메뉴 건너뛰기




Volumn 115, Issue 31, 2018, Pages E7379-E7388

Correction: Stem cell-derived clade F AAVs mediate high-efficiency homologous recombination-based genome editing (Proceedings of the National Academy of Sciences of the United States of America (2018) 115 (E7379-E7388) DOI: 10.1073/pnas.1802343115);Stem cell-derived clade F AAVs mediate high-efficiency homologous recombination-based genome editing

Author keywords

Adeno associated virus; Genome editing; Hematopoietic stem cells; Homologous recombination; In vivo genome editing

Indexed keywords

BRCA2 PROTEIN; BRCA2 PROTEIN, HUMAN; IL2RG PROTEIN, HUMAN; INTERLEUKIN 2 RECEPTOR GAMMA;

EID: 85051815326     PISSN: 00278424     EISSN: 10916490     Source Type: Journal    
DOI: 10.1073/pnas.1819306115     Document Type: Erratum
Times cited : (30)

References (77)
  • 1
    • 0029899891 scopus 로고    scopus 로고
    • Genetic manipulation of genomes with rare-cutting endonucleases
    • Jasin M (1996) Genetic manipulation of genomes with rare-cutting endonucleases. Trends Genet 12:224–228.
    • (1996) Trends Genet , vol.12 , pp. 224-228
    • Jasin, M.1
  • 3
    • 0038799991 scopus 로고    scopus 로고
    • Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae
    • Pâques F, Haber JE (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63:349–404.
    • (1999) Microbiol Mol Biol Rev , vol.63 , pp. 349-404
    • Pâques, F.1    Haber, J.E.2
  • 4
    • 0036021389 scopus 로고    scopus 로고
    • Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases
    • Bibikova M, Golic M, Golic KG, Carroll D (2002) Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161:1169–1175.
    • (2002) Genetics , vol.161 , pp. 1169-1175
    • Bibikova, M.1    Golic, M.2    Golic, K.G.3    Carroll, D.4
  • 5
    • 79751487297 scopus 로고    scopus 로고
    • Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription
    • Zhang F, et al. (2011) Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol 29:149–153.
    • (2011) Nat Biotechnol , vol.29 , pp. 149-153
    • Zhang, F.1
  • 6
    • 79551685675 scopus 로고    scopus 로고
    • A TALE nuclease architecture for efficient genome editing
    • Miller JC, et al. (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29:143–148.
    • (2011) Nat Biotechnol , vol.29 , pp. 143-148
    • Miller, J.C.1
  • 7
    • 84873734105 scopus 로고    scopus 로고
    • RNA-guided human genome engineering via Cas9
    • Mali P, et al. (2013) RNA-guided human genome engineering via Cas9. Science 339: 823–826.
    • (2013) Science , vol.339 , pp. 823-826
    • Mali, P.1
  • 8
    • 84873729095 scopus 로고    scopus 로고
    • Multiplex genome engineering using CRISPR/Cas systems
    • Cong L, et al. (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823.
    • (2013) Science , vol.339 , pp. 819-823
    • Cong, L.1
  • 9
    • 84865070369 scopus 로고    scopus 로고
    • A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
    • Jinek M, et al. (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821.
    • (2012) Science , vol.337 , pp. 816-821
    • Jinek, M.1
  • 10
    • 84975678715 scopus 로고    scopus 로고
    • Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system
    • Zetsche B, et al. (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–771.
    • (2015) Cell , vol.163 , pp. 759-771
    • Zetsche, B.1
  • 11
    • 77953229115 scopus 로고    scopus 로고
    • The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway
    • Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79:181–211.
    • (2010) Annu Rev Biochem , vol.79 , pp. 181-211
    • Lieber, M.R.1
  • 12
    • 0031607707 scopus 로고    scopus 로고
    • DNA breakage and repair
    • Jeggo PA (1998) DNA breakage and repair. Adv Genet 38:185–218.
