메뉴 건너뛰기




Volumn 7, Issue 11, 2018, Pages 2675-2685

A Highly Characterized Synthetic Landing Pad System for Precise Multicopy Gene Integration in Yeast

Author keywords

alkaloids; CRISPR; landing pad; metabolic engineering; norcoclaurine; Saccharomyces cerevisiae

Indexed keywords

ALKALOID; BENZYLISOQUINOLINE DERIVATIVE; NORCOCLAURINE; SYNTHETASE; SYNTHETIC DNA; UNCLASSIFIED DRUG; LIGASE; NORCOCLAURINE SYNTHASE;

EID: 85056646138     PISSN: None     EISSN: 21615063     Source Type: Journal    
DOI: 10.1021/acssynbio.8b00339     Document Type: Article
Times cited : (48)

References (57)
  • 1
    • 84960460639 scopus 로고    scopus 로고
    • Engineering cellular metabolism
    • Nielsen, J. and Keasling, J. D. (2016) Engineering cellular metabolism. Cell 164, 1185-1197, 10.1016/j.cell.2016.02.004
    • (2016) Cell , vol.164 , pp. 1185-1197
    • Nielsen, J.1    Keasling, J.D.2
  • 2
    • 84933518878 scopus 로고    scopus 로고
    • Recent applications of synthetic biology tools for yeast metabolic engineering
    • Jensen, M. K. and Keasling, J. D. (2014) Recent applications of synthetic biology tools for yeast metabolic engineering. FEMS Yeast Res. 15, 1-11, 10.1111/1567-1364.12185
    • (2014) FEMS Yeast Res. , vol.15 , pp. 1-11
    • Jensen, M.K.1    Keasling, J.D.2
  • 3
    • 84911920717 scopus 로고    scopus 로고
    • Metabolic pathway balancing and its role in the production of biofuels and chemicals
    • Jones, J. A., Toparlak, Ö. D., and Koffas, M. A. (2015) Metabolic pathway balancing and its role in the production of biofuels and chemicals. Curr. Opin. Biotechnol. 33, 52-59, 10.1016/j.copbio.2014.11.013
    • (2015) Curr. Opin. Biotechnol. , vol.33 , pp. 52-59
    • Jones, J.A.1    Toparlak, Ö.D.2    Koffas, M.A.3
  • 4
    • 85046678021 scopus 로고    scopus 로고
    • Recent advances in metabolic engineering of Saccharomyces cerevisiae: New tools and their applications
    • Lian, J., Mishra, S., and Zhao, H. (2018) Recent advances in metabolic engineering of Saccharomyces cerevisiae: New tools and their applications. Metab. Eng. 10.1016/j.ymben.2018.04.011
    • (2018) Metab. Eng.
    • Lian, J.1    Mishra, S.2    Zhao, H.3
  • 5
    • 84958729722 scopus 로고    scopus 로고
    • Microbial factories for the production of benzylisoquinoline alkaloids
    • Narcross, L., Fossati, E., Bourgeois, L., Dueber, J. E., and Martin, V. J. (2016) Microbial factories for the production of benzylisoquinoline alkaloids. Trends Biotechnol. 34, 228-241, 10.1016/j.tibtech.2015.12.005
    • (2016) Trends Biotechnol. , vol.34 , pp. 228-241
    • Narcross, L.1    Fossati, E.2    Bourgeois, L.3    Dueber, J.E.4    Martin, V.J.5
  • 6
    • 85006341508 scopus 로고    scopus 로고
    • Mining enzyme diversity of transcriptome libraries through DNA synthesis for benzylisoquinoline alkaloid pathway optimization in yeast
    • Narcross, L., Bourgeois, L., Fossati, E., Burton, E., and Martin, V. J. (2016) Mining enzyme diversity of transcriptome libraries through DNA synthesis for benzylisoquinoline alkaloid pathway optimization in yeast. ACS Synth. Biol. 5, 1505-1518, 10.1021/acssynbio.6b00119
    • (2016) ACS Synth. Biol. , vol.5 , pp. 1505-1518
    • Narcross, L.1    Bourgeois, L.2    Fossati, E.3    Burton, E.4    Martin, V.J.5
  • 7
    • 85027954689 scopus 로고    scopus 로고
    • The synthetic biology toolbox for tuning gene expression in yeast
