Asystem for near-Term prognostics
-
S. Ebadollahi, J. Sun, D. Gotz, J. Hu, D. Sow, and C. Neti, "Predicting patients trajectory of physiological data using temporal trends in similar patients:Asystem for near-Term prognostics, " in Proc. AMIA Annu. Symp., 2010, pp. 192-196.
-
(2010)
Proc. AMIA Annu. Symp
, pp. 192-196
-
-
Ebadollahi, S.1
Sun, J.2
Gotz, D.3
Hu, J.4
Sow, D.5
Neti, C.6
-
10
-
-
80052891202
-
Combining PubMed knowledge and EHR data to develop a weighted Bayesian network for pancreatic cancer prediction
-
D. Zhao and C. Weng, "Combining PubMed knowledge and EHR data to develop a weighted Bayesian network for pancreatic cancer prediction, " J. Biomed. Informat., vol. 44, no. 5, pp. 859-868, 2011.
-
(2011)
J. Biomed. Informat
, vol.44
, Issue.5
, pp. 859-868
-
-
Zhao, D.1
Weng, C.2
-
11
-
-
84875243337
-
Using methods from the data-mining and machine-learning literature for disease classification and prediction: A case study examining classification of heart failure subtypes
-
P. C. Austin, J. V. Tu, J. E. Ho, D. Levy, and D. S. Lee, "Using methods from the data-mining and machine-learning literature for disease classification and prediction: A case study examining classification of heart failure subtypes, " J. Clin. Epidemiol., vol. 66, no. 4, pp. 398-407, 2013.
-
(2013)
J. Clin. Epidemiol
, vol.66
, Issue.4
, pp. 398-407
-
-
Austin, P.C.1
Tu, J.V.2
Ho, J.E.3
Levy, D.4
Lee, D.S.5
-
12
-
-
33845439066
-
Medication-related clinical decision support in computerized provider order entry systems: A review
-
G. J. Kuperman et al., "Medication-related clinical decision support in computerized provider order entry systems: A review, " J. Amer. Med. Informat. Assoc., vol. 14, no. 1, pp. 29-40, 2007.
-
(2007)
J. Amer. Med. Informat. Assoc
, vol.14
, Issue.1
, pp. 29-40
-
-
Kuperman, G.J.1
-
14
-
-
84944735469
-
-
Cambridge, MA, USA MIT Press
-
I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge, MA, USA: MIT Press, 2016.
-
(2016)
Deep Learning
-
-
Goodfellow, I.1
Bengio, Y.2
Courville, A.3
-
15
-
-
84968813824
-
Deep patient: An unsupervised representation to predict the future of patients from the electronic health records
-
Apr, Art 26094
-
R. Miotto, L. Li, B. A. Kidd, and J. T. Dudley, "Deep patient: An unsupervised representation to predict the future of patients from the electronic health records, " Sci. Rep., vol. 6, no. Apr., 2016, Art. no. 26094.
-
(2016)
Sci. Rep
, vol.6
-
-
Miotto, R.1
Li, L.2
Kidd, B.A.3
Dudley, J.T.4
-
16
-
-
85072823095
-
Structured predictionmodels for RNNbased sequence labeling in clinical text
-
A. N. Jagannatha and H. Yu, "Structured predictionmodels for RNNbased sequence labeling in clinical text, " in Proc. Empirical Methods Natural Lang. Process., 2016, pp. 856-865.
-
(2016)
Proc. Empirical Methods Natural Lang. Process
, pp. 856-865
-
-
Jagannatha, A.N.1
Yu, H.2
-
18
-
-
84936934560
-
Disease inference from health-related questions via sparsely connected deep learning
-
Aug
-
L. Nie, M. Wang, L. Zhang, S. Yan, B. Zhang, and T.-S. Chua, "Disease inference from health-related questions via sparsely connected deep learning, " IEEE Trans. Knowl. Data Eng., vol. 27, no. 8, pp. 2107-2119, Aug. 2015.