    • (1998) Adv Genet , vol.38 , pp. 185-218
    • Jeggo, P.A.1
  • 13
    • 70350306544 scopus 로고    scopus 로고
    • Adeno-associated virus site-specific integration is mediated by proteins of the nonhomologous end-joining pathway
    • Daya S, Cortez N, Berns KI (2009) Adeno-associated virus site-specific integration is mediated by proteins of the nonhomologous end-joining pathway. J Virol 83:11655–11664.
    • (2009) J Virol , vol.83 , pp. 11655-11664
    • Daya, S.1    Cortez, N.2    Berns, K.I.3
  • 14
    • 0023813873 scopus 로고
    • Efficient repair of HO-induced chromosomal breaks in Saccharomyces cerevisiae by recombination between flanking homologous sequences
    • Rudin N, Haber JE (1988) Efficient repair of HO-induced chromosomal breaks in Saccharomyces cerevisiae by recombination between flanking homologous sequences. Mol Cell Biol 8:3918–3928.
    • (1988) Mol Cell Biol , vol.8 , pp. 3918-3928
    • Rudin, N.1    Haber, J.E.2
  • 15
    • 0024328536 scopus 로고
    • Altering the genome by homologous recombination
    • Capecchi MR (1989) Altering the genome by homologous recombination. Science 244: 1288–1292.
    • (1989) Science , vol.244 , pp. 1288-1292
    • Capecchi, M.R.1
  • 16
    • 0028237305 scopus 로고
    • Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells
    • Rouet P, Smih F, Jasin M (1994) Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc Natl Acad Sci USA 91:6064–6068.
    • (1994) Proc Natl Acad Sci USA , vol.91 , pp. 6064-6068
    • Rouet, P.1    Smih, F.2    Jasin, M.3
  • 17
    • 85007092835 scopus 로고    scopus 로고
    • The control of DNA repair by the cell cycle
    • Hustedt N, Durocher D (2016) The control of DNA repair by the cell cycle. Nat Cell Biol 19:1–9.
    • (2016) Nat Cell Biol , vol.19 , pp. 1-9
    • Hustedt, N.1    Durocher, D.2
  • 18
    • 84923106217 scopus 로고    scopus 로고
    • Therapeutic genome editing: Prospects and challenges
    • Cox DB, Platt RJ, Zhang F (2015) Therapeutic genome editing: Prospects and challenges. Nat Med 21:121–131.
    • (2015) Nat Med , vol.21 , pp. 121-131
    • Cox, D.B.1    Platt, R.J.2    Zhang, F.3
  • 19
    • 84880570576 scopus 로고    scopus 로고
    • High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells
    • Fu Y, et al. (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31:822–826.
    • (2013) Nat Biotechnol , vol.31 , pp. 822-826
    • Fu, Y.1
  • 20
    • 84903545084 scopus 로고    scopus 로고
    • Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease
    • Kuscu C, Arslan S, Singh R, Thorpe J, Adli M (2014) Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat Biotechnol 32: 677–683.
    • (2014) Nat Biotechnol , vol.32 , pp. 677-683
    • Kuscu, C.1    Arslan, S.2    Singh, R.3    Thorpe, J.4    Adli, M.5
  • 21
    • 84923266604 scopus 로고    scopus 로고
    • GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases
    • Tsai SQ, et al. (2015) GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol 33:187–197.
    • (2015) Nat Biotechnol , vol.33 , pp. 187-197
    • Tsai, S.Q.1
  • 22
    • 84927514894 scopus 로고    scopus 로고
    • In vivo genome editing using Staphylococcus aureus Cas9
    • Ran FA, et al. (2015) In vivo genome editing using Staphylococcus aureus Cas9. Nature 520:186–191.
    • (2015) Nature , vol.520 , pp. 186-191
    • Ran, F.A.1
  • 23
    • 85018502412 scopus 로고    scopus 로고
    • CRISPR-based technologies for the manipulation of eukaryotic genomes
    • Komor AC, Badran AH, Liu DR (2017) CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell 169:559,
    • (2017) Cell , vol.169 , pp. 559
    • Komor, A.C.1    Badran, A.H.2    Liu, D.R.3
  • 24
    • 85051819540 scopus 로고    scopus 로고
    • erratum (2017) 168:20–36
    • erratum (2017) 168:20–36.