    • Redden, H., Morse, N., and Alper, H. S. (2015) The synthetic biology toolbox for tuning gene expression in yeast. FEMS Yeast Res. 15, 1-10, 10.1111/1567-1364.12188
    • (2015) FEMS Yeast Res. , vol.15 , pp. 1-10
    • Redden, H.1    Morse, N.2    Alper, H.S.3
  • 8
    • 84942013003 scopus 로고    scopus 로고
    • A highly characterized yeast toolkit for modular, multipart assembly
    • Lee, M. E., DeLoache, W. C., Cervantes, B., and Dueber, J. E. (2015) A highly characterized yeast toolkit for modular, multipart assembly. ACS Synth. Biol. 4, 975-986, 10.1021/sb500366v
    • (2015) ACS Synth. Biol. , vol.4 , pp. 975-986
    • Lee, M.E.1    Deloache, W.C.2    Cervantes, B.3    Dueber, J.E.4
  • 10
    • 84862817382 scopus 로고    scopus 로고
    • Cloning and characterization of a panel of constitutive promoters for applications in pathway engineering in Saccharomyces cerevisiae
    • Sun, J., Shao, Z., Zhao, H., Nair, N., Wen, F., Xu, J. H., and Zhao, H. (2012) Cloning and characterization of a panel of constitutive promoters for applications in pathway engineering in Saccharomyces cerevisiae. Biotechnol. Bioeng. 109, 2082-2092, 10.1002/bit.24481
    • (2012) Biotechnol. Bioeng. , vol.109 , pp. 2082-2092
    • Sun, J.1    Shao, Z.2    Zhao, H.3    Nair, N.4    Wen, F.5    Xu, J.H.6    Zhao, H.7
  • 11
    • 84879762383 scopus 로고    scopus 로고
    • A genome-wide activity assessment of terminator regions in Saccharomyces cerevisiae provides a ″terminatome″ toolbox
    • Yamanishi, M., Ito, Y., Kintaka, R., Imamura, C., Katahira, S., Ikeuchi, A., Moriya, H., and Matsuyama, T. (2013) A genome-wide activity assessment of terminator regions in Saccharomyces cerevisiae provides a ″terminatome″ toolbox. ACS Synth. Biol. 2, 337-347, 10.1021/sb300116y
    • (2013) ACS Synth. Biol. , vol.2 , pp. 337-347
    • Yamanishi, M.1    Ito, Y.2    Kintaka, R.3    Imamura, C.4    Katahira, S.5    Ikeuchi, A.6    Moriya, H.7    Matsuyama, T.8
  • 12
    • 14744271884 scopus 로고
    • High-level expression of tetanus toxin fragment C in Pichia pastoris strains containing multiple tandem integrations of the gene
    • Clare, J., Rayment, F., Ballantine, S., Sreekrishna, K., and Romanos, M. (1991) High-level expression of tetanus toxin fragment C in Pichia pastoris strains containing multiple tandem integrations of the gene. Nat. Biotechnol. 9, 455-460, 10.1038/nbt0591-455
    • (1991) Nat. Biotechnol. , vol.9 , pp. 455-460
    • Clare, J.1    Rayment, F.2    Ballantine, S.3    Sreekrishna, K.4    Romanos, M.5
  • 13
    • 84947279264 scopus 로고    scopus 로고
    • A highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways in Saccharomyces cerevisiae
    • Shi, S., Liang, Y., Zhang, M. M., Ang, E. L., and Zhao, H. (2016) A highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways in Saccharomyces cerevisiae. Metab. Eng. 33, 19-27, 10.1016/j.ymben.2015.10.011
    • (2016) Metab. Eng. , vol.33 , pp. 19-27
    • Shi, S.1    Liang, Y.2    Zhang, M.M.3    Ang, E.L.4    Zhao, H.5
  • 14
    • 68449103617 scopus 로고    scopus 로고
    • Stabilized gene duplication enables long-term selection-free heterologous pathway expression
    • Tyo, K. E., Ajikumar, P. K., and Stephanopoulos, G. (2009) Stabilized gene duplication enables long-term selection-free heterologous pathway expression. Nat. Biotechnol. 27, 760-765, 10.1038/nbt.1555
