메뉴 건너뛰기




Volumn 22, Issue 13-14, 2008, Pages 1521-1537

A system for robotic heart surgery that learns to tie knots using recurrent neural networks

Author keywords

Artificial evolution; Automated knot tying; Minimally invasive surgery; Recurrent neural networks; Supervised learning

Indexed keywords

ARTIFICIAL EVOLUTION; AUTOMATED KNOT TYING; FEED-FORWARD; INTERNAL MEMORY; INTERNAL STATE; MINIMALLY INVASIVE SURGERY; NEURAL NET; PRE-PROGRAMMED CONTROL; ROBOTIC HEART SURGERY; SHORT TERM MEMORY; SUPERVISED MACHINE LEARNING; TIME-CONSUMING TASKS;

EID: 69549086702     PISSN: 01691864     EISSN: 15685535     Source Type: Journal    
DOI: 10.1163/156855308X360604     Document Type: Article
Times cited : (113)

References (24)
  • 1
    • 0033724356 scopus 로고    scopus 로고
    • The Intuitive™ telesurgery system: Overview and application
    • San Francisco, CA
    • G. Guthart and J. K. Salisbury Jr, The Intuitive™ telesurgery system: overview and application, in: Proc. Int. Conf. on Robotics and Automation, San Francisco, CA, pp. 618-621 (2000).
    • (2000) Proc. Int. Conf. on Robotics and Automation , pp. 618-621
    • Guthart, G.1    Salisbury Jr., J.K.2
  • 3
    • 0031657634 scopus 로고    scopus 로고
    • Manual vs robotically assisted laparoscopic surgery in the performance of basic manipulation and suturing tasks
    • A. Garcia-Ruiz, Manual vs robotically assisted laparoscopic surgery in the performance of basic manipulation and suturing tasks, Arch. Surg. 133, 957-961 (1998).
    • (1998) Arch. Surg. , vol.133 , pp. 957-961
    • Garcia-Ruiz, A.1
  • 6
    • 0025503558 scopus 로고
    • Backpropagation through time: What does it do and how to do it
    • P. Werbos, Backpropagation through time: what does it do and how to do it, Proc. IEEE 78, 1550-1560 (1990).
    • (1990) Proc. IEEE , vol.78 , pp. 1550-1560
    • Werbos, P.1
  • 7
    • 0003838146 scopus 로고
    • The utility driven dynamic error propagation network
    • Engineering Department, Cambridge University
    • A. J. Robinson and F. Fallside, The utility driven dynamic error propagation network, Technical Report CUED/F-INFENG/TR.1, Engineering Department, Cambridge University (1987).
    • (1987) Technical Report CUED/F-INFENG/TR.1
    • Robinson, A.J.1    Fallside, F.2
  • 8
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent networks
    • R. J. Williams and D. Zipser, A learning algorithm for continually running fully recurrent networks, Neural Comput. 1, 270-280 (1989).
    • (1989) Neural Comput. , vol.1 , pp. 270-280
    • Williams, R.J.1    Zipser, D.2
  • 17
    • 21244457900 scopus 로고    scopus 로고
    • PhD Thesis (Technical Report AI-TR-03-303), Department of Computer Sciences, University of Texas at Austin, Austin, TX
    • F. J. Gomez, Robust nonlinear control through neuroevolution, PhD Thesis (Technical Report AI-TR-03-303), Department of Computer Sciences, University of Texas at Austin, Austin, TX (2003).
    • (2003) Robust Nonlinear Control Through Neuroevolution
    • Gomez, F.J.1
  • 18
    • 0002318273 scopus 로고    scopus 로고
    • Efficient reinforcement learning through symbiotic evolution
    • D. E. Moriarty and R. Miikkulainen, Efficient reinforcement learning through symbiotic evolution, Mack Learn. 11, 11-32 (1996).
    • (1996) Mack Learn. , vol.11 , pp. 11-32
    • Moriarty, D.E.1    Miikkulainen, R.2
  • 19
    • 0002663413 scopus 로고
    • Turing computability with neural nets
    • H. T. Siegelmann and E. D. Sontag, Turing computability with neural nets, Appl. Math. Lett. 4, 77-80 (1991).
    • (1991) Appl. Math. Lett. , vol.4 , pp. 77-80
    • Siegelmann, H.T.1    Sontag, E.D.2
  • 20
    • 0041914606 scopus 로고    scopus 로고
    • Gradient flow in recurrent nets: The difficulty of learning long-term dependencies
    • S. C. Kremer and J. F. Kolen (Eds), IEEE Press, New York, NY
    • S. Hochreiter, Y. Bengio, P. Frasconi and J. Schmidhuber, Gradient flow in recurrent nets: the difficulty of learning long-term dependencies, in: A Field Guide to Dynamical Recurrent Neural Networks, S. C. Kremer and J. F. Kolen (Eds), pp. 237-244. IEEE Press, New York, NY (2001).
    • (2001) A Field Guide to Dynamical Recurrent Neural Networks , pp. 237-244
    • Hochreiter, S.1    Bengio, Y.2    Frasconi, P.3    Schmidhuber, J.4
  • 21
    • 0034293152 scopus 로고    scopus 로고
    • Learning to forget: Continual prediction with LSTM
    • F. A. Gers, J. Schmidhuber and F. Cummins, Learning to forget: continual prediction with LSTM, Neural Comput. 12, 2451-2471 (2000).
    • (2000) Neural Comput. , vol.12 , pp. 2451-2471
    • Gers, F.A.1    Schmidhuber, J.2    Cummins, F.3
  • 22
    • 0035505385 scopus 로고    scopus 로고
    • LSTM recurrent networks learn simple context free and context sensitive languages
    • F. A. Gers and J. Schmidhuber, LSTM recurrent networks learn simple context free and context sensitive languages, IEEE Trans. Neural Netw. 12, 1333-1340 (2001).
    • (2001) IEEE Trans. Neural Netw. , vol.12 , pp. 1333-1340
    • Gers, F.A.1    Schmidhuber, J.2
  • 23
    • 84947145047 scopus 로고
    • A generalized inverse for matrices
    • R. Penrose, A generalized inverse for matrices, in: Proc. Cambridge Philos. Soc. 51, 406-413 (1955).
    • (1955) Proc. Cambridge Philos. Soc. , vol.51 , pp. 406-413
    • Penrose, R.1
  • 24
    • 0030692262 scopus 로고    scopus 로고
    • RBF neural network, basis functions and genetic algorithms
    • Piscataway, NJ
    • E. P. Maillard and D. Gueriot, RBF neural network, basis functions and genetic algorithms, in: Proc. IEEE Int. Conf. on Neural Networks, Piscataway, NJ, pp. 2187-2190 (1997).
    • (1997) Proc. IEEE Int. Conf. on Neural Networks , pp. 2187-2190
    • Maillard, E.P.1    Gueriot, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.