  • 25
    • 0031897270 scopus 로고    scopus 로고
    • Human gene targeting by viral vectors
    • Russell DW, Hirata RK (1998) Human gene targeting by viral vectors. Nat Genet 18: 325–330.
    • (1998) Nat Genet , vol.18 , pp. 325-330
    • Russell, D.W.1    Hirata, R.K.2
  • 26
    • 0037627488 scopus 로고    scopus 로고
    • Efficient gene targeting mediated by adeno-associated virus and DNA double-strand breaks
    • Porteus MH, Cathomen T, Weitzman MD, Baltimore D (2003) Efficient gene targeting mediated by adeno-associated virus and DNA double-strand breaks. Mol Cell Biol 23: 3558–3565.
    • (2003) Mol Cell Biol , vol.23 , pp. 3558-3565
    • Porteus, M.H.1    Cathomen, T.2    Weitzman, M.D.3    Baltimore, D.4
  • 27
    • 33746198006 scopus 로고    scopus 로고
    • Homologous recombination is required for AAV-mediated gene targeting
    • Vasileva A, Linden RM, Jessberger R (2006) Homologous recombination is required for AAV-mediated gene targeting. Nucleic Acids Res 34:3345–3360.
    • (2006) Nucleic Acids Res , vol.34 , pp. 3345-3360
    • Vasileva, A.1    Linden, R.M.2    Jessberger, R.3
  • 28
    • 84923138903 scopus 로고    scopus 로고
    • Promoterless gene targeting without nucleases ameliorates haemophilia B in mice
    • Barzel A, et al. (2015) Promoterless gene targeting without nucleases ameliorates haemophilia B in mice. Nature 517:360–364.
    • (2015) Nature , vol.517 , pp. 360-364
    • Barzel, A.1
  • 29
    • 33747046320 scopus 로고    scopus 로고
    • Gene targeting in vivo by adeno-associated virus vectors
    • Miller DG, et al. (2006) Gene targeting in vivo by adeno-associated virus vectors. Nat Biotechnol 24:1022–1026.
    • (2006) Nat Biotechnol , vol.24 , pp. 1022-1026
    • Miller, D.G.1
  • 30
    • 79960046970 scopus 로고    scopus 로고
    • AAV-mediated gene targeting methods for human cells
    • Khan IF, Hirata RK, Russell DW (2011) AAV-mediated gene targeting methods for human cells. Nat Protoc 6:482–501.
    • (2011) Nat Protoc , vol.6 , pp. 482-501
    • Khan, I.F.1    Hirata, R.K.2    Russell, D.W.3
  • 31
    • 84964313851 scopus 로고    scopus 로고
    • Gene transfer properties and structural modeling of human stem cell-derived AAV
    • Smith LJ, et al. (2014) Gene transfer properties and structural modeling of human stem cell-derived AAV. Mol Ther 22:1625–1634.
    • (2014) Mol Ther , vol.22 , pp. 1625-1634
    • Smith, L.J.1
  • 32
    • 0028060363 scopus 로고
    • Efficient gene transfer into nondividing cells by adeno-associated virus-based vectors
    • Podsakoff G, Wong KK, Jr, Chatterjee S (1994) Efficient gene transfer into nondividing cells by adeno-associated virus-based vectors. J Virol 68:5656–5666.
    • (1994) J Virol , vol.68 , pp. 5656-5666
    • Podsakoff, G.1    Wong, K.K.2    Chatterjee, S.3
  • 33
    • 23344432113 scopus 로고    scopus 로고
    • Recombinant AAV2 transduction of primitive human hematopoietic stem cells capable of serial engraftment in immune-deficient mice
    • Santat L, et al. (2005) Recombinant AAV2 transduction of primitive human hematopoietic stem cells capable of serial engraftment in immune-deficient mice. Proc Natl Acad Sci USA 102:11053–11058.