    • (2009) Nat. Biotechnol. , vol.27 , pp. 760-765
    • Tyo, K.E.1    Ajikumar, P.K.2    Stephanopoulos, G.3
  • 15
    • 84929572600 scopus 로고    scopus 로고
    • Homology-integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae
    • Bao, Z., Xiao, H., Liang, J., Zhang, L., Xiong, X., Sun, N., Si, T., and Zhao, H. (2015) Homology-integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae. ACS Synth. Biol. 4, 585-594, 10.1021/sb500255k
    • (2015) ACS Synth. Biol. , vol.4 , pp. 585-594
    • Bao, Z.1    Xiao, H.2    Liang, J.3    Zhang, L.4    Xiong, X.5    Sun, N.6    Si, T.7    Zhao, H.8
  • 16
    • 84876575031 scopus 로고    scopus 로고
    • Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems
    • DiCarlo, J. E., Norville, J. E., Mali, P., Rios, X., Aach, J., and Church, G. M. (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. 41, 4336-4343, 10.1093/nar/gkt135
    • (2013) Nucleic Acids Res. , vol.41 , pp. 4336-4343
    • Dicarlo, J.E.1    Norville, J.E.2    Mali, P.3    Rios, X.4    Aach, J.5    Church, G.M.6
  • 25
    • 85044055636 scopus 로고    scopus 로고
    • Wicket: A versatile tool for the integration and optimization of exogenous pathways in Saccharomyces cerevisiae
    • Hou, S., Qin, Q., and Dai, J. (2018) Wicket: A versatile tool for the integration and optimization of exogenous pathways in Saccharomyces cerevisiae. ACS Synth. Biol. 7, 782-788, 10.1021/acssynbio.7b00391
    • (2018) ACS Synth. Biol. , vol.7 , pp. 782-788
    • Hou, S.1    Qin, Q.2    Dai, J.3
  • 26
    • 0018405543 scopus 로고
    • Evidence for transposition of dispersed repetitive DNA families in yeast
    • Cameron, J. R., Loh, E. Y., and Davis, R. W. (1979) Evidence for transposition of dispersed repetitive DNA families in yeast. Cell 16, 739-751, 10.1016/0092-8674(79)90090-4
    • (1979) Cell , vol.16 , pp. 739-751
    • Cameron, J.R.1    Loh, E.Y.2    Davis, R.W.3
  • 27
    • 0442309687 scopus 로고    scopus 로고
    • Effects of gene dosage, promoters, and substrates on unfolded protein stress of recombinant Pichia pastoris
    • Hohenblum, H., Gasser, B., Maurer, M., Borth, N., and Mattanovich, D. (2004) Effects of gene dosage, promoters, and substrates on unfolded protein stress of recombinant Pichia pastoris. Biotechnol. Bioeng. 85, 367-375, 10.1002/bit.10904
    • (2004) Biotechnol. Bioeng. , vol.85 , pp. 367-375
    • Hohenblum, H.1    Gasser, B.2    Maurer, M.3    Borth, N.4    Mattanovich, D.5
  • 28
    • 84930193177 scopus 로고    scopus 로고
    • Construction of lycopene-overproducing Saccharomyces cerevisiae by combining directed evolution and metabolic engineering
    • Xie, W., Lv, X., Ye, L., Zhou, P., and Yu, H. (2015) Construction of lycopene-overproducing Saccharomyces cerevisiae by combining directed evolution and metabolic engineering. Metab. Eng. 30, 69-78, 10.1016/j.ymben.2015.04.009
    • (2015) Metab. Eng. , vol.30 , pp. 69-78
    • Xie, W.1    Lv, X.2    Ye, L.3    Zhou, P.4    Yu, H.5
  • 29
    • 29544439347 scopus 로고    scopus 로고
    • Application of sequential integration for metabolic engineering of 1, 2-propanediol production in yeast
    • Lee, W. and DaSilva, N. A. (2006) Application of sequential integration for metabolic engineering of 1, 2-propanediol production in yeast. Metab. Eng. 8, 58-65, 10.1016/j.ymben.2005.09.001
    • (2006) Metab. Eng. , vol.8 , pp. 58-65