-
(2015)
IEEE Trans. Knowl. Data Eng
, vol.27
, Issue.8
, pp. 2107-2119
-
-
Nie, L.1
Wang, M.2
Zhang, L.3
Yan, S.4
Zhang, B.5
Chua, T.-S.6
-
19
-
-
84984949246
-
-
arXiv 1602.03686 Feb
-
E. Choi, A. Schuetz, W. F. Stewart, and J. Sun, "Medical concept representation learning from electronic health records and its application on heart failure prediction, " arXiv:1602.03686, Feb. 2016, p. 45.
-
(2016)
Medical Concept Representation Learning from Electronic Health Records and Its Application on Heart Failure Prediction
, pp. 45
-
-
Choi, E.1
Schuetz, A.2
Stewart, W.F.3
Sun, J.4
-
20
-
-
85014933330
-
Deepr: Aconvolutional net for medical records
-
Jan
-
P. Nguyen, T. Tran, N. Wickramasinghe, and S. Venkatesh, "Deepr: Aconvolutional net for medical records, " in IEEE J. Biomed. Health Informat., vol. 21, no. 1, pp. 22-30, Jan. 2017.
-
(2017)
IEEE J. Biomed. Health Informat
, vol.21
, Issue.1
, pp. 22-30
-
-
Nguyen, P.1
Tran, T.2
Wickramasinghe, N.3
Venkatesh, S.4
-
21
-
-
84987971648
-
DeepCare:Adeep dynamic memory model for predictive medicine
-
Springer International Publishing Apr
-
T. Pham, T. Tran, D. Phung, and S. Venkatesh, "DeepCare:Adeep dynamic memory model for predictive medicine, " in Pacific-Asia Conf. Knowl. Discovery Data Mining, Springer International Publishing, Apr. 2016, pp. 30-41.
-
(2016)
Pacific-Asia Conf. Knowl. Discovery Data Mining
, pp. 30-41
-
-
Pham, T.1
Tran, T.2
Phung, D.3
Venkatesh, S.4
-
22
-
-
85029767500
-
Doctor AI: Predicting clinical events via recurrent neural networks
-
Dec
-
E. Choi, M. T. Bahadori, and J. Sun, "Doctor AI: Predicting clinical events via recurrent neural networks, " in Machine Learn. Healthcare Conf., Dec. 2015, pp. 301-318.
-
(2015)
Machine Learn. Healthcare Conf
, pp. 301-318
-
-
Choi, E.1
Bahadori, M.T.2
Sun, J.3
-
23
-
-
84985025946
-
Multi-layer representation learning for medical concepts
-
Aug
-
E. Choi, M.T. Bahadori, E. Searles, C. Coffey, and J. Sun, "Multi-layer representation learning for medical concepts, " in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Aug. 2016, pp. 1495-1504.
-
(2016)
Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining
, pp. 1495-1504
-
-
Choi, E.1
Bahadori, M.T.2
Searles, E.3
Coffey, C.4
Sun, J.5
-
24
-
-
84927945601
-
Learning vector representation of medical objects via EMR-driven nonnegative restricted Boltzmann machines (eNRBM)
-
T. Tran, T. D. Nguyen, D. Phung, and S. Venkatesh, "Learning vector representation of medical objects via EMR-driven nonnegative restricted Boltzmann machines (eNRBM), " J. Biomed. Informat., vol. 54, pp. 96-105, 2015.
-
(2015)
J. Biomed. Informat
, vol.54
, pp. 96-105
-
-
Tran, T.1
Nguyen, T.D.2
Phung, D.3
Venkatesh, S.4
-
25
-
-
85014952213
-
Deep learning for health informatics
-
Jan
-
D. Ravi et al., "Deep learning for health informatics, " IEEE J. Biomed. Health Informat., vol. 21, no. 1, pp. 4-21, Jan. 2017.
-
(2017)
IEEE J. Biomed. Health Informat
, vol.21
, Issue.1
, pp. 4-21
-
-
Ravi, D.1
-
26
-
-
84965045926
-
Quality of EHR data extractions for studies of preterm birth in a tertiary care center: Guidelines for obtaining reliable data
-
L. A. Knake et al., "Quality of EHR data extractions for studies of preterm birth in a tertiary care center: Guidelines for obtaining reliable data, " BMC Pediatrics, vol. 16, no. 1, pp. 59-66, 2016.