    • (2005) Proc Natl Acad Sci USA , vol.102 , pp. 11053-11058
    • Santat, L.1
  • 34
    • 44349170706 scopus 로고    scopus 로고
    • Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection
    • Zincarelli C, Soltys S, Rengo G, Rabinowitz JE (2008) Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Mol Ther 16: 1073–1080.
    • (2008) Mol Ther , vol.16 , pp. 1073-1080
    • Zincarelli, C.1    Soltys, S.2    Rengo, G.3    Rabinowitz, J.E.4
  • 35
    • 0027055182 scopus 로고
    • Dual-target inhibition of HIV-1 in vitro by means of an adeno-associated virus antisense vector
    • Chatterjee S, Johnson PR, Wong KK, Jr (1992) Dual-target inhibition of HIV-1 in vitro by means of an adeno-associated virus antisense vector. Science 258:1485–1488.
    • (1992) Science , vol.258 , pp. 1485-1488
    • Chatterjee, S.1    Johnson, P.R.2    Wong, K.K.3
  • 36
    • 0029945425 scopus 로고    scopus 로고
    • Integration of adeno-associated virus vectors in CD34+ human hematopoietic progenitor cells after transduction
    • Fisher-Adams G, Wong KK, Jr, Podsakoff G, Forman SJ, Chatterjee S (1996) Integration of adeno-associated virus vectors in CD34+ human hematopoietic progenitor cells after transduction. Blood 88:492–504.
    • (1996) Blood , vol.88 , pp. 492-504
    • Fisher-Adams, G.1    Wong, K.K.2    Podsakoff, G.3    Forman, S.J.4    Chatterjee, S.5
  • 37
    • 34547508637 scopus 로고    scopus 로고
    • Quiescent subpopulations of human CD34-positive hematopoietic stem cells are preferred targets for stable recombinant adeno-associated virus type 2 transduction
    • Paz H, et al. (2007) Quiescent subpopulations of human CD34-positive hematopoietic stem cells are preferred targets for stable recombinant adeno-associated virus type 2 transduction. Hum Gene Ther 18:614–626.
    • (2007) Hum Gene Ther , vol.18 , pp. 614-626
    • Paz, H.1
  • 38
    • 0025214094 scopus 로고
    • Site-specific integration by adeno-associated virus
    • Kotin RM, et al. (1990) Site-specific integration by adeno-associated virus. Proc Natl Acad Sci USA 87:2211–2215.
    • (1990) Proc Natl Acad Sci USA , vol.87 , pp. 2211-2215
    • Kotin, R.M.1
  • 39
    • 19944405059 scopus 로고    scopus 로고
    • Impaired nuclear transport and uncoating limit recombinant adeno-associated virus 2 vector-mediated transduction of primary murine hematopoietic cells
    • Zhong L, et al. (2004) Impaired nuclear transport and uncoating limit recombinant adeno-associated virus 2 vector-mediated transduction of primary murine hematopoietic cells. Hum Gene Ther 15:1207–1218.
    • (2004) Hum Gene Ther , vol.15 , pp. 1207-1218
    • Zhong, L.1
  • 40
    • 0030879933 scopus 로고    scopus 로고
    • Adeno-associated virus type 2-mediated transduction in primary human bone marrow-derived CD34+ hematopoietic progenitor cells: Donor variation and correlation of transgene expression with cellular differentiation
    • Ponnazhagan S, et al. (1997) Adeno-associated virus type 2-mediated transduction in primary human bone marrow-derived CD34+ hematopoietic progenitor cells: Donor variation and correlation of transgene expression with cellular differentiation. J Virol 71:8262–8267.