    • Lee, W.1    Dasilva, N.A.2
  • 30
    • 84878001183 scopus 로고    scopus 로고
    • Benzylisoquinoline alkaloid metabolism-a century of discovery and a brave new world
    • Hagel, J. M. and Facchini, P. J. (2013) Benzylisoquinoline alkaloid metabolism-a century of discovery and a brave new world. Plant Cell Physiol. 54, 647-672, 10.1093/pcp/pct020
    • (2013) Plant Cell Physiol. , vol.54 , pp. 647-672
    • Hagel, J.M.1    Facchini, P.J.2
  • 31
    • 84931573824 scopus 로고    scopus 로고
    • An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose
    • DeLoache, W. C., Russ, Z. N., Narcross, L., Gonzales, A. M., Martin, V. J., and Dueber, J. E. (2015) An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose. Nat. Chem. Biol. 11, 465-471, 10.1038/nchembio.1816
    • (2015) Nat. Chem. Biol. , vol.11 , pp. 465-471
    • Deloache, W.C.1    Russ, Z.N.2    Narcross, L.3    Gonzales, A.M.4    Martin, V.J.5    Dueber, J.E.6
  • 32
    • 84938063531 scopus 로고    scopus 로고
    • De novo production of the key branch point benzylisoquinoline alkaloid reticuline in yeast
    • Trenchard, I. J., Siddiqui, M. S., Thodey, K., and Smolke, C. D. (2015) De novo production of the key branch point benzylisoquinoline alkaloid reticuline in yeast. Metab. Eng. 31, 74-83, 10.1016/j.ymben.2015.06.010
    • (2015) Metab. Eng. , vol.31 , pp. 74-83
    • Trenchard, I.J.1    Siddiqui, M.S.2    Thodey, K.3    Smolke, C.D.4
  • 33
    • 84910056833 scopus 로고    scopus 로고
    • Reconstitution of a 10-gene pathway for synthesis of the plant alkaloid dihydrosanguinarine in Saccharomyces cerevisiae
    • Fossati, E., Ekins, A., Narcross, L., Zhu, Y., Falgueyret, J.-P., Beaudoin, G. A., Facchini, P. J., and Martin, V. J. (2014) Reconstitution of a 10-gene pathway for synthesis of the plant alkaloid dihydrosanguinarine in Saccharomyces cerevisiae. Nat. Commun. 5, 3283, 10.1038/ncomms4283
    • (2014) Nat. Commun. , vol.5 , pp. 3283
    • Fossati, E.1    Ekins, A.2    Narcross, L.3    Zhu, Y.4    Falgueyret, J.-P.5    Beaudoin, G.A.6    Facchini, P.J.7    Martin, V.J.8
  • 34
    • 84977472256 scopus 로고    scopus 로고
    • Engineering biosynthesis of the anticancer alkaloid noscapine in yeast
    • Li, Y. and Smolke, C. D. (2016) Engineering biosynthesis of the anticancer alkaloid noscapine in yeast. Nat. Commun. 7, 12137, 10.1038/ncomms12137
    • (2016) Nat. Commun. , vol.7 , pp. 12137
    • Li, Y.1    Smolke, C.D.2
  • 35
    • 84928393363 scopus 로고    scopus 로고
    • Synthesis of morphinan alkaloids in Saccharomyces cerevisiae
    • Fossati, E., Narcross, L., Ekins, A., Falgueyret, J.-P., and Martin, V. J. (2015) Synthesis of morphinan alkaloids in Saccharomyces cerevisiae. PLoS One 10, e0124459, 10.1371/journal.pone.0124459
    • (2015) PLoS One , vol.10 , pp. e0124459
    • Fossati, E.1    Narcross, L.2    Ekins, A.3    Falgueyret, J.-P.4    Martin, V.J.5
  • 37
    • 0034778394 scopus 로고    scopus 로고
    • Isolation and partial characterization of norcoclaurine synthase, the first committed step in benzylisoquinoline alkaloid biosynthesis, from opium poppy
    • Samanani, N. and Facchini, P. J. (2001) Isolation and partial characterization of norcoclaurine synthase, the first committed step in benzylisoquinoline alkaloid biosynthesis, from opium poppy. Planta 213, 898-906, 10.1007/s004250100581
    • (2001) Planta , vol.213 , pp. 898-906