-
(2016)
BMC Pediatrics
, vol.16
, Issue.1
, pp. 59-66
-
-
Knake, L.A.1
-
27
-
-
85021145223
-
Deep learning in medical image analysis
-
D. Shen, G. Wu, and H.-I. Suk, "Deep learning in medical image analysis, " Annu. Rev. Biomed. Eng., vol. 19, no. 1, pp. 221-248, 2017.
-
(2017)
Annu. Rev. Biomed. Eng
, vol.19
, Issue.1
, pp. 221-248
-
-
Shen, D.1
Wu, G.2
Suk, H.-I.3
-
28
-
-
84980022857
-
Deep learning for computational biology
-
C. Angermueller, T. Pärnamaa, L. Parts, and O. Stegle, "Deep learning for computational biology, " Mol. Syst. Biol., vol. 12, no. 7, pp. 878-893, 2016.
-
(2016)
Mol. Syst. Biol
, vol.12
, Issue.7
, pp. 878-893
-
-
Angermueller, C.1
Pärnamaa, T.2
Parts, L.3
Stegle, O.4
-
29
-
-
84867539048
-
A few useful things to know about machine learning
-
P. Domingos, "A few useful things to know about machine learning, " Commun. ACM, vol. 55, no. 10, pp. 78-87, 2012.
-
(2012)
Commun ACM
, vol.55
, Issue.10
, pp. 78-87
-
-
Domingos, P.1
-
30
-
-
85029228436
-
-
THE ASIMOV INSTITUTE Sep. 14
-
F. van Veen, "The neural network zoo, " THE ASIMOV INSTITUTE, Sep. 14, 2016. [Online]. Available: http://www.asimovinstitute.org/neuralnetwork-zoo/
-
(2016)
The Neural Network Zoo
-
-
Van Veen, F.1
-
31
-
-
84958549938
-
Minimizing computation in convolutional neural networks
-
New York, NY, USA Springer
-
J. Cong and B. Xiao, "Minimizing computation in convolutional neural networks, " in Artificial Neural Networks and Machine Learning. New York, NY, USA: Springer, 2014, pp. 281-290.
-
(2014)
Artificial Neural Networks and Machine Learning
, pp. 281-290
-
-
Cong, J.1
Xiao, B.2
-
32
-
-
56449089103
-
Extracting and composing robust featureswith denoising autoencoders
-
P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, "Extracting and composing robust featureswith denoising autoencoders, " in Proc. 25th Int. Conf. Mach. Learn., 2008, pp. 1096-1103.
-
(2008)
Proc. 25th Int. Conf. Mach. Learn
, pp. 1096-1103
-
-
Vincent, P.1
Larochelle, H.2
Bengio, Y.3
Manzagol, P.-A.4
-
33
-
-
84994249138
-
Musical audio synthesis using autoencoding neural nets
-
A. M. Sarroff andM. Casey, "Musical audio synthesis using autoencoding neural nets, " in Proc. Int. Comput. Music Conf., 2014, pp. 14-20.
-
(2014)
Proc. Int. Comput. Music Conf
, pp. 14-20
-
-
Sarroff, A.M.1
Casey, M.2
-
34
-
-
84952008061
-
Named entity recognition in Chinese clinical text using deep neural network
-
Y. Wu, M. Jiang, J. Lei, and H. Xu, "Named entity recognition in Chinese clinical text using deep neural network, " Stud. Health Technol. Informat., vol. 216, pp. 624-628, 2015.
-
(2015)
Stud. Health Technol. Informat
, vol.216
, pp. 624-628
-
-
Wu, Y.1
Jiang, M.2
Lei, J.3
Xu, H.4
-
35
-
-
85019682515
-
Brundlefly at SemEval-2016 Task 12: Recurrent neural networks vs. joint inference for clinical temporal information extraction
-
J. A. Fries, "Brundlefly at SemEval-2016 Task 12: Recurrent neural networks vs. joint inference for clinical temporal information extraction, " in Proc. 10th Int. Workshop Semantic Eval., 2016, pp. 1274-1279.