    • (1997) J Virol , vol.71 , pp. 8262-8267
    • Ponnazhagan, S.1
  • 41
    • 84872046121 scopus 로고    scopus 로고
    • A capillary electrophoresis sequencing method for the identification of mutations in the inverted terminal repeats of adeno-associated virus
    • Mroske C, Rivera H, Ul-Hasan T, Chatterjee S, Wong KK (2012) A capillary electrophoresis sequencing method for the identification of mutations in the inverted terminal repeats of adeno-associated virus. Hum Gene Ther Methods 23:128–136.
    • (2012) Hum Gene Ther Methods , vol.23 , pp. 128-136
    • Mroske, C.1    Rivera, H.2    Ul-Hasan, T.3    Chatterjee, S.4    Wong, K.K.5
  • 42
    • 0031032549 scopus 로고    scopus 로고
    • Repair of site-specific double-strand breaks in a mammalian chromosome by homologous and illegitimate recombination
    • Sargent RG, Brenneman MA, Wilson JH (1997) Repair of site-specific double-strand breaks in a mammalian chromosome by homologous and illegitimate recombination. Mol Cell Biol 17:267–277.
    • (1997) Mol Cell Biol , vol.17 , pp. 267-277
    • Sargent, R.G.1    Brenneman, M.A.2    Wilson, J.H.3
  • 43
    • 0032472367 scopus 로고    scopus 로고
    • Interstitial deletions and intra-chromosomal amplification initiated from a double-strand break targeted to a mammalian chromosome
    • Pipiras E, Coquelle A, Bieth A, Debatisse M (1998) Interstitial deletions and intra-chromosomal amplification initiated from a double-strand break targeted to a mammalian chromosome. EMBO J 17:325–333.
    • (1998) EMBO J , vol.17 , pp. 325-333
    • Pipiras, E.1    Coquelle, A.2    Bieth, A.3    Debatisse, M.4
  • 44
    • 0035173378 scopus 로고    scopus 로고
    • DbSNP: The NCBI database of genetic variation
    • Sherry ST, et al. (2001) dbSNP: The NCBI database of genetic variation. Nucleic Acids Res 29:308–311.
    • (2001) Nucleic Acids Res , vol.29 , pp. 308-311
    • Sherry, S.T.1
  • 45
    • 84902315464 scopus 로고    scopus 로고
    • Targeted genome editing in human repopulating haema-topoietic stem cells
    • Genovese P, et al. (2014) Targeted genome editing in human repopulating haema-topoietic stem cells. Nature 510:235–240.
    • (2014) Nature , vol.510 , pp. 235-240
    • Genovese, P.1
  • 46
    • 84962866438 scopus 로고    scopus 로고
    • Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing
    • Miyaoka Y, et al. (2016) Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing. Sci Rep 6:23549.
    • (2016) Sci Rep , vol.6 , pp. 23549
    • Miyaoka, Y.1
  • 47
    • 0033997905 scopus 로고    scopus 로고
    • Design and packaging of adeno-associated virus gene targeting vectors
    • Hirata RK, Russell DW (2000) Design and packaging of adeno-associated virus gene targeting vectors. J Virol 74:4612–4620.
    • (2000) J Virol , vol.74 , pp. 4612-4620
    • Hirata, R.K.1    Russell, D.W.2
  • 48
    • 0141534462 scopus 로고    scopus 로고
    • Roles of BRCA1 and BRCA2 in homologous recombination, DNA replication fidelity and the cellular response to ionizing radiation
    • Powell SN, Kachnic LA (2003) Roles of BRCA1 and BRCA2 in homologous recombination, DNA replication fidelity and the cellular response to ionizing radiation. Oncogene 22:5784–5791.
    • (2003) Oncogene , vol.22 , pp. 5784-5791
    • Powell, S.N.1    Kachnic, L.A.2
  • 49
    • 0025301095 scopus 로고
    • RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination
    • Oettinger MA, Schatz DG, Gorka C, Baltimore D (1990) RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science 248:1517–1523.