    • Samanani, N.1    Facchini, P.J.2
  • 38
    • 0037072805 scopus 로고    scopus 로고
    • Purification and characterization of norcoclaurine synthase. the first committed enzyme in benzylisoquinoline alkaloid biosynthesis in plants
    • Samanani, N. and Facchini, P. J. (2002) Purification and characterization of norcoclaurine synthase. The first committed enzyme in benzylisoquinoline alkaloid biosynthesis in plants. J. Biol. Chem. 277, 33878-33883, 10.1074/jbc.M203051200
    • (2002) J. Biol. Chem. , vol.277 , pp. 33878-33883
    • Samanani, N.1    Facchini, P.J.2
  • 39
    • 6444243887 scopus 로고    scopus 로고
    • Molecular cloning and characterization of norcoclaurine synthase, an enzyme catalyzing the first committed step in benzylisoquinoline alkaloid biosynthesis
    • Samanani, N., Liscombe, D. K., and Facchini, P. J. (2004) Molecular cloning and characterization of norcoclaurine synthase, an enzyme catalyzing the first committed step in benzylisoquinoline alkaloid biosynthesis. Plant J. 40, 302-313, 10.1111/j.1365-313X.2004.02210.x
    • (2004) Plant J. , vol.40 , pp. 302-313
    • Samanani, N.1    Liscombe, D.K.2    Facchini, P.J.3
  • 40
    • 85006743879 scopus 로고    scopus 로고
    • Genes encoding norcoclaurine synthase occur as tandem fusions in the Papaveraceae
    • Li, J., Lee, E.-J., Chang, L., and Facchini, P. J. (2016) Genes encoding norcoclaurine synthase occur as tandem fusions in the Papaveraceae. Sci. Rep. 6, 39256, 10.1038/srep39256
    • (2016) Sci. Rep. , vol.6 , pp. 39256
    • Li, J.1    Lee, E.-J.2    Chang, L.3    Facchini, P.J.4
  • 41
    • 84925636078 scopus 로고    scopus 로고
    • 'Dopamine-first'mechanism enables the rational engineering of the norcoclaurine synthase aldehyde activity profile
    • Lichman, B. R., Gershater, M. C., Lamming, E. D., Pesnot, T., Sula, A., Keep, N. H., Hailes, H. C., and Ward, J. M. (2015) 'Dopamine-first'mechanism enables the rational engineering of the norcoclaurine synthase aldehyde activity profile. FEBS J. 282, 1137-1151, 10.1111/febs.13208
    • (2015) FEBS J. , vol.282 , pp. 1137-1151
    • Lichman, B.R.1    Gershater, M.C.2    Lamming, E.D.3    Pesnot, T.4    Sula, A.5    Keep, N.H.6    Hailes, H.C.7    Ward, J.M.8
  • 42
    • 70449686525 scopus 로고    scopus 로고
    • Characterization of chromosomal integration sites for heterologous gene expression in Saccharomyces cerevisiae
    • Bai Flagfeldt, D., Siewers, V., Huang, L., and Nielsen, J. (2009) Characterization of chromosomal integration sites for heterologous gene expression in Saccharomyces cerevisiae. Yeast 26, 545-551, 10.1002/yea.1705
    • (2009) Yeast , vol.26 , pp. 545-551
    • Bai Flagfeldt, D.1    Siewers, V.2    Huang, L.3    Nielsen, J.4
  • 43
    • 0035430273 scopus 로고    scopus 로고
    • Location effects of a reporter gene on expression levels and on native protein synthesis in Lactococcus lactis and Saccharomyces cerevisiae
    • Thompson, A. and Gasson, M. J. (2001) Location effects of a reporter gene on expression levels and on native protein synthesis in Lactococcus lactis and Saccharomyces cerevisiae. Appl. Environ. Microbiol. 67, 3434-3439, 10.1128/AEM.67.8.3434-3439.2001
    • (2001) Appl. Environ. Microbiol. , vol.67 , pp. 3434-3439
    • Thompson, A.1    Gasson, M.J.2
  • 44
    • 84857995434 scopus 로고    scopus 로고