-
(2016)
Proc. 10th Int. Workshop Semantic Eval
, pp. 1274-1279
-
-
Fries, J.A.1
-
36
-
-
85047223922
-
Clinical relation extraction with deep learning
-
X. Lv, Y. Guan, J. Yang, and J. Wu, "Clinical relation extraction with deep learning, " Int. J. Hybrid Inf. Technol., vol. 9, no. 7, pp. 237-248, 2016.
-
(2016)
Int. J. Hybrid Inf. Technol
, vol.9
, Issue.7
, pp. 237-248
-
-
Lv, X.1
Guan, Y.2
Yang, J.3
Wu, J.4
-
37
-
-
85123582458
-
Exploiting task-oriented resources to learn word embeddings for clinical abbreviation expansion
-
Y. Liu, T. Ge, K. S. Mathews, H. Ji, D. L. Mcguinness, and C. Science, "Exploiting task-oriented resources to learn word embeddings for clinical abbreviation expansion, " in Proc. 2015 Workshop Biomed. Natural Lang. Process., 2015, pp. 92-97.
-
(2015)
Proc. 2015 Workshop Biomed. Natural Lang. Process
, pp. 92-97
-
-
Liu, Y.1
Ge, T.2
Mathews, K.S.3
Ji, H.4
McGuinness, D.L.5
Science, C.6
-
38
-
-
85018677909
-
Using recurrent neural network models for early detection of heart failure onset
-
E. Choi, A. Schuetz, W. F. Stewart, and J. Sun, "Using recurrent neural network models for early detection of heart failure onset, " J. Amer. Med. Informat. Assoc., vol. 292, no. 3, pp. 344-350, 2016.
-
(2016)
J. Amer. Med. Informat. Assoc
, vol.292
, Issue.3
, pp. 344-350
-
-
Choi, E.1
Schuetz, A.2
Stewart, W.F.3
Sun, J.4
-
39
-
-
85014902153
-
Learning low-dimensional representations of medical concepts methods background
-
Y. Choi, C. Y.-I. Chiu, and D. Sontag, "Learning low-dimensional representations of medical concepts methods background, " in Proc. AMIA Summit Clin. Res. Informat., 2016, pp. 41-50.
-
(2016)
Proc. AMIA Summit Clin. Res. Informat
, pp. 41-50
-
-
Choi, Y.1
Chiu, C.Y.-I.2
Sontag, D.3
-
40
-
-
84966421136
-
Temporal pattern and association discovery of diagnosis codes using deep learning
-
S. Mehrabi et al., "Temporal pattern and association discovery of diagnosis codes using deep learning, " in Proc. 2015 Int. Conf. Healthcare Informat., 2015, pp. 408-416.
-
(2015)
Proc. 2015 Int. Conf. Healthcare Informat
, pp. 408-416
-
-
Mehrabi, S.1
-
41
-
-
84922784970
-
Deep learning for healthcare decision making with EMRs
-
Z. Liang, G. Zhang, J. X. Huang, and Q. V. Hu, "Deep learning for healthcare decision making with EMRs, " in Proc. 2014 IEEE Int. Conf. Bioinformat. Biomed., 2014, pp. 556-559.
-
(2014)
Proc. 2014 IEEE Int. Conf. Bioinformat. Biomed
, pp. 556-559
-
-
Liang, Z.1
Zhang, G.2
Huang, J.X.3
Hu, Q.V.4
-
42
-
-
85120076596
-
Applying deep learning on electronic health records in Swedish to predict healthcare-Associated infections
-
O. Jacobson and H. Dalianis, "Applying deep learning on electronic health records in Swedish to predict healthcare-Associated infections, " in Proc. 15th Workshop Biomed. Natural Lang. Process., 2016, pp. 191-195.
-
(2016)
Proc. 15th Workshop Biomed. Natural Lang. Process
, pp. 191-195
-
-
Jacobson, O.1
Dalianis, H.2
-
43
-
-
84927125365
-
Identifying informative risk factors and predicting bone disease progression via deep belief networks
-
H. Li, X. Li, M. Ramanathan, and A. Zhang, "Identifying informative risk factors and predicting bone disease progression via deep belief networks, " Methods, vol. 69, no. 3, pp. 257-265, 2014.