    • (1990) Science , vol.248 , pp. 1517-1523
    • Oettinger, M.A.1    Schatz, D.G.2    Gorka, C.3    Baltimore, D.4
  • 50
    • 0027207298 scopus 로고
    • Regional mapping of human DNA excision repair gene ERCC4 to chromosome 16p13.13-p13.2
    • Liu P, et al. (1993) Regional mapping of human DNA excision repair gene ERCC4 to chromosome 16p13.13-p13.2. Mutagenesis 8:199–205.
    • (1993) Mutagenesis , vol.8 , pp. 199-205
    • Liu, P.1
  • 51
    • 0028880649 scopus 로고
    • Ataxia-telangiectasia and cellular responses to DNA damage
    • Meyn MS (1995) Ataxia-telangiectasia and cellular responses to DNA damage. Cancer Res 55:5991–6001.
    • (1995) Cancer Res , vol.55 , pp. 5991-6001
    • Meyn, M.S.1
  • 52
    • 0037038362 scopus 로고    scopus 로고
    • Nbs1 is essential for DNA repair by homologous recombination in higher vertebrate cells
    • Tauchi H, et al. (2002) Nbs1 is essential for DNA repair by homologous recombination in higher vertebrate cells. Nature 420:93–98.
    • (2002) Nature , vol.420 , pp. 93-98
    • Tauchi, H.1
  • 53
    • 0028785586 scopus 로고
    • The Bloom’s syndrome gene product is homologous to RecQ helicases
    • Ellis NA, et al. (1995) The Bloom’s syndrome gene product is homologous to RecQ helicases. Cell 83:655–666.
    • (1995) Cell , vol.83 , pp. 655-666
    • Ellis, N.A.1
  • 54
    • 16944362011 scopus 로고    scopus 로고
    • Evidence for at least eight Fanconi anemia genes
    • Joenje H, et al. (1997) Evidence for at least eight Fanconi anemia genes. Am J Hum Genet 61:940–944.
    • (1997) Am J Hum Genet , vol.61 , pp. 940-944
    • Joenje, H.1
  • 55
    • 0033838434 scopus 로고    scopus 로고
    • Complementation analysis in Fanconi anemia: Assignment of the reference FA-H patient to group A
    • Joenje H, et al. (2000) Complementation analysis in Fanconi anemia: Assignment of the reference FA-H patient to group A. Am J Hum Genet 67:759–762.
    • (2000) Am J Hum Genet , vol.67 , pp. 759-762
    • Joenje, H.1
  • 56
    • 10944239213 scopus 로고    scopus 로고
    • X-linked inheritance of Fanconi anemia complementation group B
    • Meetei AR, et al. (2004) X-linked inheritance of Fanconi anemia complementation group B. Nat Genet 36:1219–1224.
    • (2004) Nat Genet , vol.36 , pp. 1219-1224
    • Meetei, A.R.1
  • 57
    • 0037842201 scopus 로고    scopus 로고
    • Genetic reversion in an acute myelogenous leukemia cell line from a Fanconi anemia patient with biallelic mutations in BRCA2
    • Ikeda H, et al. (2003) Genetic reversion in an acute myelogenous leukemia cell line from a Fanconi anemia patient with biallelic mutations in BRCA2. Cancer Res 63: 2688–2694.
    • (2003) Cancer Res , vol.63 , pp. 2688-2694
    • Ikeda, H.1
  • 58
    • 34547486820 scopus 로고    scopus 로고
    • The Fanconi anemia pathway promotes homologous recombination repair in DT40 cell line
    • Takata M, et al. (2006) The Fanconi anemia pathway promotes homologous recombination repair in DT40 cell line. Subcell Biochem 40:295–311.
    • (2006) Subcell Biochem , vol.40 , pp. 295-311
    • Takata, M.1
  • 59
    • 84963657302 scopus 로고    scopus 로고
    • Interplay between Fanconi anemia and homologous recombination pathways in genome integrity
    • Michl J, Zimmer J, Tarsounas M (2016) Interplay between Fanconi anemia and homologous recombination pathways in genome integrity. EMBO J 35:909–923.