    • Microbial production of indolylglucosinolate through engineering of a multi-gene pathway in a versatile yeast expression platform
    • Mikkelsen, M. D., Buron, L. D., Salomonsen, B., Olsen, C. E., Hansen, B. G., Mortensen, U. H., and Halkier, B. A. (2012) Microbial production of indolylglucosinolate through engineering of a multi-gene pathway in a versatile yeast expression platform. Metab. Eng. 14, 104-111, 10.1016/j.ymben.2012.01.006
    • (2012) Metab. Eng. , vol.14 , pp. 104-111
    • Mikkelsen, M.D.1    Buron, L.D.2    Salomonsen, B.3    Olsen, C.E.4    Hansen, B.G.5    Mortensen, U.H.6    Halkier, B.A.7
  • 45
    • 85017584772 scopus 로고    scopus 로고
    • Standardized markerless gene integration for pathway engineering in Yarrowia lipolytica
    • Schwartz, C., Shabbir-Hussain, M., Frogue, K., Blenner, M., and Wheeldon, I. (2017) Standardized markerless gene integration for pathway engineering in Yarrowia lipolytica. ACS Synth. Biol. 6, 402-409, 10.1021/acssynbio.6b00285
    • (2017) ACS Synth. Biol. , vol.6 , pp. 402-409
    • Schwartz, C.1    Shabbir-Hussain, M.2    Frogue, K.3    Blenner, M.4    Wheeldon, I.5
  • 46
    • 84979746885 scopus 로고    scopus 로고
    • EasyClone-MarkerFree: A vector toolkit for marker-less integration of genes into Saccharomyces cerevisiae via CRISPR-Cas9
    • Jessop-Fabre, M. M., Jakočiunas, T., Stovicek, V., Dai, Z., Jensen, M. K., Keasling, J. D., and Borodina, I. (2016) EasyClone-MarkerFree: A vector toolkit for marker-less integration of genes into Saccharomyces cerevisiae via CRISPR-Cas9. Biotechnol. J. 11, 1110-1117, 10.1002/biot.201600147
    • (2016) Biotechnol. J. , vol.11 , pp. 1110-1117
    • Jessop-Fabre, M.M.1    Jakočiunas, T.2    Stovicek, V.3    Dai, Z.4    Jensen, M.K.5    Keasling, J.D.6    Borodina, I.7
  • 47
    • 84906791314 scopus 로고    scopus 로고
    • Frequent interchromosomal template switches during gene conversion in S. cerevisiae
    • Tsaponina, O. and Haber, J. E. (2014) Frequent interchromosomal template switches during gene conversion in S. cerevisiae. Mol. Cell 55, 615-625, 10.1016/j.molcel.2014.06.025
    • (2014) Mol. Cell , vol.55 , pp. 615-625
    • Tsaponina, O.1    Haber, J.E.2
  • 48
    • 14644393547 scopus 로고    scopus 로고
    • Green fluorescent protein is a quantitative reporter of gene expression in individual eukaryotic cells
    • Soboleski, M. R., Oaks, J., and Halford, W. P. (2005) Green fluorescent protein is a quantitative reporter of gene expression in individual eukaryotic cells. FASEB J. 19, 440-442, 10.1096/fj.04-3180fje
    • (2005) FASEB J. , vol.19 , pp. 440-442
    • Soboleski, M.R.1    Oaks, J.2    Halford, W.P.3
  • 49
    • 0001322468 scopus 로고
    • (S)-Norcoclaurine is the central intermediate in benzylisoquinoline alkaloid biosynthesis
    • Stadler, R., Kutchan, T. M., and Zenk, M. H. (1989) (S)-Norcoclaurine is the central intermediate in benzylisoquinoline alkaloid biosynthesis. Phytochemistry 28, 1083-1086, 10.1016/0031-9422(89)80187-6
    • (1989) Phytochemistry , vol.28 , pp. 1083-1086
    • Stadler, R.1    Kutchan, T.M.2    Zenk, M.H.3
  • 50
    • 42349106782 scopus 로고    scopus 로고
    • The Ehrlich pathway for fusel alcohol production: A century of research on Saccharomyces cerevisiae metabolism
    • Hazelwood, L. A., Daran, J.-M., van Maris, A. J., Pronk, J. T., and Dickinson, J. R. (2008) The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl. Environ. Microbiol. 74, 2259-2266, 10.1128/AEM.02625-07