-
(2014)
Methods
, vol.69
, Issue.3
, pp. 257-265
-
-
Li, H.1
Li, X.2
Ramanathan, M.3
Zhang, A.4
-
44
-
-
84991721533
-
Risk prediction with electronic health records: A deep learning approach
-
Y. Cheng, F. Wang, P. Zhang, H. Xu, and J. Hu, "Risk prediction with electronic health records: A deep learning approach, " in Proc. SIAM Int. Conf. Data Mining, 2015, pp. 432-440.
-
(2015)
Proc SIAM Int. Conf. Data Mining
, pp. 432-440
-
-
Cheng, Y.1
Wang, F.2
Zhang, P.3
Xu, H.4
Hu, J.5
-
45
-
-
85083954099
-
-
arXiv 1511.03677
-
Z. C. Lipton, D. C. Kale, C. Elkan, and R. Wetzell, "Learning to diagnose with LSTM recurrent neural networks, " arXiv:1511.03677, 2016.
-
(2016)
Learning to Diagnose with LSTM Recurrent Neural Networks
-
-
Lipton, Z.C.1
Kale, D.C.2
Elkan, C.3
Wetzell, R.4
-
46
-
-
85009110247
-
Deep neural network architectures for forecasting analgesic response
-
P. Nickerson, P. Tighe, B. Shickel, and P. Rashidi, "Deep neural network architectures for forecasting analgesic response, " in Proc. 2016 IEEE 38th Annu. Int. Conf. Eng. Med. Biol. Soc., 2016, pp. 2966-2969.
-
(2016)
Proc. 2016 IEEE 38th Annu. Int. Conf. Eng. Med. Biol. Soc
, pp. 2966-2969
-
-
Nickerson, P.1
Tighe, P.2
Shickel, B.3
Rashidi, P.4
-
47
-
-
85010338129
-
Predicting clinical events by combining static and dynamic information using recurrent neural networks
-
Oct
-
C. Esteban, O. Staeck, Y. Yang, and V. Tresp, "Predicting clinical events by combining static and dynamic information using recurrent neural networks, " in Healthcare Info. (ICHI), 2016 IEEE Int. Conf., Oct. 2016, pp. 93-101.
-
(2016)
Healthcare Info. (ICHI) 2016 IEEE Int. Conf.
, pp. 93-101
-
-
Esteban, C.1
Staeck, O.2
Yang, Y.3
Tresp, V.4
-
48
-
-
85014889431
-
-
arXiv 1606 01865
-
Z. Che, S. Purushotham, K. Cho, D. Sontag, and Y. Liu, "Recurrent neural networks for multivariate time series with missing values, " arXiv:1606.01865, 2016.
-
(2016)
Recurrent Neural Networks for Multivariate Time Series with Missing Values
-
-
Che, Z.1
Purushotham, S.2
Cho, K.3
Sontag, D.4
Liu, Y.5
-
49
-
-
84992084119
-
Semi-supervised learning of the electronic health record with denoising autoencoders for phenotype stratification
-
Art 039800
-
B. K. Beaulieu-Jones and C. S. Greene, "Semi-supervised learning of the electronic health record with denoising autoencoders for phenotype stratification, " J. biomedical informat., vol. 64, pp. 168-178, 2016, Art. no. 039800.
-
(2016)
J. Biomedical Informat
, vol.64
, pp. 168-178
-
-
Beaulieu-Jones, B.K.1
Greene, C.S.2
-
50
-
-
84879468407
-
Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data
-
Art. no. e66341
-
T. A. Lasko, J. C. Denny, and M. A. Levy, "Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data, " PLoS ONE, vol. 8, no. 6, 2013, Art. no. e66341.
-
(2013)
PLoS ONE
, vol.8
, Issue.6
-
-
Lasko, T.A.1
Denny, J.C.2
Levy, M.A.3
-
51
-
-
84954158331
-
Deep computational phenotyping
-
Z. Che, D. Kale, W. Li, M. TahaBahadori, and Y. Liu, "Deep computational phenotyping, " in Proc. 21st ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2015, pp. 507-516.