    • (2016) EMBO J , vol.35 , pp. 909-923
    • Michl, J.1    Zimmer, J.2    Tarsounas, M.3
  • 60
    • 0026521238 scopus 로고
    • Cloning of cDNAs for Fanconi’s anaemia by functional complementation
    • Strathdee CA, Gavish H, Shannon WR, Buchwald M (1992) Cloning of cDNAs for Fanconi’s anaemia by functional complementation. Nature 356:763–767.
    • (1992) Nature , vol.356 , pp. 763-767
    • Strathdee, C.A.1    Gavish, H.2    Shannon, W.R.3    Buchwald, M.4
  • 61
    • 0035099044 scopus 로고    scopus 로고
    • BRCA2 is required for homology-directed repair of chromosomal breaks
    • Moynahan ME, Pierce AJ, Jasin M (2001) BRCA2 is required for homology-directed repair of chromosomal breaks. Mol Cell 7:263–272.
    • (2001) Mol Cell , vol.7 , pp. 263-272
    • Moynahan, M.E.1    Pierce, A.J.2    Jasin, M.3
  • 62
    • 0035105999 scopus 로고    scopus 로고
    • Role of BRCA2 in control of the RAD51 recombination and DNA repair protein
    • Davies AA, et al. (2001) Role of BRCA2 in control of the RAD51 recombination and DNA repair protein. Mol Cell 7:273–282.
    • (2001) Mol Cell , vol.7 , pp. 273-282
    • Davies, A.A.1
  • 63
    • 79551658805 scopus 로고    scopus 로고
    • Rad52 inactivation is synthetically lethal with BRCA2 deficiency
    • Feng Z, et al. (2011) Rad52 inactivation is synthetically lethal with BRCA2 deficiency. Proc Natl Acad Sci USA 108:686–691.
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 686-691
    • Feng, Z.1
  • 64
    • 0025992469 scopus 로고
    • Promoter traps in embryonic stem cells: A genetic screen to identify and mutate developmental genes in mice
    • Friedrich G, Soriano P (1991) Promoter traps in embryonic stem cells: A genetic screen to identify and mutate developmental genes in mice. Genes Dev 5:1513–1523.
    • (1991) Genes Dev , vol.5 , pp. 1513-1523
    • Friedrich, G.1    Soriano, P.2
  • 66
    • 84952636705 scopus 로고    scopus 로고
    • Comparative study of liver gene transfer with AAV vectors based on natural and engineered AAV capsids
    • Wang L, et al. (2015) Comparative study of liver gene transfer with AAV vectors based on natural and engineered AAV capsids. Mol Ther 23:1877–1887.
    • (2015) Mol Ther , vol.23 , pp. 1877-1887
    • Wang, L.1
  • 67
    • 84874189983 scopus 로고    scopus 로고
    • Functional mapping of tissue tropism of naturally occurring adeno-associated virus isolates from human hematopoietic stem cells
    • Smith L, et al. (2011) Functional mapping of tissue tropism of naturally occurring adeno-associated virus isolates from human hematopoietic stem cells. Mol Ther 19(Suppl 1):S127–S128.
    • (2011) Mol Ther , vol.19 , pp. S127-S128
    • Smith, L.1
  • 68
    • 77950610272 scopus 로고    scopus 로고
    • Adeno-associated virus gene repair corrects a mouse model of hereditary tyrosinemia in vivo
    • Paulk NK, et al. (2010) Adeno-associated virus gene repair corrects a mouse model of hereditary tyrosinemia in vivo. Hepatology 51:1200–1208.
    • (2010) Hepatology , vol.51 , pp. 1200-1208
    • Paulk, N.K.1
  • 69
    • 85030830011 scopus 로고    scopus 로고
    • Survival advantage of both human hepatocyte xenografts and genome-edited hepatocytes for treatment of alpha-1 antitrypsin deficiency
    • Borel F, et al. (2017) Survival advantage of both human hepatocyte xenografts and genome-edited hepatocytes for treatment of alpha-1 antitrypsin deficiency. Mol Ther 25:2477–2489.