    • (2008) Appl. Environ. Microbiol. , vol.74 , pp. 2259-2266
    • Hazelwood, L.A.1    Daran, J.-M.2    Van Maris, A.J.3    Pronk, J.T.4    Dickinson, J.R.5
  • 51
    • 84879541446 scopus 로고    scopus 로고
    • Transcriptome analysis based on next-generation sequencing of non-model plants producing specialized metabolites of biotechnological interest
    • Xiao, M., Zhang, Y., Chen, X., Lee, E.-J., Barber, C. J., Chakrabarty, R., Desgagné-Penix, I., Haslam, T. M., Kim, Y.-B., and Liu, E. (2013) Transcriptome analysis based on next-generation sequencing of non-model plants producing specialized metabolites of biotechnological interest. J. Biotechnol. 166, 122-134, 10.1016/j.jbiotec.2013.04.004
    • (2013) J. Biotechnol. , vol.166 , pp. 122-134
    • Xiao, M.1    Zhang, Y.2    Chen, X.3    Lee, E.-J.4    Barber, C.J.5    Chakrabarty, R.6    Desgagné-Penix, I.7    Haslam, T.M.8    Kim, Y.-B.9    Liu, E.10
  • 52
    • 84959871856 scopus 로고    scopus 로고
    • Reconstituting plant secondary metabolism in Saccharomyces cerevisiae for production of high-value benzylisoquinoline alkaloids
    • Pyne, M., Narcross, L., Fossati, E., Bourgeois, L., Burton, E., Gold, N., and Martin, V. (2016) Reconstituting plant secondary metabolism in Saccharomyces cerevisiae for production of high-value benzylisoquinoline alkaloids. Methods Enzymol. 575, 195-224, 10.1016/bs.mie.2016.02.011
    • (2016) Methods Enzymol. , vol.575 , pp. 195-224
    • Pyne, M.1    Narcross, L.2    Fossati, E.3    Bourgeois, L.4    Burton, E.5    Gold, N.6    Martin, V.7
  • 53
    • 34250332680 scopus 로고    scopus 로고
    • Functional analysis of norcoclaurine synthase in Coptis japonica
    • Minami, H., Dubouzet, E., Iwasa, K., and Sato, F. (2007) Functional analysis of norcoclaurine synthase in Coptis japonica. J. Biol. Chem. 282, 6274-6282, 10.1074/jbc.M608933200
    • (2007) J. Biol. Chem. , vol.282 , pp. 6274-6282
    • Minami, H.1    Dubouzet, E.2    Iwasa, K.3    Sato, F.4
  • 54
    • 84904862031 scopus 로고    scopus 로고
    • Engineering of chromosomal wax ester synthase integrated Saccharomyces cerevisiae mutants for improved biosynthesis of fatty acid ethyl esters
    • Shi, S., Valle-Rodríguez, J. O., Siewers, V., and Nielsen, J. (2014) Engineering of chromosomal wax ester synthase integrated Saccharomyces cerevisiae mutants for improved biosynthesis of fatty acid ethyl esters. Biotechnol. Bioeng. 111, 1740-1747, 10.1002/bit.25234
    • (2014) Biotechnol. Bioeng. , vol.111 , pp. 1740-1747
    • Shi, S.1    Valle-Rodríguez, J.O.2    Siewers, V.3    Nielsen, J.4
  • 55
  • 56
    • 35848943664 scopus 로고    scopus 로고
    • FaBox: An online toolbox for FASTA sequences
    • Villesen, P. (2007) FaBox: an online toolbox for FASTA sequences. Mol. Ecol. Notes 7, 965-968, 10.1111/j.1471-8286.2007.01821.x
    • (2007) Mol. Ecol. Notes , vol.7 , pp. 965-968
    • Villesen, P.1
  • 57
    • 34347206860 scopus 로고    scopus 로고
    • High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method
    • Gietz, R. D. and Schiestl, R. H. (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2, 31-34, 10.1038/nprot.2007.13
    • (2007) Nat. Protoc. , vol.2 , pp. 31-34
    • Gietz, R.D.1    Schiestl, R.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.