-
(2015)
Proc. 21st ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining
, pp. 507-516
-
-
Che, Z.1
Kale, D.2
Li, W.3
TahaBahadori, M.4
Liu, Y.5
-
52
-
-
85019722825
-
De-identification of patient notes with recurrent neural networks
-
F. Dernoncourt, J. Y. Lee, O. Uzuner, and P. Szolovits, "De-identification of patient notes with recurrent neural networks, " J. American Medical Informat. Assoc., vol. 24, no. 3, pp. 596-606, 2017.
-
(2017)
J. American Medical Informat. Assoc
, vol.24
, Issue.3
, pp. 596-606
-
-
Dernoncourt, F.1
Lee, J.Y.2
Uzuner, O.3
Szolovits, P.4
-
53
-
-
85048534886
-
Deep learning architecture for patient data de-identification in clinical records
-
A. E. Shweta, S. Saha, and P. Bhattacharyya, "Deep learning architecture for patient data de-identification in clinical records, " in Proc. Clin. Natural Lang. Process. Workshop, 2016, pp. 32-41.
-
(2016)
Proc. Clin. Natural Lang. Process. Workshop
, pp. 32-41
-
-
Shweta, A.E.1
Saha, S.2
Bhattacharyya, P.3
-
54
-
-
85083951332
-
Efficient estimation of word representations in vector space
-
T. Mikolov, G. Corrado, K. Chen, and J. Dean, "Efficient estimation of word representations in vector space, " in Proc. Int. Conf. Learn. Representations, 2013, pp. 1-12.
-
(2013)
Proc. Int. Conf. Learn. Representations
, pp. 1-12
-
-
Mikolov, T.1
Corrado, G.2
Chen, K.3
Dean, J.4
-
55
-
-
84982966378
-
Incremental knowledge base construction using Deep-Dive
-
C. De Sa et al., "Incremental knowledge base construction using Deep-Dive, " VLDB J., vol. 26, pp. 81-105, 2017.
-
(2017)
VLDB J
, vol.26
, pp. 81-105
-
-
De Sa, C.1
-
56
-
-
84971287198
-
MIMIC-III, a freely accessible critical care database
-
Art 160035
-
A. E. Johnson et al., "MIMIC-III, a freely accessible critical care database, " Sci. Data, vol. 3, 2016, Art. no. 160035.
-
(2016)
Sci. Data
, vol.3
-
-
Johnson, A.E.1
-
57
-
-
85108661989
-
A short review of ethical challenges in clinical natural language processing
-
S. Suster, S. Tulkens, and W. Daelemans, "A short review of ethical challenges in clinical natural language processing, " in Proc. 1st Workshop Ethics Natural Lang. Process., 2017, pp. 80-87.
-
(2017)
Proc. 1st Workshop Ethics Natural Lang. Process
, pp. 80-87
-
-
Suster, S.1
Tulkens, S.2
Daelemans, W.3
-
59
-
-
85027974126
-
Interpretable deep models for ICU outcome prediction
-
Z. Che, S. Purushotham, R. Khemani, and Y. Liu, "Interpretable deep models for ICU outcome prediction, " in Proc. AMIA Annu. Symp., 2016, vol. 2016, pp. 371-380.
-
(2016)
Proc. AMIA Annu. Symp
, vol.2016
, pp. 371-380
-
-
Che, Z.1
Purushotham, S.2
Khemani, R.3
Liu, Y.4
-
60
-
-
85051730391
-
Distilling knowledge from deep networks with applications to computational phenotyping
-
Z. Che, S. Purushotham, and Y. Liu, "Distilling knowledge from deep networks with applications to computational phenotyping, " in Proc. Workshop Data Sci., Learn. Appl. Biomed. Health Sci., 2016, pp. 1-6.
-
(2016)
Proc. Workshop Data Sci., Learn. Appl. Biomed. Health Sci
, pp. 1-6
-
-
Che, Z.1
Purushotham, S.2
Liu, Y.3
|