    • (2017) Mol Ther , vol.25 , pp. 2477-2489
    • Borel, F.1
  • 70
    • 33947128178 scopus 로고    scopus 로고
    • Ubiquitous and uniform in vivo fluorescence in ROSA26-EGFP BAC transgenic mice
    • Giel-Moloney M, Krause DS, Chen G, Van Etten RA, Leiter AB (2007) Ubiquitous and uniform in vivo fluorescence in ROSA26-EGFP BAC transgenic mice. Genesis 45:83–89.
    • (2007) Genesis , vol.45 , pp. 83-89
    • Giel-Moloney, M.1    Krause, D.S.2    Chen, G.3    Van Etten, R.A.4    Leiter, A.B.5
  • 71
    • 77956623746 scopus 로고    scopus 로고
    • Differential effects of DNA double-strand break repair pathways on single-strand and self-complementary adeno-associated virus vector genomes
    • Cataldi MP, McCarty DM (2010) Differential effects of DNA double-strand break repair pathways on single-strand and self-complementary adeno-associated virus vector genomes. J Virol 84:8673–8682.
    • (2010) J Virol , vol.84 , pp. 8673-8682
    • Cataldi, M.P.1    McCarty, D.M.2
  • 72
    • 0000386558 scopus 로고
    • Southern blotting
    • Brown T (1993) Southern blotting. Curr Protoc Mol Biol 21:2.9.1–2.9.20.
    • (1993) Curr Protoc Mol Biol , vol.21 , pp. 2.9.1-2.9.20
    • Brown, T.1
  • 73
    • 84942921684 scopus 로고    scopus 로고
    • Efficient modification of CCR5 in primary human hematopoietic cells using a megaTAL nuclease and AAV donor template
    • Sather BD, et al. (2015) Efficient modification of CCR5 in primary human hematopoietic cells using a megaTAL nuclease and AAV donor template. Sci Transl Med 7: 307ra156.
    • (2015) Sci Transl Med , vol.7 , pp. 307ra156
    • Sather, B.D.1
  • 74
    • 84949814888 scopus 로고    scopus 로고
    • Homology-driven genome editing in hematopoietic stem and progenitor cells using ZFN mRNA and AAV6 donors
    • Wang J, et al. (2015) Homology-driven genome editing in hematopoietic stem and progenitor cells using ZFN mRNA and AAV6 donors. Nat Biotechnol 33:1256–1263.
    • (2015) Nat Biotechnol , vol.33 , pp. 1256-1263
    • Wang, J.1
  • 75
    • 84964788489 scopus 로고    scopus 로고
    • Highly efficient homology-driven genome editing in human T cells by combining zinc-finger nuclease mRNA and AAV6 donor delivery
    • Wang J, et al. (2016) Highly efficient homology-driven genome editing in human T cells by combining zinc-finger nuclease mRNA and AAV6 donor delivery. Nucleic Acids Res 44:e30.
    • (2016) Nucleic Acids Res , vol.44 , pp. e30
    • Wang, J.1
  • 76
    • 84963516618 scopus 로고    scopus 로고
    • Targeted gene addition in human CD34(+) hematopoietic cells for correction of X-linked chronic granulomatous disease
    • De Ravin SS, et al. (2016) Targeted gene addition in human CD34(+) hematopoietic cells for correction of X-linked chronic granulomatous disease. Nat Biotechnol 34: 424–429.
    • (2016) Nat Biotechnol , vol.34 , pp. 424-429
    • De Ravin, S.S.1
  • 77
    • 84992058766 scopus 로고    scopus 로고
    • High-efficiency transduction of primary human hematopoietic stem/progenitor cells by AAV6 vectors: Strategies for overcoming donor-variation and implications in genome editing
    • Ling C, et al. (2016) High-efficiency transduction of primary human hematopoietic stem/progenitor cells by AAV6 vectors: Strategies for overcoming donor-variation and implications in genome editing. Sci Rep 6:35495.
    • (2016) Sci Rep , vol.6 , pp. 35495
    • Ling, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.